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ABSTRACT Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most
studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that
early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with
reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we ex-
amined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites
adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochro-
matin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with
the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C�/� cells infected with wild-type virus, we hy-
pothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C�/� mouse embryo fibro-
blasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associ-
ated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These
results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and
provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex.

IMPORTANCE The targeting of chromosomes in the cell nucleus is thought to be important in the regulation of expression of
genes on the chromosomes. The major documented effect of intranuclear targeting has been silencing of chromosomes at sites
near the nuclear periphery. In this study, we show that targeting of the herpes simplex virus DNA genome to the nuclear periph-
ery promotes formation of transcriptional activator complexes on the viral genome, demonstrating that the nuclear periphery
also has sites for activation of transcription. These results highlight the importance of the nuclear lamina, the structure that lines
the inner nuclear membrane, in both transcriptional activation and repression. Future studies defining the molecular structures
of these two types of nuclear sites should define new levels of gene regulation.
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Eukaryotic gene transcription is regulated at many levels, in-
cluding initiation of transcription by RNA polymerase II,

binding of repressors and activators, chromatin structure, and on
a larger scale, targeting of the genes to specific domains within the
nucleus. Much is known about the processes of transcriptional
initiation and regulation by activators, repressors, and chromatin,
but little is known about the role of intranuclear positioning in the
regulation of transcription. The eukaryotic nucleus is organized
into structural domains including the nuclear envelope and lam-
ina, nucleoplasm, and nucleolus. Localization of genes and chro-
mosomes to the nuclear periphery has traditionally been associ-
ated with gene silencing (reviewed in references 1 and 2). Several
lines of evidence support this conclusion. Major sites of hetero-
chromatin are located near the nuclear periphery (3, 4), and gene-
poor chromosomal regions are located near the nuclear periphery

(5–8). Selection of genomic sequences attached to lamin B by the
DamID approach has shown that gene-poor and heterochromatin
regions are associated with the nuclear lamina (9). Furthermore,
genes move away from the nuclear periphery coincident with ac-
tivation of transcription (10–13). Active alleles of serum-activated
genes are located in the nuclear interior (14), and cDNAs from
hematopoietic cells hybridize with the nuclear interior (15). Teth-
ering genes at the nuclear periphery silences many, but not all,
genes (16–18). However, some peripheral sites may not be silenc-
ing sites, because lamin A/C-rich microdomains have been asso-
ciated with euchromatin and active genes (19).

In contrast to the bulk of the evidence for peripheral targeting
and silencing, we found that lamin A, a major component of the
nuclear lamina, was required for targeting of the herpes simplex
virus (HSV) genome to the periphery of the nucleus at early times

RESEARCH ARTICLE

January/February 2012 Volume 3 Issue 1 e00300-11 ® mbio.asm.org 1

mbio.asm.org


postinfection, which correlated with reduced heterochromatin on
viral genes and increased viral immediate-early (IE) gene expres-
sion (20). Therefore, in the HSV system, targeting of the viral
genome to the nuclear periphery is linked to removal of hetero-
chromatin and activation of IE gene expression. HSV infection of
mammalian cells provides a good model system for the study of
nuclear compartmentalization, because its genome is found ini-
tially in genome complexes and small replication compartments
near the nuclear periphery (20–22). HSV gene expression occurs
in a cascade, with the expression of IE genes activating early (E)
gene expression, which subsequently activates viral DNA replica-
tion and late (L) gene expression (23). Viral DNA replication and
late gene transcription take place in intranuclear domains called
replication compartments (21, 24).

