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Murine transplantation models are used extensively to research immuno-

logical rejection and tolerance. Here we studied both murine heart and

liver allograft models using microarray technology. We had difficulty in

identifying genes related to acute rejections expressed in both heart and

liver transplantation models using two standard methodologies: Student’s t

test and linear models for microarray data (Limma). Here we describe a

new method, standardized fold change (SFC), for differential analysis of

microarray data. We estimated the performance of SFC, the t test and

Limma by generating simulated microarray data 100 times. SFC performed

better than the t test and showed a higher sensitivity than Limma where

there is a larger value for fold change of expression. SFC gave better

reproducibility than Limma and the t test with real experimental data from

the MicroArray Quality Control platform and expression data from a

mouse cardiac allograft. Eventually, a group of significant overlapping

genes was detected by SFC in the expression data of mouse cardiac and

hepatic allografts and further validated with the quantitative RT-PCR

assay. The group included genes for important reactions of transplantation

rejection and revealed functional changes of the immune system in both

heart and liver of the mouse model. We suggest that SFC can be utilized

to stably and effectively detect differential gene expression and to explore

microarray data in further studies.

At the stage of organ failure, organ transplantation is

a life-saving medical procedure, though it still

has some problems, e.g. transplant rejection and

the requirement for life-long immunosuppressive

drugs. Transplantation models without immunosup-

pression are important and the mechanisms of rejec-

tion and tolerance in these models need to be

revealed.

Abbreviations

FNR, false negative rate; FPR, false positive rate; Limma, linear models for microarray data; MAQC, MicroArray Quality Control; POD, post-

operative day; qRT-PCR, quantitative RT-PCR; SFC, standardized fold change.
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Microarray technology is well established and widely

used, providing a picture of gene expression or RNA

profiling in different tissues [1]. To identify differential

expression, Student’s t test and linear models for

microarray data (Limma) are two popular choices

[2–4]. The t test utilizes information for all the samples

(or standard deviations) in one microarray probe and

is conducted independently among different probes [4],

while Limma uses the empirical Bayesian approach of

shrinkage of the estimated sample variances towards a

pooled estimate. The information (means and standard

deviations) from all the probes in a replicate set of

experiments is combined and used at the level of one

probe to detect differential expression in Limma [2].

In the present study, we established murine heart and

liver allograft models and used microarray technology

to reveal the significant genes that related to transplant

rejection. By using the t test and Limma, no significant

intersecting genes were obtained in these models. There-

fore, we developed a new method, named standardized

fold change (SFC), to detect differential expression by

taking information from the neighbors of one probe

with an adjustable bin size. To compare SFC with the t

test and Limma, we generated a simulated data set to

estimate the performance and used the real experimental

datasets from the MicroArray Quality Control (MAQC)

platform and the transplantation model to estimate the

reproducibility. We concluded that SFC can be applied

as a new and effective approach to detect differential

expression and contribute more reliable results in

microarray studies. Then, SFC reported a set of signifi-

cant genes from expression data from the murine heart

and liver allograft, and we further validated them by

qRT-PCR. Gene expression changes revealed functional

reactions and pathway activities in the early stage of

allograft in both heart and liver.

Materials and methods

Animals

Male B10.BR (BR, H-2k), B10.D2 (D2, H-2d), C57BL/10

(B10, H-2b) and CBA (H-2k) mice (weighing 25–30 g)

were purchased from the Shizuoka Laboratory Animal

Center (Shizuoka, Japan) and housed and cared for in

agreement with the guidelines of the Institutional Animal

Care and Use Committee and the National Research Insti-

tute (Japan) for Child Health and Development guidelines

on laboratory animal welfare. The Committee on the Care

and Use of Laboratory Animals at the National Research

Institute accepted the experimental protocol for Child

Health and Development (Permission no.: 2002-003). All

surgical procedures were conducted under anesthesia with

isoflurane/oxygen, and all attempts were made to minimize

suffering.

Transplantation and RNA extraction

Cardiac transplantation was performed from a sex-matched

B10 donor to a CBA recipient by microsurgical techniques.

Intra-abdominal vascularized heterotopic mouse cardiac

transplantation was performed [5]. The cardiac graft sur-

vival was determined using daily palpation of the recipi-

ent’s abdomen. Three case samples on the fifth day were

obtained. BR mice were used as donors and D2 mice were

used as recipients in the orthotopic hepatic transplantation.

