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Abstract: In this study, graphene oxide (GO) nanoflakes and lithium salt (LiPF6) were utilized as
lubrication additives in ether bond−containing dihydric alcohol aqueous solutions (DA(aq)) to
improve lubrication performances. The apparent friction reduction and superlubricity were realized
at the Si3N4/sapphire interface. The conditions and laws for superlubricity realization have been
concluded. The underlying mechanism was the synergy effect of GO and LiPF6. It was proven that
a GO adsorption layer was formed at the interface, which caused the shearing interface to transfer
from solid asperities to GO interlayers (weak interlayer interactions), resulting in friction reduction
and superlubricity realization. In addition to the GO adsorption layer, a boundary layer containing
phosphates and fluorides was formed by tribochemical reactions of LiPF6 and was conducive to low
friction. Additionally, a fluid layer contributed to friction reduction as well. This work proved that
GO−family materials are promising for friction reduction, and provided new insights into realizing
liquid superlubricity at macroscale by combining GO with other materials.

Keywords: superlubricity; graphene oxide; LiPF6; friction reduction

1. Introduction

According to statistics, the annual economic losses of energy consumption, material
loss, and equipment maintenance caused by friction and wear in most industrial countries
account for 2–7% of their GDP [1,2]. Therefore, it is urgent to develop efficient lubricating
materials to reduce friction and wear and thus reduce economic losses. The concept
of superlubricity was put forward by Hirano and Shinjo in the early 1990s [3], which
specifically refers to the lubrication state when the sliding coefficient of friction (COF) is at
0.001 magnitude or even lower [4]. Because of the minimal friction resistance, superlubricity
can greatly reduce friction−induced energy loss. Superlubricity is mainly divided into
solid superlubricity and liquid superlubricity according to the materials. Solid materials
that achieve superlubricity are mostly two−dimensional (2D) materials with a layered
structure, such as molybdenum disulfide [5], graphite [6], diamond−like film, and carbon
and nitrogen film [7]. The solid superlubricity mechanisms are mainly attributed to surface
incommensurate contact, weak interaction, and Coulomb repulsion [8]. In terms of liquid
superlubricity, it has been proven that this can be achieved by ceramic water lubrication [9],
phosphoric acid aqueous solution [10], salt [11] and ionic liquid solution [12], biological
mucus [13], polymer molecular brush [14], polyol solution [15], polyether solution [16],
and poly−α olefin with boron nitride [17], etc.

Graphene oxide (GO), as a prevalent 2D material, presents superb properties in various
domains and exhibits superb tribological properties as additives in liquid lubrication as
well, such as friction reduction and antiwear properties [18]. In recent years, our group
has realized macroscale liquid superlubricity by utilizing GO nanoflakes as additives in
alcohol aqueous solution [19], and by merging GO with a kind of “in−situ” formed ionic
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liquid, the contact pressure during the superlubricity period was extended to a high contact
pressure of 600 MPa [20]. Afterward, GO nanoflakes were used as additives to realize
superlubricity on DLC film [21]. These researches proved that GO has substantial potential
for realizing liquid superlubricity at the macroscale. However, the base liquid for GO that
achieved superlubricity was limited to typical alcohols (that do not contain other chemical
bonds). Whether and how can GO facilitate the realization of superlubricity in other
kinds of liquids is yet to be revealed. Besides, lithium salts such as LiPF6 have been well
documented to show excellent friction reduction and wear resistance properties in ether
bond−containing alcohols [2]. Therefore, LiPF6 was chosen as an additive and combined
with GO to achieve an improvement in lubrication performance. This work used dihydric
alcohol (DA) that contains an ether bond as the base liquid, and friction reduction was
realized when both GO and lithium salt (LiPF6) were used as additives. Especially when
DA viscosity was suitable, superlubricity was realized. The fundamental mechanisms of
friction reduction and superlubricity for GO and LiPF6 are discussed herein.