The critical issue of how lamin A/C promotes viral IE gene
transcription, the initial process affected in the lamin A/C�/�

cells, remained unresolved. HSV IE gene expression is transacti-
vated by the HSV virion protein 16 (VP16), a tegument protein
that assembles into a transactivator complex with two host pro-
teins, host cell factor 1 (HCF-1) (25–28) and the octamer binding
transcription factor 1 (Oct-1) (29–32). After VP16 loads onto IE
gene promoters, it recruits general transcription factors, RNA
polymerase II, and chromatin-remodeling enzymes to IE promot-
ers (33–35) through its acidic domain, and HCF-1 recruits the
Set1 histone methyl transferase to IE gene promoters for the eu-
chromatic histone H3 lysine 4 (H3K4) methylation modification
and the LSD1 demethylase to remove the heterochromatic H3K9
methylation modification (36, 37). As a result, the histones asso-
ciated with IE gene promoters contain euchromatic histone mod-
ifications that correspond to active transcription of IE genes (38,
39), although some of the recruited chromatin-modifying en-
zymes are not essential for active IE gene expression (40, 41). In
this study, we have investigated the mechanism(s) by which the
nuclear lamina promotes the transcription and expression of viral
IE genes through the targeting of the genome to the nuclear pe-
riphery.

RESULTS
Targeting of HSV genomes and early replication complexes to
the nuclear lamina requires functional HSV VP16. We have
shown that in lamin A/C�/� cells, HSV genome complexes fail to
target to the nuclear periphery, heterochromatin accumulates on
viral DNA, and viral gene expression is reduced (20). These results
demonstrated a linkage between targeting of HSV genome com-
plexes to the nuclear lamina and viral gene expression. The first
detectable effect on gene expression was on IE gene products (20),
whose expression is promoted by the VP16 activator complex. To
determine where the initial genome complexes involving VP16
localize in the infected-cell nucleus, we infected murine embry-
onic fibroblasts (MEFs) with the herpes simplex virus 1 (HSV-1)
DG-1, which expresses a VP16-green fluorescent protein (GFP)
fusion protein (42), at a multiplicitiy of infection (MOI) of 100 in
the presence of cycloheximide throughout infection to restrict the
detection of VP16 to input virion protein. At 3 h postinfection
(hpi), we fixed the infected cells and immunostained with a GFP-
specific antibody to aid detection of the low levels of input VP16
protein and with a lamin B1 antibody to detect the lamina, and the
immunostained cells were analyzed by three-dimensional (3D)
confocal microscopy. We observed that input VP16-GFP localized
to punctate sites near the nuclear periphery at these early times

postinfection (Fig. 1). In these cells, the input viral genomes in the
nucleus are templates for IE gene transcription; therefore, these
results suggested that the VP16 transactivator complex promotes
IE gene transcription at the nuclear periphery.

We then tested whether VP16 played a role in genome target-
ing to the nuclear periphery by studying cells infected with the
HSV-1 mutant virus in1814, which carries a gene encoding a mu-
tant VP16 molecule defective for binding to HCF-1 and Oct-1
(43), and its rescued virus in1814R. For a control, we studied the
HSV-1 7134 ICP0-null mutant virus, and the 7134R rescued virus
(44), because ICP0 also promotes euchromatin on viral lytic gene
promoters (45). We first assessed targeting of genome complexes
by immunofluorescence examination of Vero cells at the edge of a
developing plaque, under which conditions genome complexes
are initially localized at the inner edge of the nucleus proximal to
the center of the plaque (20, 22, 46). In cultures infected with the
in1814R or 7134R rescued virus with a small number of PFU of
virus, approximately 70% of the infected cells (n � 100) at the
edge of plaques contained small replication compartments along
one edge of the nucleus, as detected by ICP4 immunofluorescence
(Fig. 2). In contrast, only 35% of cells infected with the VP16
mutant in1814 displayed an asymmetric distribution of replica-
tion compartments (P � 0.005) (Fig. 2B). Infection with the 7134
ICP0 gene null mutant virus resulted in 70% of cells displaying an
asymmetric distribution of replication compartments, similar to
infection with the rescued virus 7134R (Fig. 2B). Similar results
were also observed with permissive U2OS cells infected with 7134
virus (results not shown). These results argued that VP16, but not
ICP0, plays a role in the targeting and recruitment or the stable
association of HSV genome complexes with the nuclear lamina
under these experimental conditions.