We performed transplantation surgery on the mice [6] in

which for orthotopic liver transplantation, BR mice were

used as donors and D2 mice were used as recipients. We

subsequently transplanted the liver into the recipient mice

using the cuff technique [6]. Grafts were harvested at post-

operative day 5 (POD5) or at POD8 after transplantation

and were submerged in RNAlater� stabilization solution

(Life Technologies, Carlsbad, CA, USA) for freezing. Total

RNA was extracted from frozen tissue samples using ISO-

GEN (NipponGene, Tokyo, Japan). We also designed con-

trol groups of three normal cardiac tissues and three

hepatic tissues.

Standardized fold change method

The probe signals from microarray data were firstly natural

log-transformed and then manipulated with quantitative

normalization. To assess the differential expressions among

cases and controls, the statistic SFC is defined as:

For the variance of each probe, we ranked all probes by

the mean values of signals from all samples and then took

the median value of its b nearest neighbors as the variance,

where the default bin size of b here is 1000. The SFC soft-

ware now implements this algorithm in the Linux system

and can be found at https://github.com/WeichenZhou/SFC.

Simulation data study

We generated the simulated data from simple formulas with

the Gaussian noise (mean = 0, variance = 1) as a default

SFCi¼ T�C

STDEVðT�CÞ¼
Ti�Ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðT�CÞp ¼ Medianðt1;t2...tiÞ�Medianðc1;c2;...ciÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Median ðTi�b=2�Ci�b=2Þ2;...ðTi�CiÞ2;...ðTiþb=2�Ciþb=2Þ2
� �

=0:455
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distribution for gene expression data [7]. The control and

case samples in the null hypothesis are shown as follows:

H0 control : y0 ¼ x0 þNð0; 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx0Þ þ 1

ph i

H0 case : y00 ¼ ð1þ h0Þx00 þNð0; 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx00Þ þ 1

qh i
ð2Þ

where h represented the differential expression underlying

cases versus controls and we defined h0 as 0% and k is 1.

The control and case samples in the alternative hypothesis

are shown as follows:

H1 control : y1 ¼ x1 þNð0; 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx1Þ þ 1

ph i

H1 case : y01 ¼ ð1þ h1Þx01 þNð0; 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx01Þ þ 1

qh i
: ð3Þ

We defined h1 as 10%, 25% and 50%, respectively. The

size of real positive calls consists of 1%, 5% and 10% of

the whole simulated data, respectively. Following these, a

100-time simulation was conducted to assess the false posi-

tive rate (FPR) and the false negative rate (FNR).

MAQC data and the reproducibility analysis

The MAQC project was developed by the US Food and

Drug Administration (FDA) to provide standards and

quality control metrics and involved six centers [Applied

Biosystems (Thermo Fisher Scientific, Waltham, MA,

USA), Affymetrix (Santa Clara, CA, USA), Agilent Tech-

nologies (Santa Clara, CA, USA), GE Healthcare (Chi-

cago, IL, USA), Illumina (San Diego, CA, USA) and

Eppendorf (Hamburg, Germany)] that are major providers

of microarray platforms and RNA samples [1,8]. The

reproducibility of the top 100 and 1000 significant genes

was estimated inter- and intra-platform by the three statisti-

cal methods, and heatmaps were drawn with the matrix of

each batch. For the expression data from the mouse trans-

plant model, we picked up two out of three cases and con-

trols to build one batch and made a 9 9 9 matrix heatmap

to estimate the reproducibility. The significance level of

mouse microarray data was 0.05.

Application on mouse transplantation data

We detected differential expression of genes between cases

and controls in three phases: POD5 of cardiac transplanta-

tion, POD5 of hepatic transplantation and POD8 of hep-

atic transplantation. All P-values from expression data

were adjusted by the Bonferroni correction. After getting

all significant probes from SFC, we converted the probe

level significance to gene level using an annotation file.