2. Materials and Methods
2.1. Materials

The DAs with ether bonds (Figure 1a) have a purity of over 99%, including diethylene
glycol (DEG), triethylene glycol (TEG), and polyethylene glycol (PEG) with an average
molecular weight of 200 g/mol. GO nanoflakes (Figure 1b) were provided by the Al-
addin Industrial Corporation. The lithium salt LiPF6 has a purity of over 97%. All these
reagents were offered by the Aladdin Industrial Corporation and were used without further
treatment. DA(aq) was formulated by blending alcohol with deionized water with the
ratio of 1:5 by weight and was referred to as DEG(aq), TEG(aq), and PEG(aq). The GO
containing DA(aq) was formulated by blending GO with DA(aq) with a ratio of 1:600 by
weight through sonication. The LiPF6 containing DA(aq) was formulated by dissolving
LiPF6 in DA(aq) with a ratio of 1:120 by weight. The GO and LiPF6 containing DA(aq) was
formulated by adding both GO and LiPF6 into DA(aq) with the above ratio.
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testing model.

The viscosities of alcohols at room temperature were evaluated by a Rheometer
(MCR101, Anton Paar, Austria). The layered structure of GO nanoflakes was evaluated by a
high−resolution transmission electron microscope (HRTEM; 2100F, JEM, Japan). To obtain
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the morphology of GO nanoflakes, 15 µL GO(aq) was added to mica substrate and dried
in a vacuum oven for 2 h to remove moisture. Subsequently, an atomic force microscope
(AFM, Icon, Bruker, Germany) was used for microscopic observation of the dried GO
nanoflakes. The lateral diameter distribution of GO nanoflakes was evaluated by a Zetasizer
(Nano−Zs, Malvern) in an aqueous solution. The C/O ratio and chemical bonds of GO
were determined by an X−ray photoelectron spectroscope (XPS, PHI QUANTERA−II SXM,
ULVAC−PHI, Japan). A Raman spectrometer (LabRAM HR Evolution, HORIBA Jobin
Yvon, Japan) was used to characterize the chemical groups, vibration features, and defects
in GO.

2.2. Tribological Experiments

A universal micro−tribometer (UMT−3, Bruker) was used to conduct the friction
test under a ball on disk rotation condition (Figure 1c). The friction pair consisted of
a silicon nitride ball (Si3N4, Ø4 mm, Ra ≈ 10 nm) and a sapphire disk (Ra ≈ 1 nm).
Before testing, the ball and disk were cleaned by ultrasonic with acetone and ethanol for
15 min, then washed with deionized water, and dried with compressed air. During testing,
20 µL solution was dropped to the contact area of the friction pair. The load range was
2–4 N and the Hertzian contact pressure was approximately 1.5–1.9 GPa. The sliding
speed was 12.5–250 mm/s. Each test was repeated three times and the measurement
accuracy of the friction coefficient was±0.001. To reduce the measurement error as much as
possible, the levelness of the loading platform and the verticality of the loading device were
adjusted so that the same COF value can be obtained while testing under clockwise and
counterclockwise rotation. All tests were carried out at room temperature with a relative
humidity of 10–30%.

2.3. Surface Characterization

After the friction test, the worn scar diameter (WSD) and roughness of worn surface
on the ball and disk were measured by an optical microscope and a white−light inter-
ferometer (Nexview, ZYGO Lamda, USA). A scanning electron microscope (SEM, S4800,
Hitachi, Japan) was used to observe the topographies of worn surfaces on the ball and
disk. The worn surfaces were coated with a very thin platinum coating to increase the
image contrast before SEM examination. To study the chemical features of the tribolayer
formed during friction testing, XPS and Raman spectrometry were used to characterize
the presence of chemical elements and chemical groups on the worn surfaces. HRTEM
samples were prepared by a focused ion beam (FIB, LYRA3, Tescan, Czech Republic) to
obtain images of cross−sectional areas in the worn area. The chosen sections from the worn
area were 10 µm in length. A Cr layer (20 nm thick) was sputtered onto the worn surfaces.
Then, a Pt protection layer (100 nm thick) was deposited before performing FIB.