We also analyzed the localization of genome complexes by
measuring the distance of small replication compartments from

FIG 1 Localization of input virion VP16-GFP in infected cells. Lmna�/�

MEFs were infected with HSV-1 DG1 virus at an MOI of 100 in the presence of
cycloheximide (100 �g/ml) and fixed at 3 hpi. The cells were stained with
antibodies specific for GFP (green) and lamin B1 (red) and imaged in 3D on a
confocal microscope. A single xy confocal plane near the top of the nucleus is
shown in the center along with xz and yz cross-sectional views adjacent to it.
The cross-hairs show the planes of the other images.

Silva et al.

2 ® mbio.asm.org January/February 2012 Volume 3 Issue 1 e00300-11

mbio.asm.org


the nuclear lamina at early times postinfection using confocal mi-
croscopy. We infected HeLa cells with in1814 or in1814R virus,
fixed the cells at 4 hpi, and stained them with antibodies specific
for ICP8 and lamin B1 to visualize early replication compartments
and the nuclear lamina, respectively. To determine the distance
between a replication compartment and the nuclear lamina, we
measured the distance in three orthogonal planes (xy, xz, and yz),

for individual replication compartments (n � 100). The shortest
distance measured from the three orthogonal views was used as
the distance between the replication compartment and lamina. In
in1814R virus-infected cells, many of the replication compart-
ments were adjacent to the lamina, whereas in in1814 virus-
infected cells, fewer compartments were adjacent to the lamina
and tended to be located further away from the lamina (Fig. 3A).
Overall, replication compartments were significantly closer to the
nuclear lamina in in1814R-infected cells (median, 0.18 �m) than
in in1814-infected cells (median, 0.27 �m) (P �0.0001) (Fig. 3B).
Taken together, the results from the two experimental assays ar-

FIG 2 VP16 is required for HSV genome targeting to the nuclear lamina.
Vero cells were infected with the in1814 VP16 mutant virus (0.05 PFU/cell),
the 7134 ICP0-null virus (0.05 PFU/cell), or the respective rescued viruses
(0.005 PFU/cell) so as to obtain approximately 15 to 30 plaques per coverslip.
The cells were fixed at 36 hpi and stained with an antibody specific for ICP4
(green) as a marker of genome complexes and Hoechst to stain the nuclei. (A)
Images of representative cells. (B) Quantification of distributions of ICP4 ge-
nome complexes. Nuclei (n � 100) of cells around plaques that contained
small ICP4 foci were scored according to whether the ICP4 foci were distrib-
uted along one side of the nucleus (asymmetric) or throughout the nucleus
(symmetric). The data shown are mean values plus standard deviations (error
bars) from three experiments. Values that are significantly different (P �
0.005) using a paired Student’s t test are indicated.

FIG 3 Quantification of replication compartment-lamina distance during
in1814 and in1814R infection. HeLa cells were infected at an MOI of 1 with
either the in1814 VP16 mutant virus or the in1814R rescued virus, fixed at
4 hpi, stained with antibodies to ICP8 and lamin B, and imaged in 3D on a
confocal microscope. The distances of individual replication compartments (n
� 100) from the lamina were measured in the xy, xz, and yz planes using
Slidebook software, and the shortest distance was selected to represent the
compartment-lamina distance. (A) Distribution of distances of replication
compartments from the lamina. (B) Compartment-lamina distances (�m)
plotted as a box-and-whiskers graph. The upper and lower lines of the boxes
represent the 75th and 25th percentile values, and the whiskers represent the
maximal and minimal values. Values that are significantly different (P �
0.0001) using the nonparametric Mann-Whitney rank sum test are indicated.
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gued for a role for VP16 or its associated components in targeting
of genome complexes and replication compartments or associa-
tion with sites near the nuclear lamina during the early stages of
viral infection.