Venn diagrams showed the significant genes with differen-

tial expression. Pathway and gene ontology (GO) enrich-

ment analyses were performed by using the Database for

Annotation, Visualization and Integrated Discovery

(DAVID; http://david.abcc.ncifcrf.gov/) with the Bonfer-

roni correction-adjusted P-values < 0.05 [9]. Mouse trans-

plantation data have been deposited in NCBI’s Gene

Expression Omnibus [10] and are accessible through GEO

Series accession no. GSE89340. All data were conducted by

quantile normalization before processing by different meth-

ods. Limma can be found as the R package LIMMA [2,3]

and the heatmaps were created by GPLOTS. All R packages

can be downloaded from Bioconductor (www.biocond

uctor.org).

Quantitative RT-PCR (qRT-PCR)

The RNA was reverse-transcribed to cDNA using a Prime-

Script� RT Reagent Kit (Takara Bio, Shiga, Japan) as

described previously [11]. The sequences used in our study

are shown in Table S3. Quantitative RT-PCR (qRT-PCR)

was performed using a SYBR Green system on the Applied

Biosystems PRISM7700 instrument (Thermo Fisher Scienti-

fic), and experiments were conducted using 0.4 lM of each

primer in a final reaction volume of 20 lL of KAPA

SYBR� FAST qPCR kit (Kapa Biosystems, Cape Town,

South Africa). The PCR cycling conditions were as follows:

95 °C for 30 s, and 50 cycles of 95 °C for 5 s, 60 °C for

1 min. The normalized threshold cycle (Ct) value of each

gene was obtained by subtracting the Ct value obtained for

18S rRNA. The cardiac mRNA levels were analyzed on

POD5. Figure 4 indicates the number of copies of each of

the three representative mRNAs measured in the syngeneic

grafts or allografts obtained from three individuals. The

relative amount of each mRNA was normalized to that of

18S rRNA. All experiments were analyzed in three mice

per time point and expressed as the mean � SEM. The sig-

nificance level was set as P < 0.05 compared with syngeneic

grafts on day 5.

Results

The SFC method

We observed that the distribution of the mean value

and variance of one probe signal is non-linear

(Fig. S1). The information from neighboring probes

can usually be borrowed to improve the statistical

power [2]. SFC was introduced to estimate variance

for each probe, rather than obtaining this from all

samples; it takes information from the neighbors of

that probe with an adjustable bin size b. As we set up

the default value of b as 1000, the variance of cases

and controls in one probe can be obtained by calculat-

ing the median for those probes separately. Eventually,

by following Eqn (1), we can obtain the statistic SFC

for every probe, and the P-value can be further esti-

mated based from these.
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SFC had a better sensitivity and specificity based

on simulation data

We investigated the FPR and the FNR of the three

methods under the null hypothesis and alternative

hypothesis. As indicated in Eqn (2), signals of the null

hypothesis were generated by a simple formula, y = x,

with the Gaussian noise added. The basic formulas are

adjustable with the parameters k. The signals of the

alternative hypothesis were described by Eqn (3), with

variable values of h and the portion of real positive

calls. We calculated the FPR and FNR for every dif-

ferent h and portion of real positive calls with a 0.05

significance threshold and 100-times simulation

(Table 1).

Under the null hypothesis, the rates of the three

methods are all near the significance threshold between

5% and 6% (Fig. 1A). Under the alternative hypothe-

sis, SFC had a better performance for FPR than the

other two methods generally (Fig. 1B). With an

increasing h and portion of real positive calls, the FPR

of SFC showed a decreasing bias, whereas Limma and

the t test showed a positive bias with these parameters

(Table 1). For the FNR, as the h and portion of real

positive calls increased, Limma showed a faster decline

than the t test, while SFC had a lower FNR than

Limma and performed better with larger h and portion

of real positive calls. Interestingly, SFC shows a rela-

tively small number of calls (from 4.9% to 10.5%,

Table 1), while Limma and the t test calls a larger set

in this situation. In sum, comparing with Limma and

the t test at the significance threshold of 0.05, SFC

had a better sensitivity and specificity, especially with

a larger value of differential expression fold change

(h = 50%).

Reproducibility of SFC is better than Limma and

the t test based on MAQC and mouse

transplantation data

Reproducibility is an indispensable estimator for the

experiments and algorithms [12,13]. We chose both the

MAQC dataset and the mouse cardiac transplantation

data to assess the reproducibility of SFC, Limma and

the t test.

We calculated the reproducibility of the top 100 and

top 1000 genes for MAQC by using the three methods.