3. Results
3.1. Material Characterization

The layered structure of GO nanoflakes was observed via HRTEM as shown in
Figure 2a, the interlayer spacing was approximately 0.5 nm. The thickness of a single
layer was approximately 0.8 nm according to AFM observation, as shown in Figure 2b.
The lateral size distribution results showed that most GO nanoflakes were distributed
between 100 and 200 nm, a few of them were distributed at 10 µm, and a very small amount
of them were distributed at 1 mm (Figure 2c). The atom concentrations of carbon and
oxygen in GO nanoflakes were approximately 69 at% and 31 at%, respectively, as shown in
the XPS spectrum of GO nanoflakes (Figure 2d). Moreover, the C 1s peaks of GO nanoflakes
were deconvoluted into three chemically shifted parts. The peak detected at 284.8 eV in
nanoflakes was assigned to the non−oxygen carbon of C–H and C–C bonds [22]. The peak
detected at 286.6 eV was assigned to C–O bonds [23]. The peak detected at 288.1 eV was
assigned to C=O bonds [19] (Figure 2e). The vibration and defect characteristics of GO
nanoflakes were detected by a Raman spectroscope. As shown in Figure 2f, the peak around
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1350 cm−1 was the typical D band of GO nanoflakes, which represented the distortions,
vacancies, and defects within GO. The peak around 1590 cm−1 was the typical G band,
which represented the stretching of C–C bonds within GO [24,25]. Besides, the typical 2D
and D + G bands around 2670 cm−1 and 2930 cm−1 were observed, respectively [26,27].
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Figure 2. (a) HRTEM image showing the layered structure of GO nanoflakes with an interlayer
spacing of approximately 0.5 nm, (b) AFM image showing the thickness of GO single layer is approx-
imately 0.8 nm, (c) lateral size distribution of GO nanoflakes, (d) XPS spectrum of GO nanoflakes
showing the C/O ratio is approximately 69:31, (e) XPS spectrum showing chemical bond within GO,
and (f) Raman spectrum showing the typical D, G, 2D, and D + G bands of GO.

3.2. Tribological Experiments

The friction test results are shown in Figure 3. The lubrication process of all solu-
tions shared the same evolution trend, which contained a wear−in stage and a steady
lubrication stage. The COFs were reduced rapidly during the wear−in stage and finally
reached a steady state. The COF of DEG(aq) during steady lubrication stage was stable at
approximately 0.022. With the addition of LiPF6 and GO, the COF was stable at 0.022 and
0.024 with little change, respectively. However, when LiPF6 and GO were introduced
simultaneously, the COF of DEG(aq) + GO + LiPF6 was stabilized at approximately 0.005,
indicative of superlubricity achievement. The same phenomenon was found when TEG(aq)
and PEG(aq) were used as base liquid, as shown in Figure 3b,d. There was no significant
friction reduction with the addition of LiPF6 or GO, and apparent friction reduction was
observed when LiPF6 and GO were introduced simultaneously. Notably, the reduction
amplitude in friction became smaller with the growth in DA viscosity. It was also found
that when both LiPF6 and GO were introduced, the average COF was increased with the
growth in DA viscosity at both the wear−in and steady lubrication states. The lowest
COF and superlubricity were achieved when DEG was used as base liquid. These results
clearly showed that the synergy effect of GO and LiPF6 contributed to the friction reduction
and superlubricity achievement. It was also implied that a fluid layer functioned during
the steady lubrication stage, and the influence of fluid layer increased with the growth in
DA viscosity.
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A long−run test was conducted on DEG(aq) + GO + LiPF6. As shown in Figure 4a,
the COF remained stable at superlubricity state for nearly 2 h after a wear−in stage
of 700 s. The influence of sliding velocity on COF during the superlubricity stage is
shown in Figure 4b. When the sliding velocity was varied in the range of 0.05–0.25 m/s,
the corresponding COFs were all lower than 0.01, demonstrating the achievement of
superlubricity. When the sliding velocity was slower than 0.05 m/s, the COFs grew to
larger than 0.01, demonstrating the failure of superlubricity. Therefore, there was a suit-
able velocity range (0.05–0.25 m/s) for superlubricity achievement with the lubrication
of DEG(aq) + GO + LiPF6. The influence of normal loads on COF was studied with the
lubrication of DEG(aq) + GO + LiPF6 (Figure 4c). When the load increased from 1 to
3 N, although the corresponding COF increased from 0.002 to 0.008, they were all still
in the superlubricity level (COF < 0.01). When the load further increased to 3.5 N, the
corresponding COF reached 0.015, demonstrating the failure of superlubricity. The influ-
ence of solution volume on the average COFs during superlubricity stage was studied
(Figure 4d). When the solution volume increased from 20 µL to 50 µL, the time of wear−in
stage increased significantly from approximately 700 s to 1800 s, and the WSDs increased
from 109 µm to 168 µm. However, the change in solution volume affected the COF during
the superlubricity stage slightly. These results showed that DEG(aq) + GO + LiPF6 could
realize robust liquid superlubricity, and there was an optimal speed and load range for
superlubricity achievement. Besides, the solution volume only affected the duration time
of wear−in stage; it had little influence on the COF during the superlubricity stage.
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4. Discussion