Heterochromatin exclusion from HSV-1 replication com-
partments requires functional VP16. VP16 and its associated
host proteins recruit histone-modifying enzymes (37, 47) and
promote euchromatin on IE gene promoters (35, 37). We have
shown that lamin A/C is required for targeting of the HSV genome
to the nuclear periphery and for reduced levels of heterochroma-
tin on the ICP4 IE gene promoter (20). These results are evidence
that viral DNA targeted to the nuclear lamina is protected from
chromatin silencing. Because VP16 increased the efficiency in tar-
geting of early replication complexes to the nuclear periphery, we

tested whether it also played a role in reducing heterochromatin
association with the viral genome. We infected HeLa cells with
wild-type (WT) 17syn� virus, the in1814 VP16 mutant virus, or
the in1814R rescued virus, fixed the cells at intervals between 4
and 8 hpi, and stained them with antibodies specific for the het-
erochromatin marker histone H3 lysine 9 trimethyl (H3K9me3)
and for the HSV replication compartment marker ICP8. In WT
virus-infected cells (17syn�; Fig. 4A) or in in1814R rescued virus-
infected cells (not shown), heterochromatin was excluded from
replication compartments. In contrast, replication compartments
in cells infected with the VP16 mutant in1814 virus appeared
smaller and frequently colocalized with the heterochromatin
marker (Fig. 4A). These results argued that VP16 is important for
heterochromatin exclusion from replication compartments.

FIG 4 Exclusion of heterochromatin from HSV-1 replication compartments requires VP16 but not ICP0. (A) HeLa cells were infected with wild-type 17syn�

virus or the in1814 VP16 mutant virus at an MOI of 1 from 4 to 8 hpi. The cells were then stained with antibodies for the replication compartment marker ICP8
(green) and the heterochromatin marker H3K9me3 (red). (B) HeLa cells were infected with the 7134 ICP0-null mutant virus or the 7134R rescued virus at an
MOI of 1 and then stained as described above for panel A.
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However, the observed phenotype with the VP16 mutant virus
could also be an indirect result of reduced levels of ICP0 due to
defective VP16 transactivator function for IE gene expression
(45). We tested this possibility by infecting HeLa cells with the
HSV-1 7134 ICP0-null mutant virus or the 7134R rescued virus,
under the same conditions as those used in Fig. 4A. Cells were
fixed at 4 to 8 hpi and stained with antibodies specific for ICP8 and
the heterochromatin marker H3K9me3. Mature replication com-
partments in ICP0-null virus-infected cells excluded heterochro-
matin as efficiently as cells infected with the rescued virus
(Fig. 4B). These results are evidence that under these experimental
conditions, VP16 promotes heterochromatin exclusion from rep-
lication compartments.

Heterochromatin exclusion from the HSV-1 IE promoters
requires VP16. To directly test the association of heterochroma-
tin with viral DNA, we performed chromatin immunoprecipita-
tion (ChIP). We infected HeLa cells with the WT virus, 17syn�, or
the VP16 mutant virus, in1814, at an MOI of 1 and prepared
chromatin extracts at 4 hpi. Antibodies specific for H3K9me3 and
histone H3 were used to immunoprecipitate heterochromatin and
total chromatin, respectively. The levels of immunoprecipitated
DNA were determined by real-time (RT) PCR analysis using
primers for the ICP4 gene transcriptional start site, the ICP27 gene
transcription start site, the ICP0 gene promoter, and a cellular
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) pseudo-
gene (Table 1). Consistent with previous results (35), we observed
an increased association of histone H3 with the ICP4 gene (2.8-
fold), ICP27 gene (5-fold), and ICP0 gene promoters (5-fold) dur-
ing infection with in1814 virus (Fig. 5). We also observed in-
creased levels of the heterochromatin marker H3K9me3 on the
ICP4 (3-fold), ICP27 (2.5-fold), and ICP0 (4.2-fold) promoters in
in1814-infected cells as compared with WT virus-infected cells
(Fig. 5). To determine the efficiency of H3K9me3 ChIP among
each sample set, we used satellite 2 (Sat2) sequences as a positive
cellular control for H3K9me3 enrichment, because these satellite
sequences are heavily associated with heterochromatin. There was
no significant difference in H3K9me3 enrichment on the Sat2
sequences between the WT virus- and VP16 mutant virus-infected
cells (results not shown). Therefore, VP16 or its associated com-
ponents promote the reduction of histone H3 and heterochroma-
tin on HSV IE gene promoters at early times during lytic infection.