For the interplatform comparison, the heatmap shows

that SFC performed a better reproducibility than

Limma and the t test among six platforms when

detecting both the top 100 and the top 1000, while for

intra-platform reproducibility, all three methods did

not perform well in detecting either the top 100 or the

top 1000 significant genes (Fig. 2A,B). The same oper-

ations were conducted in the mouse cardiac transplan-

tation data, where SFC also showed a better

performance than the others (Fig. 2C). Therefore,

according to better performances of reproducibility for

both the MAQC data and the mouse transplantation

data, SFC is more stable than Limma or the t test.

Intersected significances from mouse

transplantation data were found by SFC and

validated by qRT-PCR

We further utilized the three methods to analyze the

mouse organ transplantation data and validated the

results. After the experimental process generating CEL

files from mouse tissues, we conducted these methods

on the expression data of POD5 of cardiac transplan-

tation and POD5 and POD8 of hepatic transplanta-

tion.

Table 1. Evaluation of the three methods with P < 0.05.

t test Limma SFC h

H0

FPR (%) 5.043 5.222 5.694

FNR (%) 0.000 0.000 0.000

Calls in total (%) 5.043 5.222 5.694

H1: simulated real positive calls = 1%

FPR (%) 6.043 5.455 5.350 10%

8.763 6.306 5.038 25%

14.255 8.600 3.990 50%

FNR (%) 6.825 15.367 6.958 10%

0.783 1.933 0.058 25%

0.808 0.025 0.000 50%

Calls in total (%) 6.908 6.240 6.220 10%

9.661 7.217 5.980 25%

15.098 9.507 4.943 50%

H1: simulated real positive calls = 5%

FPR (%) 13.306 7.987 3.616 10%

32.978 17.856 1.818 25%

52.026 34.301 1.057 50%

FNR (%) 6.942 15.283 8.224 10%

0.492 2.108 0.075 25%

0.699 0.020 0.000 50%

Calls in total (%) 17.290 11.820 8.020 10%

36.301 21.854 6.714 25%

54.388 37.5817 5.999 50%

H1: simulated real positive calls = 10%

FPR (%) 27.850 13.782 1.615 10%

56.305 35.345 0.626 25%

73.170 57.081 0.266 50%

FNR (%) 7.282 15.334 9.830 10%

0.551 2.042 0.277 25%

0.652 0.019 0.000 50%

Calls in total (%) 34.336 20.870 10.470 10%

60.619 41.606 10.535 25%

75.787 61.371 10.238 50%

484 FEBS Open Bio 8 (2018) 481–490 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

SFC method for microarray analysis W. Zhou et al.



According to SFC, 178 significant genes were differ-

entially expressed in the cardiac allografts compared

with isografts, including 158 overexpressed genes and

20 underexpressed genes (Fig. 3). There were also 362

genes (263 overexpression and 99 underexpression)

having significantly different expression in the hepatic

POD5 allografts compared with isografts, and 389

genes (258 overexpression and 131 underexpression)

having significantly different expression in the hepatic

POD8 allografts compared with isografts. Based on

these, an intersection of these three groups was

obtained that included 52 important genes, in which

they are all overexpressed for cardiac transplantation

and 51 overexpressed and one underexpressed for hep-

atic transplantation (Fig. 3). At the same time, the

calling sets of significant genes underlying Limma and

the t test (Fig. S4A,B) showed no intersecting ones.

We further performed qRT-PCR for the calls

derived from SFC to validate the fold change of the

mRNA expression. Nineteen mRNAs, which were

upregulated in both the cardiac and the hepatic allo-

grafts compared with isografts, were randomly selected

(Tables 2 and S3). Being consistent with the results of

microarray, a significantly higher amount of mRNA

expression was detected in allografts versus isografts in

cardiac (Fig. 4A) and hepatic (Fig. 4B) allografts.

