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Objective: To develop predictive models for contrast induced acute kidney injury (CI-AKI)

among acute myocardial infarction (AMI) patients treated invasively.

Methods: Patients with AMI who underwent angiography therapy were enrolled and

randomly divided into training cohort (75%) and validation cohort (25%). Machine learning

algorithms were used to construct predictive models for CI-AKI. The predictive models

were tested in a validation cohort.

Results: A total of 1,495 patients with AMI were included. Of all the patients, 226 (15.1%)

cases developed CI-AKI. In the validation cohort, Random Forest (RF) model with top 15

variables reached an area under the curve (AUC) of 0.82 (95% CI: 0.76–0.87), while the

best logistic model had an AUC of 0.69 (95% CI: 0.62–0.76). ACEF (age, creatinine, and

ejection fraction) model reached an AUC of 0.62 (95% CI: 0.53–0.71). RF model with

top 15 variables achieved a high recall rate of 71.9% and an accuracy of 73.5% in the

validation group. Random Forest model significantly outperformed logistic regression in

every comparison.

Conclusions: Machine learning algorithms especially Random Forest algorithm

improves the accuracy of risk stratifying patients with AMI and should be used to

accurately identify the risk of CI-AKI in AMI patients.

Keywords: machine learning, Random Forest algorithm, logistic regression, predictive models, contrast induced

acute kidney injury, acute myocardial infarction

INTRODUCTION

Acute renal injury (AKI), always associated with a poor prognosis, may arise from a variety
of diseases (1). Acute myocardial infarction (AMI) is an important cause of AKI, due to its
comorbidities, hemodynamic instability and the use of nephrotoxic drugs. Studies have shown that
the incidence of AKI is between 11 and 26% in patients with AMI during hospitalization (2–6).
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The mortality rate among patients with AMI was found to be
higher in the ones who developed AKI (1, 7, 8). Also, patients
with AKI are more likely to develop long-term complications,
including progression to chronic kidney disease, heart failure,
recurrent myocardial infarction, and long-term mortality (9).

Early identification of patients with AMI, who are likely
to develop contrast induced acute kidney injury (CI-AKI)
after an invasive treatment, will alert us to start an early
therapy (e.g., iso-osmolar contrast media, fluids, pre-procedural
statin) to preserve the renal function. Certain risk biomarkers
(10, 11) and predictive models (12, 13) were reported to be
capable of predicting the incidence of AKI. However, their
predictive efficiency needs further improvement. Moreover,
the Precision Medicine Initiative requires physicians to
avoid oversimplification of medical treatments and to
take individual variability into account to improve the
decision-making process.

Machine learning has a computational discipline that
algorithms are formulated to model or recognize complex
patterns or features, using large amounts of data. Previous studies
have shown that some machine learning methods (e.g., Random
Forest) are more accurate than the traditional logistic regression
models in predicting disease prognosis (14–16). This provides us
the inspiration to design this study.

Themain purpose of this study is to compare the efficiencies of
several popular machine learning techniques to predict CI-AKI
in AMI patients. An additional objective is to show the clinical
use of these machine learning methods.

RESULTS

Baseline Characteristics
A total of 1,495 patients diagnosed with AMI were included
in the study. The average age was 66.6 ± 13.9 years, and
71.2% of the sample were men. 66.4% of the participants
had hypertension, 26.8% had diabetes, 49.8% patients had
a history of smoking and 12.1% had a history of alcohol
consumption. Among these patients, 63.1% were diagnosed
with ST-segment elevation myocardial infarction (STEMI).
During the procedure, 95.1% of the participants were given
percutaneous coronary intervention (PCI) therapy (Table 1).
Of all the enrolled patients, 226 (15.1%) developed CI-AKI
after the procedure. We then divided the enrolled patients
randomly into a training cohort (75%) and a validation
cohort (25%). The baseline characteristics were compared in
Supplementary Table 1. There were no significant differences
between the two groups.

Logistic Regression Models
As shown in Figure 1, three Logistic models were developed.
The following predictors were included in the models: contrast
volume >100ml, use of iso-osmolar contrast media (IOCM),
hypotension, Killip class ≥ 3, age, neutrophil percentage, free
triiodothyronine (FT3), hypertension, serum creatinine (SCr)
and hemoglobin.