To reveal the fundamental mechanisms associated with the good friction reduction
capacity and superlubricity achieved using DEG(aq) + GO + LiPF6, the WSDs, worn surface
roughness, and topographies of worn areas were explored (Figure 5). All WSDs of balls
were similar (approximately 100–110 µm), indicating the contact area, and thus the contact
pressures were similar among solutions. The worn area of the ball lubricated with DEG(aq)
+ GO + LiPF6 contained many pits and thus was relatively rough (Ra ≈ 23 nm), whereas
the worn area of the disk was relatively smooth with a roughness of approximately 5 nm.
As abovementioned, a fluid layer may have existed at the interface. To study the lubri-
cation regime during superlubricity stage with the lubrication of DEG(aq) + GO + LiPF6,
the Hamrock–Dowson (H−D) formula was used to estimate the thickness (h) of the lubrica-
tion layer at the interface as detailed in our previous works [19,20]. The result showed that
the fluid layer thickness was approximately 29.5 nm during the superlubricity stage. The ra-
tio of the fluid layer thickness to the equivalent Ra value of two worn areas was employed
to ensure the lubrication regime, which was calculated using the equation λ = h√

σ2
1+σ2

2
(σ1 and σ2 were the surface roughness of worn surfaces), and λ was calculated as 1.25. This
result indicated that the lubrication regime was the mixed lubrication regime during the
superlubricity stage.

To analyze the probable friction reduction and superlubricity mechanisms, the chem-
ical state of matters on worn areas of the balls lubricated with DEG(aq) + GO + LiPF6
and DEG(aq) + LiPF6 was studied (Figure 6). On both worn areas, the peaks (284.8 and
286.6 eV) represented the carbon in aliphatic chains (C−C and C−H) and C−O bonds
were detected [22,23], which may have stemmed from DEG or GO. Because there were
no C=O bonds in DEG, the C=O bonds (288.1 eV) [19] detected only on the worn area
with the lubrication of DEG(aq) + GO + LiPF6 implied the adsorption of GO nanoflakes.
This result indicated that GO may have been adsorbed on the worn area to form an ad-
sorption layer of GO, and the extremely low shear stress of GO interlayers contributed to
friction reduction. The elements that stemmed from LiPF6 (F 1s and P 2p) were detected as
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well on both worn areas, which were in the state of fluorides (685.6 eV) and phosphates
(134.3 eV) [28,29]. These results are consistent with our previous work, in which anions
(PF6