Fig. 1. Bar graphs of FPR and FNR from the three methods under the null hypothesis (H0) and the alternative hypothesis (H1). (A) FPR

under the null hypothesis (FN = 0). (B) FPR and FNR under different alternative hypotheses, in which h is equal to 10%, 25% and 50% and

the simulated real positive calls are 1%, 5% and 10% of the whole simulated data, respectively. The significance threshold is 0.05.
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Discussion

Microarray is widely used and accepted as a stable,

well established and less costly technology to investi-

gate gene expression data [1,8,14,15]. In this study

based on microarray data, we established a novel

method, SFC, to detect differential expression and

compared it with the t test and Limma. According to

Eqn (1), the parameter b can be adjusted to control

the nearby number of probes, which contribute the

variance of the central probe. We set 1000 as default,

and users are able to customize this value based on a

different number size of microarray probe. For the

simulation data, the parameter configurations (h and

k) of the null hypothesis and alternative hypothesis

also can be adjusted (Eqns 2 and 3) [7]. Moreover, we

calculated the FPR and FNR based on different signif-

icance levels (P = 0.01 and 0.001) for different values

of h and k. With a more stringent significance level

(0.05, 0.001), the FPRs were decreased while the FNRs
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Fig. 2. Heatmaps of reproducibility analysis. (A) Reproducibility of top 100 significant genes by t test, Limma and SFC based on MAQC

data. (B) Reproducibility of top 1000 significant genes by the three methods based on MAQC data. (C) Reproducibility of significant genes

by the three methods based on pairwise analysis of data from the mouse cardiac graft model.
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were increased, which was observed by all three meth-

ods (Figs 1, S2 and S3, Tables 1, S1 and S2). Notably,

when P = 0.001, the t test gave a high FPR (48%,

h = 50%, and the true positive gene percentage was

10%) and Limma performed with a high FNR (some-

times more than 90%). This suggests the t test will

give more positive hits with a high FPR, while Limma

will report fewer hits to reduce the FPR but miss some

true positive ones. Importantly, SFC can give a good

balance of FPR and FNR, and perform well for both

FPR and FNR with a stringent significance level.

Statistical correction (e.g. the Bonferroni correction)

is often introduced for multiple comparisons to adjust

the P-value and control the false discovery rate [16].

We also analyzed the mouse transplantation data by

the other two methods (Limma and the t test) with dif-

ferent significance levels (P = 0.05, 0.001 and 0.05 with

the Bonferroni correction). Limma and the t test had a

large number of positive hits when the P-value was

0.05 in three phases (Figs S5 and S6). When the level

of significance was P < 0.001, the positive hits by

Limma and the t test decreased a lot while by SFC the

number stayed relatively stable. When the P-value was

stringent at 0.05 with the Bonferroni correction (Figs 3

and S4), SFC still reported 52 significances overlap-

ping with three phases, but Limma and the t test

showed no overlapping significance. The results of the

t test showed no shared significance with SFC. Intrigu-

ingly, in 67 significances for cardiac POD5 reported by

Limma (Fig. S4), 30 genes showed in the cardiac

POD5 result for SFC, and 16 showed in the 52 signifi-

cances. Besides, for hepatic POD5 and POD8 by

Limma, 4 out of 7 (POD5) and 19 out of 36 (POD8)

significant genes were observed in the corresponding

results of SFC, and 2 out of 5 (overlapping in POD5

and POD8) significant genes appear in the 52 genes

from SFC. As 19 of 52 genes from SFC were ran-

domly selected and all passed the validation of qRT-

Fig. 3. Venn diagram of significant genes analyzed by SFC with

the level of significance set at P < 0.05 after the Bonferroni

correction. The overall numbers of significant genes in three

phases are shown outside, which are followed by numbers in

parentheses showing the counts of overexpressed genes versus

underexpressed ones. The circle at the top represents POD5 for

heart; the circle at the bottom left represents POD5 for liver and

the circle at the bottom right represents POD8 for liver.

Table 2. List of validated genes.