TABLE 1 | Baseline characteristics for the study population.

Characteristics AMI patients (n = 1,495)

Age, y 66.6 ± 13.9

Male, n% 1,065 (71.2%)

Systolic blood pressure, mmHg 132.4 ± 24.7

Diastolic blood pressure, mmHg 79.2 ± 16.6

Heart rate, beats per minute 80.9 ± 16.9

Body mass index, Kg/m2 23.7 ± 3.8

LVEF, % 49.9 ± 9.0

Smoking, n% 744 (49.8%)

Drinking, n% 181 (12.1%)

Hypertension, n% 993 (66.4%)

Diabetes, n% 400 (26.8%)

Killip class III or IV, n% 156 (10.4%)

STEMI, n% 943 (63.1%)

NSTEMI, n% 552 (36.9%)

CI-AKI

Yes

226 (15.1%)

No 1,269 (84.9%)

Medications before procedures, n%

Aspirin 1,445 (96.7%)

Clopidogrel 543 (36.3%)

Ticagrelor 952 (63.7%)

ACEI/ARB 882 (59%)

β-blocker 892 (59.7%)

Statins 1,337 (89.4%)

Low Molecular Heparin 1,464 (97.9%)

Tirofiban hydrochloride 728 (48.7%)

Digoxin 16 (1.1%)

Diuretics 287 (19.2%)

Laboratory measurements at baseline

White blood cell, 109/L 8.93 (6.96–11.48)

Neutrophil percentage, % 75.6 ± 10.8

Hemoglobin, g/L 133.5 ± 20.2

Serum creatinine, µmol/L 78.10 (64.60–96.75)

Uric acid, µmol/L 333 (274–404)

Serum albumin, g/L 37.8 ± 4.3

Blood glucose, mmol/L 6.90 (5.62–9.37)

Total triglycerides, mol/L 1.22 (0.90–1.78)

Total cholesterol, mmol/L 4.14 (3.52–4.81)

High-density lipoprotein cholesterol, mmol/L 1.10 (0.92–1.33)

Low-density lipoprotein cholesterol, mmol/L 2.39 (1.88–2.90)

Brain natriuretic peptide, pmol/L 1,031 (292–3,962)

Cardiac troponin I, ng/mL 1.76 (0.44–7.24)

Free triiodothyronine, pmol/L 4.0 ± 1.2

Free tetraiodothyronine, pmol/L 15.6 ± 3.3

Procedural characteristics, n%

Contrast volume > 100ml 482 (32.2%)

Contrast exposure time > 60min 200 (13.4%)

Use of IOCM 436 (29.2%)

Hydration therapy 344 (23%)

Pre-procedure hypotension 60 (4.0%)

(Continued)
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TABLE 1 | Continued

Characteristics AMI patients (n = 1,495)

CAG 1,495 (100%)

With adjunct PCI performed 1,421 (95.1%)

Number of stents with each vessel

Left main coronary artery

0 1,483 (99.2%)

1 12 (0.8%)

Left anterior descending artery

0 753 (50.4%)

1 731 (48.9%)

≥2 11 (0.7%)

Left circumflex artery

0 1,273 (85.2%)

1 221 (14.8%)

≥2 1 (0.1)

Right coronary artery

0 1,038 (69.4%)

1 438 (29.3%)

≥2 19 (1.3%)

LVEF, left ventricular ejection fraction; STEMI, ST segment elevation myocardial infarction;

NSTEMI, non-ST segment elevation myocardial infarction; CI-AKI, acute kidney injury;

IOCM, iso-osmolar contrast media; PCI, percutaneous coronary intervention; CAG,

coronary angiography; Pre-procedure hypotension was defined as systolic blood pressure

lower than 90 mmHg before procedure.

Features Selection of the Machine
Learning Models
Six machine learning models were constructed with features
selected according to the training cohort. The models used were:
decision tree (DT) model, support vector machine (SVM) model,
random forest (RF) model, K-nearest neighbors (KNN) model,
naive Bayes (NB) model, and gradient boosted machine (GBM)
model. Ten-fold cross validation was also used while training the
models. Figure 2 illustrates the top 20 features for CI-AKI using
the Boruta Algorithm. The minimum and maximum importance
of the top 20 features is also listed in Supplementary Table 2.