Lamin A/C is required for efficient association of VP16 and
Oct-1 transcription factor with IE gene promoters. Because in-
fection of lamin A/C�/� cells and infection with the VP16 mutant
virus both resulted in defective targeting of HSV genome com-
plexes to the nuclear periphery and increased heterochromatin
association with HSV IE gene promoters early in infection, we
hypothesized that the two phenotypes might be related. We hy-
pothesized that lamin A/C is required for efficient VP16 activator
complex formation, which in turn is required to facilitate IE gene
expression. To test this hypothesis, we examined the association of
VP16 and Oct-1 with HSV IE gene promoters in Lmna�/� and
Lmna�/� MEFs. We infected cells with the HSV-1 DG1 virus and
prepared chromatin extracts at 2 hpi for ChIP analysis using an-
tibodies specific for GFP or Oct-1. Real-time PCR was performed
with primers specific for the promoters of the IE ICP4 and ICP27
genes, to which the Oct-1/HCF-1/VP16 complex is known to bind
(29). Primers specific for the E thymidine kinase (TK) gene were
used as a negative control, because E genes lack VP16 binding
sites. We observed 10-fold and 8.7-fold increases in Oct-1 associ-
ation with the ICP4 (P � 0.05) and ICP27 (P � 0.05) promoters,
respectively, in Lmna�/� MEFs compared to Lmna�/� MEFs
(Fig. 6A). Furthermore, we observed 3-fold and 2.4-fold increases
in VP16-GFP association with the ICP4 (P � 0.05) and ICP27 (P
� 0.12) promoters, respectively, in Lmna�/� MEFs compared to
Lmna�/� MEFs (Fig. 6B). There was minimal enrichment of
Oct-1 or VP16-GFP at the TK and GAPDH promoters in both cell
lines. Therefore, in the absence of lamin A/C, the VP16 activator
complex was not efficiently assembled at IE gene promoters.

Lamin A/C is required for stable nuclear localization of
HCF-1 and VP16 and their association into a complex. The re-
duced levels of VP16 associated with viral DNA in lamin A/C�/�

cells could be due to reduced levels of VP16 in the nucleus, defec-
tive activator complex assembly, or reduced ability of the complex
to bind to viral DNA. To determine whether lamin A/C regulated
the nuclear localization of VP16, we performed subcellular frac-
tionation of Lmna�/� and Lmna�/� MEFs. We infected the two
types of cells with the HSV-1 DG1 virus at an MOI of 50 in the
presence of cycloheximide to analyze input VP16. Mock-infected
cells were used as a control. We harvested the cells at 3 hpi and
prepared cytoplasmic and nuclear fractions. VP16-GFP and
HCF-1 proteins were detected by Western blotting (Fig. 7, left

TABLE 1 Primers used for quantitative PCR analysis

Gene Primer directiona Primer sequence (5’–3’)

ICP0 promoterb F TAACTTATACCCCACGCCTTTC
R TCCGGTATGGTAATGAGTTTC

ICP4 promoterc F CGCATGGCATCTCATTACCG
R TAGCATGCGGAACGGAAGC

ICP4 transcriptional start sited F GCCGGGGCGCTGCTTGTTCTCC
R CGTCCGCCGTCGCAGCCGTATC

ICP27 transcriptional start sitec F GCCACGTGTAGCCTGGATCCC
R CGGGGGTGGATACGCTGGCT

TK promoter F CCGGAGGCGCGAGGGACTGC
R CAACGGGCCACGGGGATGAAGC

GAPDHc F TTCGACAGTCAGCCGCATCTT
R CAGGCGCCCAATACGACCAAA

a F, forward; R, reverse.
b Primer sequences were described previously (38).
c Primer sequences were described previously (45).
d Primer sequences were described previously (20).
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panel). In the Lmna�/� MEFs, 69% of the VP16-GFP was in the
nuclear fraction, while only 31% was associated with the nuclear
fraction in Lmna�/� MEFs (Fig. 7, right) (P � 0.05 using the
Wilcoxon signed-rank test). HCF-1 also showed reduced associa-
tion with the nucleus with 77% in the Lmna�/� MEF nuclear
fraction compared to 49% observed in nuclear fractions of mock-

infected Lmna�/� MEFs (P � 0.05). HSV-1 infection did not af-
fect the distributions of HCF-1. These results demonstrated that
lamin A/C is required for the nuclear localization of HCF-1 and
VP16 and/or their stable association with the nucleus.