−) were transformed into fluorides and phosphates during the wear−in stage; and
phosphates and fluorides had good lubrication properties [12,20,30], and thus contributed
to the friction reduction. Moreover, it has been well documented that a SiO2−containing
layer was formed at the interface when Si3N4 was lubricated with aqueous solutions.
The classic tribochemical reaction was Si3N4 + 6 H2O→ 3 SiO2 + 4 NH3 [31]. These results
indicated that a tribochemical layer and a GO adsorption layer were formed at the interface
and contributed to the friction reduction and superlubricity achievement. To ensure that
there were GO nanoflakes adsorbed on worn areas, HRTEM and Raman observation were
utilized. The GO adsorption layer on worn surfaces was directly observed by the HRTEM
(Figure 7a,b). The thickness of adsorption layers was approximately 10 nm. The results
shown in Figure 7c,d further confirm the adsorption of GO nanoflakes on both worn areas
of the friction pair, presenting the typical D band (1350 cm−1), G band (1595 cm−1), 2D
band (2700 cm−1), and D + G band (2935 cm−1) [24–27].
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Figure 7. (a,b) HRTEM images of GO adsorption layer on worn surfaces. (c,d) Raman spectra of GO
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To further study the synergy effect of LiPF6 and GO in DEG(aq), the following test was
performed. Firstly, a conventional friction test was carried out by using LiPF6−containing
DEG(aq) as the lubricant, and the test was suspended after the COF tended to be steady
with a COF value of 0.04. Then, the worn surfaces were cleaned with deionized water to
remove the fluid layer and retain the tribochemical layer of LiPF6. Then, GO−containing
DEG (without water) was dropped on the worn surface and the test was restarted on
the same worn track. The aim of this procedure was to form the GO adsorption layer
on the tribochemical layer by physical overlaying. The result showed that the COF was
further reduced to 0.029 and kept steady for more than 700 s (Figure 8). The properties
and functions of the tribochemical layer and GO adsorption layer formed by physical
overlaying were inevitably different from that formed “in situ” by directly employing
DEG(aq) + GO + LiPF6, which may result in a COF larger than 0.01. Despite these, the
result of this test still confirmed that the combination of tribochemical layer and GO
adsorption layer can further reduce friction.
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According to above analysis, a possible friction model for GO and LiPF6 containing
DA(aq) was proposed, as shown in Figure 9. The lubrication process contained two stages:
the wear−in stage and superlubricity stage. In the wear−in stage, the water molecules
in lubricants were volatilized rapidly through the wearing process, during which the
lubrication regime was usually located at the boundary lubrication. Hence, the growth
in lubricant viscosity caused by water volatilization was conducive to the film formation,
which facilitated the improvement in lubrication and led to the drop in COF. Meanwhile,
the conflict and wear of solid asperities led to the growth in contact area, and thus the
reduction in contact pressure. Therefore, a fluid layer was formed and kept relatively
stable at the interface. Moreover, tribochemical reactions induced by rubbing motion led
to the formation of a boundary layer containing phosphates, fluorides, and SiO2, which
resulted in friction reduction as well. In addition to the fluid layer and tribochemical
layer, the adhesive effect between contact surfaces and GO led to the adsorption of GO
onto the contact surfaces. The GO adsorption layer at the interface could bear a part of
the normal load, shield the contact surfaces, and make the shearing interface transfer
from solid asperities to GO interlayers; and the weak interlayer interactions of GO further
reduce friction during the steady lubrication stage. Therefore, it was the combination of
the adsorption layer (GO) and tribochemical layer (LiPF6) that significantly contributed to
friction reduction in the mixed lubrication regime. Especially for DEG solution, the synergy
effect of GO and LiPF6 facilitated the realization of superlubricity. Although other factors,
such as friction pair materials, high temperature, high speed, heavy load, etc., need to
be considered in industrial lubrication, the results of this work proved that lubrication
performance can be improved even to the superlubricity level by combining GO with proper
materials, and proved GO−family materials as a promising industrial lubricant additive.
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Figure 9. Lubrication model for GO and LiPF6 containing DA(aq) solution at macroscale, (a) contact
between asperities; (b) GO adsorption layer and tribochemical layer formed during wear−in stage;
(c) GO adsorption layer, tribochemical layer, and fluid layer contributed to friction reduction during
steady lubrication stage.

5. Conclusions

GO and LiPF6 were utilized as lubrication additives in DA(aq) solution and apparent
friction reduction was achieved at the Si3N4/sapphire interface. It was concluded that
(1) ether bond−containing DA(aq) could achieve superlubricity with the addition of special
additives. (2) Despite the viscosity variation of DA, the COF shared the same evolution
trend and kept the smallest when both GO and LiPF6 were added. (3) The COF during
steady stage decreased with decreasing DA viscosity, and superlubricity could be realized
and stabilized for nearly 2 h once the viscosity was low enough. (4) For the testing
conditions in this study, there were speed range (0.05–0.25 m/s) and load range (1–3 N)
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for realizing superlubricity. When the sliding speed was lower than 0.05 m/s or the load
exceeded 3 N, superlubricity failure would occur. (5) The lubricant volume only affected
the duration of wear−in stage and had little effect on COF during the steady lubrication
stage. The test and analysis results proved that the synergy effect of GO and LiPF6 was the
key mechanism for the friction reduction and superlubricity realization. The adsorption
layer formed by GO on worn areas bears a part of the load and made the collision of
solid asperities transfer to the slip of GO interlayers with extremely low shear stress, to
significantly reduce the friction resistance. The tribochemical layer comprised of phosphates
and fluorides was formed by LiPF6 and contributed to friction reduction. Additionally, the
fluid layer also reduced friction resistance. This study proved that, combined with proper
materials, GO−family materials as additives could exhibit good lubrication performances
and even facilitate the realization of liquid superlubricity at the macroscale.

Author Contributions: Conceptualization, X.G.; validation, X.G.; investigation, X.G.; data curation,
J.T.; writing—original draft preparation, X.G., Q.S. and Z.C.; writing—review and editing, X.G., Q.S.
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