Performances of all the Models in the
Training Cohort
The performances of all the models in the training cohort,
including the logistic regression models and ACEF (age,
creatinine, and ejection fraction) model, are shown in Figure 3.
The ACEF model had an AUC of 0.59 (95% CI: 0.54–0.64) and
Mehran risk score reached an AUC of 0.62 (95% CI: 0.57–0.67).
The performance of the three logistic models in the training
cohort was similar (Supplementary Table 3). The AUC of LR1,
LR2, and LR3 was 0.72 (95% CI: 0.67–0.76), 0.72 (95% CI: 0.67–
0.76), and 0.71 (95%CI: 0.67–0.76), respectively. All three logistic
models performed better than the ACEF model or Mehran risk
score. Except for the DT model, the rest of the five machine
learning models performed better than the logistic models or
ACEF models in the training cohort. The SVMmodel performed
best when top 20 variables were added in the model (AUC of

SVM-20 model: 0.85, 95% CI: 0.82–0.88). The DT model had the
worst performance of all the machine learning models (AUC of
DT-all variables: 0.68, 95% CI: 0.63–0.72). The NB performed
well in the training cohort, and its AUCs increased when more
variables were added (AUC of NB-all variables: 0.83, 95%CI:
0.80–0.87). The GBM model and KNN model performed better
than the NB model (AUC of GBM-all variables: 0.85, 95% CI:
0.81–0.88; AUC of KNN-all variables: 0.86, 95% CI: 0.83–0.89).
Among all the machine learning models in the training cohort,
the RF model was the most accurate. The RF model achieved an
AUC of 0.995 (95% CI: 0.993–0.998) with the top five variables
included in the model. Receiver Operating Characteristic (ROC)
curve of each model were showed in Figures 3I–P. The AUCs
and 95% CI of each machine learning model are listed in
Supplementary Table 4.

Performances of all the Models in the
Validation Cohort
Independent validation was conducted in a validation cohort of
373 cases. Of all the machine learning models developed, the RF
model performed the best (Figure 4A). The top-four machine
learning models were as follows: the RF-15 model, with an AUC
of 0.82, (95% CI: 0.76–0.87); the RF-20 model, with an AUC
of 0.80, (95% CI: 0.74–0.86); the RF-10 model, with an AUC
of 0.78, (95% CI: 0.72–0.85); and the SVM-15 model, with an
AUC of 0.77 (95% CI: 0.71–0.84). The ACEF model reached an
AUC of 0.62 (95%CI: 0.53–0.71) and the AUC of Mehran risk
score was 0.60, (95%CI: 0.51–0.68) (Supplementary Table 5).
The performance of regression model LR3 was slightly better
than LR1 and LR2 (LR3: AUC of LR3: 0.69, 95%CI: 0.62–0.76),
(Supplementary Table 6).

ROC Analysis of the Top Four Machine
Learning Models and Logistic Model
ROC analysis in Figures 4B–G shows the underperformance of
ACEF model and Mehran risk score. While all of the top four
machine learning models performed significantly better than the
LR3 model (all P < 0.05, bootstrap method, n= 2,000).

Comparison of Top Four Machine Learning
Models and Logistic Regression Model in
the Validation Group
The Recall rate, F-1 score, and other metrics of the top four
machine learning models and LR3 model were then compared
(Table 2). The RF model with top 15 variables achieved a high
recall rate of 71.9% and an accuracy of 73.5% in the validation
group when the cut-off value was 0.5.

DISCUSSION

It is a large-scale study based on machine learning frameworks.
The study used real-world data related to the patients with
AMI to predict the possibility of CI-AKI in them. The results
showed that machine learning methods are suitable for risk
prediction in real-world research. First, the RF-based risk
prediction method performed better than the logistic regression
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FIGURE 1 | Logistic regression models. Presented is multivariate logistic regression analysis of CI-AKI in AMI patients. Three logistic regression model was developed.