To determine whether VP16 activation complex assembly was
impaired in the absence of lamin A/C, we analyzed VP16 –HCF-1
association by immunoprecipitation from Lmna�/� and

FIG 5 Increased association of chromatin at IE gene promoters in the absence
of functional VP16. HeLa cells were infected with either the wild-type 17syn�

virus or the VP16 mutant virus in1814 at an MOI of 1 and fixed at 4 hpi. ChIP
was performed using antibodies specific for histone H3 or H3K9me3 or as a
control, normal rabbit IgG. The immunoprecipitated DNA fragments were
quantified by real-time PCR with primers specific for the ICP4, ICP27, and
ICP0 genes. Values were normalized to GAPDH to determine fold enrichment.
The data shown are mean values plus standard deviations from three experi-
ments. Values that are significantly different (P � 0.05) using a paired Stu-
dent’s t test are indicated by an asterisk and brackets.

FIG 6 Decreased association of VP16-GFP and Oct-1 at IE promoters in the
absence of lamin A/C. Lmna�/� and Lmna�/� MEFs were infected with
HSV-1 DG1 virus at an MOI of 10 and fixed at 2 hpi. Cell lysates were analyzed
by ChIP with antibodies (Ab) specific for Oct-1 (A) or GFP (B). The levels of
total and immunoprecipitated DNA were quantified by real-time PCR with
primers specific for the IE ICP4 and ICP27 gene promoters. The viral TK and
cellular GAPDH promoters were used as controls. The results shown are mean
values plus standard deviations from three independent experiments. Values
that are significantly different (P � 0.05) using a paired Student’s t test are
indicated by an asterisk and brackets. mGAPDH, mouse GAPDH.
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Lmna�/� MEFs. To examine input VP16, we infected cells with
HSV-1 DG1 virus at an MOI of 100 and harvested the cells at 2 hpi.
VP16 was derived completely from input virus under these con-
ditions (results not shown). Because of the differences in cell lo-
calization described above, we used total cell lysates for immuno-
precipitation. Immunoprecipitation of VP16-GFP from Lmna�/�

cell lysates using a GFP antibody resulted in coimmunoprecipita-
tion with HCF-1 (Fig. 8A). In contrast, HCF-1 did not efficiently
coimmunoprecipitate with VP16-GFP from Lmna�/� cell lysates.
Similar amounts of input and immunoprecipitated VP16-GFP in
both cell lines suggested that these results were not due to differ-
ences in VP16-GFP levels (Fig. 8A). HCF-1 did not detectably
coimmunoprecipitate from the mock-infected cells or IgG control
samples (not shown), indicating that the coimmunoprecipitation
was specific for VP16-GFP. To further confirm these coimmuno-
precipitation results, we performed immunoprecipitations with
an HCF-1 antibody. The HCF-1 antibody immunoprecipitated
similar amounts of HCF-1 from both Lmna�/� and Lmna�/� cell
total cell lysates, and infection did not affect these levels (Fig. 8B).
As observed with the GFP antibody, there was significantly less
VP16-GFP coimmunprecipitated from infected Lmna�/� cell ly-
sates than from infected Lmna�/� cell lysates (Fig. 8B). These
results provided evidence that in the absence of lamin A/C, there
was reduced association of VP16-GFP with HCF-1.