Accession no. Gene Gene name Fold-heart Fold-liver-D5 Fold-liver-D8

NM_008337 Ifng Interferon gamma 1593.863 54.675 72.591

NM_010259 Gbp2b Guanylate binding protein 2b 1263.049 12.951 18.460

NM_013542 Gzmb Granzyme B 185.351 147.035 114.736

NM_008324 Ido1 Indoleamine-2,3-dioxygenase 1 103.729 38.474 47.050

NM_011073 Prf1 Perforin 1 (pore forming protein) 99.539 38.016 37.767

NM_008510 Xcl1 Chemokine (C motif) ligand 1 82.096 27.777 26.918

NM_011579 Tgtp1 T cell specific GTPase 1 76.367 33.074 59.197

NM_021396 Pdcd1lg2 Programmed cell death 1 ligand 2 74.231 14.479 41.463

NM_001081110 Cd8a CD8 antigen, alpha chain 60.400 33.458 32.012

NM_024253 Nkg7 Natural killer cell group 7 sequence 47.828 38.247 30.322

NM_019465 Crtam Cytotoxic and regulatory T cell molecule 46.089 26.296 15.863

NM_001033126 Cd27 CD27 antigen 33.240 39.830 41.565

NM_008798 Pdcd1 Programmed cell death 1 29.391 74.356 69.542

NM_033078 Klrk1 Killer cell lectin-like receptor subfamily K, member 1 28.611 18.487 16.631

NM_008530 Ly6f Lymphocyte antigen 6 complex, locus F 27.006 56.930 29.637

NM_011612 Tnfrsf9 Tumor necrosis factor receptor superfamily, member 9 26.947 30.625 29.872

NM_009977 Cst7 Cystatin F (leukocystatin) 25.625 26.383 30.931

NM_011337 Ccl3 Chemokine (C-C motif) ligand 3 21.102 47.883 82.279

NM_013652 Ccl4 Chemokine (C-C motif) ligand 4 19.907 35.686 56.794
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PCR, these results indicated that SFC gave a more

stable result than the t test and Limma.

We therefore investigated the functions of these 52

genes (Table S4), revealing the most significant

pathways were graft-versus-host disease (mmu05332)

and allograft rejection (mmu05330). Moreover,

immune system response (e.g. mmu04612, mmu04660,

GO: 0006955) and positive regulation (e.g. GO:
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Fig. 4. Validation of the microarray data using a qRT-PCR assay in the mouse cardiac graft model and hepatic graft model. (A) Cardiac

mRNA levels analyzed on POD5, indicating the values of mRNAs measured in the syngeneic grafts (CONT) or allografts (D5) obtained from

three individuals. (B) Hepatic mRNA levels analyzed on POD5 and POD8, indicating the value of mRNAs measured in the syngeneic grafts

(CONT) or allografts (D5 or D8) obtained from three individuals. A two-tailed unpaired t test was used to calculate P-values comparing

syngeneic grafts with allografts.
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0050863, GO: 0051249, GO: 0050870) were also acti-

vated. All these enrichment analyses indicated a reac-

tion of transplantation rejection in vivo and functional

changes of the immune system both at the cardiac and

at the hepatic level after 5 days of allografts [6,17,18].

In conclusion, based on the quality control experi-

mental data and simulated data, SFC performed better

than Limma and much better than the t test by using

the nearby information of one probe in pooled probes.

We utilized SFC for the real data of mouse transplan-

tation models, and it reported a more stable and con-

vincing set with 52 significant genes, revealing insights

into pathway and gene expression changes after both

cardiac and hepatic allografts. Nineteen genes were fur-

ther randomly picked up and validated by qRT-PCR.

We suggest SFC is a new and effective approach that

can detect differential expression and help to obtain

more reliable information in microarray studies.
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Fig. S1. Distribution of mean and variance of sample

microarray signals in each probe derived from the

MAQC data.

Fig. S2. Bar graphs of FPR and FNR from the three

methods under the null hypothesis (H0) and the alter-

native hypothesis (H1) with the level of significance set

at P < 0.01.

Fig. S3. Bar graphs of FPR and FNR from the three

methods under the null hypothesis (H0) and the alter-

native hypothesis (H1) with the level of significance set

at P < 0.001.

Fig. S4. Venn diagrams of significant gene numbers

analyzed by the t test and Limma with the level of sig-

nificance set at P < 0.05 after the Bonferroni

correction.

Fig. S5. Venn diagrams of significant gene numbers

analyzed by the t test, Limma and SFC with the level

of significance set at P < 0.05.

Fig. S6. Venn diagrams of significant gene numbers

analyzed by the t test, Limma and SFC with the level

of significance set at P < 0.001.

Table S1. Evaluation of three methods with the level

of significance set at P < 0.01.

Table S2. Evaluation of three methods with the level

of significance set at P < 0.001.

Table S3. Primer sequences for qRT-PCR.

Table S4. GO term and pathway enrichment analysis

based on the 52 significant genes.
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