LR1, logistic regression model 1; LR2, logistic regression model 2; LR3, logistic regression model 3; OR, odds ratio; CI, confidence interval; IOCM, iso-osmolar

contrast media; Hypotension, pre-procedure hypotension (systolic blood pressure below 90 mmHg before procedure); FT3, free triiodothyronine.

and Standard Risk methods. Second, the results suggest that the
RF model, with the top 15 predictors, performed the best in CI-
AKI prediction. Machine learning technology helps physicians
to analyze a large amount of information and is crucial in
medical practice optimization. Based on the current model,
the computer-aided risk assessment does not need to manually
calculate the score and predict the risk like the traditional risk
score. The variables can be obtained from electronic medical
record in our hospital. And the risk scores would be calculated
automatically. So, it will be more convenient and rapid to apply
for clinicians.

In our previous study (17), we found that Nomogram-
based model gave better forecast accuracy results for CI-AKI
in AMI patients, as compared to Mehran risk scores. Similar
to the previous studies (17–19), our new data shows that
machine learning models are superior to traditional logistic
regression for developing predictive models. This finding makes
sense because machine learning models are capable of learning
complex discriminative features from large volumes of data
without assumption of linearity. However, the discrepancy may
be due to the features selected in our machine learning models.
The RF model was built using the ensemble of decision trees.
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FIGURE 2 | Summary of importance of the selected features according to Boruta algorithm. This figure shows the importance of top 20 ranked variables. The

columns represent the medium importance of the feature and the error bars represent the maximum and minimal importance (scaled to a maximum value of 100).

Thus, it will significantly boost predictive performance by
reducing overfitting.

Boruta algorithm was used for feature selection in our
machine learning models. After that, top five most powerful
parameters, that is, neutrophil percentage, age of the patient,
free triiodothyronine, hypotension and serum creatinine levels,
were identified to be correlated with AKI. We found that the
neutrophil percentage was the most important biomarker for
predicting CI-AKI, suggesting that inflammatory response may
play an important role in the occurrence of CI-AKI. Some
studies suggest that age and creatinine levels are independent
predictors of CI-AKI in AMI patients (20). Combined with
our results, CI-AKI is more likely to occur in the elderly and
in patients with poor basal renal function. Consistent with
our study, it is also reported that free triiodothyronine had a
negative association with CI-AKI in patients undergoing primary
PCI therapy (6, 21). Preoperative hypotension may affect renal
perfusion and lead to a higher risk of CI-AKI. These biomarkers
are critical in improving the accuracy of our models. Moreover,
the machine learning algorithm is helpful to combine the
advantages of each biomarker, so as to obtain a more accurate
model. There are several other advantages of using machine
learning algorithms over traditional statistical modeling. As
machine-learning algorithms consider all potential interactions
and lack predefined assumptions, they are less likely to ignore

unexpected predictor variables. Predictive models of machine-
learning algorithm helped identify the risk of CI-AKI in patients
with AMI, that otherwise would have gone unnoticed. Moreover,
machine learning algorithms update themselves with the latest
clinical data for higher accuracy. The prediction algorithms
can be used to identify high-risk cases and help physicians
optimize clinical decisions. In the near future, machine-learning
algorithms can be expected to be used to develop an online risk
calculator to assess CI-AKI risks in cardiac care units.

We recommend using machine learning models for the
prediction of CI-AKI risk in AMI patients because machine
learning models are superior to previously developed models
at least in our study population. The use of the Random
Forest algorithm significantly improved the predictive ability
in comparison to traditional methods like regression analysis
and risk scores. However, the addition of novel biomarkers and
longitudinal data may still allow further refinement.We observed
that the predictive models, which have readily available clinical
data, can accurately identify the risk of CI-AKI after intervention
in AMI patients. Prospective studies should be performed to
demonstrate whether these models can identify the risk of CI-
AKI in AMI patients at an earlier stage.

Our study has several limitations. Firstly, our study was
performed in a single center with small sample size. The model
has not been verified in the external validation queue. The
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FIGURE 3 | The performances of all of the models in the training group. (A) Logistic regression analysis and ACEF risk score and Mehran risk scores. (B–H) AUC of

machine learning algorithm with top five variables (B), top 10 variables (C), top 15 variables (D), top 20 variables (E), top 30 variables (F), top 40 variables (G) and all

variables (H). (I) ROC curve of logistic regression model and risk scores. (J–P) ROC curve of machine learning algorithm with top five variables (J), top 10 variables

(K), top 15 variables (L), top 20 variables (M), top 30 variables (N), top 40 variables (O) and all variables (P).

future research should be carried on by expanding the sample
size and optimizing the model to improve the prediction value
of the model. Secondly, there are missing values in variables
of different levels, which may bias the accuracy of prediction.

Thirdly, newer CI-AKI biomarkers, such as GDF-15 (12, 13),
cystatin C (22), and neutrophil gelatinase-associated lipocalin
(NGAL) (23) were not included in the model because they
are not generally detected at an early stage of the disease.
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FIGURE 4 | The performance of all the models in test group and receiver operating characteristic curve (ROC) of top 4 machine learning models, logistic regression

and ACEF model. (A) The performances of all of the models in the validation group. (B) ROC curve of ACEF score. (C) ROC curve of Mehran risk score. (D) ROC

analysis of (RF 10) Random forest model with top 10 variables. (E) ROC analysis of (RF 15) random forest model with top 15 variables. (F) ROC analysis of (RF 20)

Random forest model with top 20 variables. (G) ROC analysis of (SVM 15) support vector machine model with top 15 variables.

Fourthly, serum creatinine was detected by the enzymatic
method with creatininase coupled sarcosine oxidase. endogenous
or exogenous substances may interfere with the determination
of serum creatinine compared with LC-MS/MS method. Despite
these limitations, our models achieved higher accuracy and better
performance than logistic regression models and ACEF models,
indicating that the advantages of this study, specifically its novel
methodology, outweigh its limitations. It can be expected that the
models will be validated in other cohorts in the future.

In conclusion, our study shows that machine learning will
help identify patients with the highest risk of CI-AKI in patients
with AMI. In addition, it will identify the most important factors
associated with increased risk of CI-AKI. However, the clinical

management to reduce the risk of CI-AKI was not addressed. In
the future, prospective studies will explore whether we can use
machine learning models to stratify at-risk patients and target
higher-level care for high-risk patients.

METHODS

Study Population and Study Design
This is a retrospective, observational cohort study. The study
was conducted in Changzhou No.2 People’s Hospital of
Nanjing Medical University. The study population included
adult patients with clinically diagnosed acute myocardial
infarction (AMI) from January 2012 to January 2018. All
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TABLE 2 | Comparison of top-4 machine learning models and logistic regression

model in validation group.

Models Observed CI-AKI (n = 57) Observed non-CI-AKI (n = 316) Cut-off

True positive False positive False negative True negative

RF10 42 15 91 225 0.50

73.7% 26.3% 28.8% 71.2%

RF15 41 16 83 233 0.50

71.9% 28.1% 26.3% 73.7%

RF20 37 20 84 232 0.50

64.9% 35.1% 26.6% 73.4%

SVM15 41 16 106 210 0.50

71.9% 28.1% 33.5% 66.5%

LR3 36 21 270 46 0.80

63.2% 36.8% 85.4% 14.6%

Precision Recall F1-score Specificity Accuracy

RF10 31.6% 73.7% 44.2% 71.2% 71.6%

RF15 33.1% 71.9% 45.3% 73.7% 73.5%

RF20 30.6% 64.9% 41.6% 73.4% 72.1%

SVM15 27.9% 71.9% 40.2% 66.5% 67.3%

LR3 11.8% 63.2% 19.8% 14.6% 22.0%

RF10, random forest model with top 10 variables; RF15, random forest model with top

15 variables; RF20, random forest model with top 20 variables; SVM15, support vector

machine model with top 15 variables; LR3, logistic regression model 3.

enrolled patients provided written informed consent. All
AMI patients enrolled had underwent coronary angiography.
Percutaneous interventional therapy (PCI) was performed
according to Chinese Guidelines for Percutaneous Coronary
Intervention (2016). Briefly, PCI should be based on the
degree of coronary artery stenosis. When the diameter of
the lesion is more than 80%, it can be directly intervened;
when the diameter of the lesion is <80%, it is suggested
to intervene only those lesions with corresponding ischemic
evidence or with FFR ≤ 0.8. The type and volume of
contrast medium, operating time and severity of coronary
lesion were recorded. The pharmacological treatments of
each patient were performed according to the Guidelines
for the Treatment of Coronary Heart Disease in China
(2016), including anticoagulant, antiplatelet and lipid-lowering
therapy. Socio-demographic data, pre-procedural vital signs,
investigations was also collected from the electronic medical
records system. The definition of AMI was according to “the
Third Universal Definition of Myocardial Infarction from the
Joint ESC/ACCF/AHA/WHF Task Force” (24). All enrolled
patients were randomly divided into a train cohort (75%) and
a validation cohort (25%). Our study flow chart is shown
in Figure 5.

Study Endpoint
The study endpoint was CI-AKI after the procedure
(administration of contrast media). According to the serum
creatinine (SCr)-based criteria provided by the Kidney Disease
Improving Global Outcomes (KDIGO) (25), CI-AKI is
defined as an absolute increase in serum creatinine at 48 h
of procedure by ≥ 0.3 mg/dl or an increase of more than

or equal to 150% from its baseline value within the prior 7
days, or urine volume < 0.5 ml/kg/h for 6 h. Creatinine was
detected by the enzymatic method with creatininase coupled
sarcosine oxidase.

Pre-processing of the Datasets
Because the models required a complete dataset, the missing
data of each remaining measurement was estimated using
the K-nearest neighbor method (26). The variables were
standardized after the K-nearest neighbor imputation method
was used. Variables that were missing in more than 50%
of the samples were removed (e.g., glucose, urine acid, and
albumin). Next, ambiguous measurements that did not carry
specific meaning (e.g., a variable named “history of the smoking”
not specific to a length of time) were removed. Finally,
redundant variables derived only from other measured variables
were removed (e.g., estimated Glomerular Filtration Rate is
derived from serum creatinine, sex, age, and weight and is
therefore redundant).

ACEF Risk Score and Mehran Risk Score
The ACEF risk score was calculated using three variables (age,
creatinine, ejection fraction), according to Ranucci et al. (27). The
formula of ACEF score is age/ejection fraction (%) + 1 (if serum
creatinine ≥2.0 mg/dl). (Consider using: The ACEF Score was
calculated using Age/Ejection fraction (%) + 1 (if SCr is ≥ 2.0
mg/dl). Mehran risk score (28) was also calculated in each patient
in training group and validation group.

Development of Regression Models
Three predictive logistic regression models were developed for
predicting CI-AKI after the procedure in the training cohort.
Univariate analysis of the training cohort was conducted and the
variables with P < 0.1 were included in the multivariate analysis
model. Logistic regression model 1 (LR1) was then developed.
Creatinine and hemoglobin were included to form logistic model
2 (LR2) and logistic model 3 (LR3).

Development of Machine Learning Models
For the Decision Tree (DT) model (29, 30), the sample data was
partitioned, by splitting the variables at discrete cut-points, and
presented graphically in the form of a tree. As Decision Trees
often have suboptimal predictive accuracy, several methods were
used to combine the multiple trees together. First, a Random

Forest (RF) model was applied (31, 32). Random Forest operates
by constructing modified bagged trees that only allow a random
sample of the predictor variables to be considered at each split
of each tree. Gradient Boosting Machine (GBM) is a forward
learning ensemble method (33). GBM produces a prediction
model, usually a decision tree, in the form of an ensemble of weak
prediction models. GBM trains models in a stage-wise manner,
as do other boosting methods, and it generalizes those weak
prediction models by optimizing any arbitrary differentiable
loss function.

Support Vector Machines (SVM), a supervised machine
learning method (34), was used for classification or regression by
constructing a hyperplane or set of hyperplanes. It is to be noted
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FIGURE 5 | Flow diagram of study. Model development performed with 1,122 AMI patients. ACEF model, Mehran risk score, logistic regression model, and machine

learning algorithms were tested in the validation cohort. AMI, acute myocardial infraction; CAG, coronary angiography.

that, the larger the margin, the lower will be the generalization
error of the classifier. In our study, the hyperplanes, constructed
in SVM, achieved a good separation, with the largest distance to
the nearest training-data point of any class (functional margin).

The K-nearest Neighbor’s algorithm (k-NN) (35), a non-
parametric method, was used to deal with classification
and regression. The input consists of the k closest training
examples in the feature space, while the output depends
on whether k-NN is used for classification or regression.
The output is a class membership in k-NN classification.
The sample belongs to a category of feature space that has
a majority of the similar type of k samples. The object
is assigned to the class of that single-nearest neighbor
when k= 1.

The Naive Bayes classifier, based on Baye’s theorem, is a
simple “probabilistic classifier,” with a strong assumption of
independence. The assumption made here is that the presence

of one feature has no effect on the other, that is, features are
independent (36).

Performance Evaluation
We assessed the performance of each prediction model using
area under the receiver operating characteristic curve (AUROC).
For the final models, we calculated the optimal cut-off value.
Moreover, a confusion matrix was calculated according to the
cut-off value. We also compared the results of the precision,
recall (37), F1-score (37), specificity, and accuracy of final model
in each of the test groups. The formula of the above metrics
is as follows: precision = TP/(TP+FP); recall = TP/(TP+FN);
specificity TN/(TN+FP); accuracy (TP+TN)/(TP+FP+TN+FN);
F1-score = P*R/2(P+R). TP represented True Positive rate, FP
represented False Positive rate, TN represented True Negative
rate, FN represented False Negative rate. In the formula of F1-
Score, P represented Precision and R represented Recall rate.
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Statistical Analysis
Mean ± standard deviation (SD), median and 25th−75th
percentiles were used to represent continuous variables. The
categorical variable was represented by the absolute value
(percent). Student t test, Wilcoxon rank sum test, and chi-
square test were used to compare the demographic and clinical
characteristics of the CI-AKI patients and non-CI-AKI patients.
The enrolled patients were divided randomly into two sets: a
training set for model development with 75% of the patients
and a validation set for model validation with 25% of the
patients. Ten-fold cross-validation was used while training the
machine learning models. In ten-Fold cross-validation, the
original samples are randomly divided into ten subsamples of
equal size, in which one subsample is used as the validation
data and the remaining nine subsamples are used as the training
data. The advantages of ten-Fold cross-validation are that entire
data of observation is used for training and validation, and
each observation gets validated only once. Synthetic Minority
Oversampling Technique (SMOTE) (38) was used to deal with
an imbalanced dataset. Our dataset consisted of 1,495 patients,
with heterogeneous samples of CI-AKI and non-CI-AKI patients.
CI-AKI patients represented only 15.1% of the whole sample,
while non-CI-AKI patients represented 84.9%. The variance
between these two classes is considerably large and may lead
to a lower prediction accuracy for the predictive models. The
SMOTE technique is a powerful technique to tackle imbalanced
data distribution. The SMOTE method was based on two
techniques: random under-sampling and the synthetic minority
over-sampling technique. After the dataset were handled with
SMOTE method, we developed ACEF model, logistic regression
model and other six machine-learning models. The Boruta
algorithm was used for feature selection in the machine learning
models (39). The Boruta package relies on an RF classification
algorithm, which provides an intrinsicmeasure of the importance
of each feature, called the Z score. This score is not a direct
statistical measure to estimate the significance of the feature.

Then, the six types of machine learning models with all the
variables (top 40, 30, 20, 15, 10, and 5 variables), were separately
developed. We calculated the AUC of each model and evaluated
the performance of all the models in the training cohort. A
validation cohort was used to internally validate the models. The
AUC and 95% CI were calculated and compared for each model.
The Bootstrap method was used while comparing the AUCs of

each model. Moreover, the Precision, Recall, F1-score, Specificity
and Accuracy of each final model in the validation cohort were
also compared. All analyses were performed using IBM SPSS
Statistics (version 22) and RStudio (version 1.0.153). Packages
of “foreign,” “caret,” “Boruta,” “DMwR,” “Random Forest,” and”
pROC” were used to process the datasets. A p-value of <0.05 was
considered statistically significant.
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