DISCUSSION

We had shown previously that lamin A is needed for targeting of
HSV genome complexes to the periphery of the nucleus, reduc-
tion of heterochromatin association with IE gene promoters, and
stimulation of viral IE gene expression (20). Those results con-
trasted with the dogma that peripheral nuclear targeting silences

genes through heterochromatin association or targeting of genes
or chromosomes to heterochromatin domains. In this study, we
found that the mechanism for our observed effects is that lamin
A/C promotes the stable accumulation or retention of VP16 and
HCF-1 with the nucleus and the assembly of the VP16 activator
complex on IE genes, thereby promoting viral IE gene transcrip-
tion. Because input virion VP16 targeted sites adjacent to the nu-
clear lamina, we hypothesize that the VP16 activator complex is
assembled and associates with viral IE gene promoters at sites
adjacent to or connected with the nuclear lamina. These results
point out the potential role of specific sites on the nuclear lamina
for assembly of transcriptional activator complexes, while other
sites serve as sites for assembly of silencing complexes.

Role of the nuclear lamina in assembly of the transactivation
complex. We observed that, in the absence of lamin A/C, VP16
and HCF-1 associated less well with the nucleus and formed acti-
vator complexes less efficiently. The reduction in nuclear associa-
tion was less than the reduction in activator complex formation,
so we infer that the localization defect may contribute to but does
not fully explain the defect in assembly of the activator complex.
The primary defect in assembly of the activator complex on IE
genes may be the association of Oct-1 with IE promoters, because
VP16 and HCF-1 association is dependent on Oct-1 binding (48).

The reduced association of HCF-1 and VP16 in the nuclei of
lamin A/C�/� MEFs argues that their nuclear association is at least
in part due to tethering to molecules associated with the nuclear
lamina. Alternatively, the nuclear lamina may play a role in regu-
lating the nuclear export of HCF-1 by the hematopoietic PBX-
interacting protein (HPIP) cellular export factor (49). Although
there is no evidence for HCF-1 or VP16 interactions with nuclear
lamina components, another member of the activator complex,

FIG 7 Decreased nuclear association of VP16-GFP and HCF-1 in the absence of lamin A/C. (Left) Lmna�/� and Lmna�/� MEFs were infected with the HSV-1
DG1 virus at an MOI of 50 in the presence of cycloheximide (100 �g/ml), harvested at 3 hpi, and fractionated into cytoplasmic and nuclear fractions. Cytoplasmic
and nuclear fractions were loaded at a 1:2 ratio onto an SDS-polyacrylamide gel, and the proteins were resolved in the gel. VP16-GFP and HCF-1 were detected
by Western blotting with GFP- and HCF-1-specific antibodies, respectively. GAPDH and lamin B1 were detected as fractionation and loading controls (left).
(Right) The percentages of VP16-GFP and HCF-1 in the nuclear fractions were quantified using ImageJ software. Histograms represent the mean values and
standard deviations from at least five independent experiments.
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Oct-1, has been shown to colocalize with lamin B (50, 51). How-
ever, in these systems, Oct-1 associated with lamin B seems to be
sequestered so that it cannot bind to DNA and activate gene ex-
pression. Thus, in lamin B knockout cells, Oct-1 is released from
the nuclear lamina and moves inward and is free to bind to cog-
nate sequences and activate specific promoters. In the case of
HSV, VP16 and HCF-1 may bind to Oct-1 associated with the
lamina and free it to bind to other sites nearby where the complex
can bind to viral IE gene promoters. It is interesting to note that
HCF-1 is found in the cytoplasm of sensory neurons, thought to
result from retention at the Golgi apparatus (52, 53).

The requirement for the lamina in assembly of VP16 activator
complexes and the localization of input virion VP16 to the sites on
the nuclear lamina further support the idea that the activator com-
plex is assembled at sites on the nuclear lamina. An interesting
question is whether the activator complex or viral DNA is primar-
ily targeted to the nuclear lamina sites. A corollary question is
whether viral DNA that lacks Oct-1 binding sites will target the
nuclear lamina without VP16 activator complex bound to it. It is
conceivable that all incoming DNA such as transfected or viral

DNA is shunted to the nuclear lamina where it is normally si-
lenced by association with heterochromatin. HSV DNA may by-
pass this by association with the VP16 activation complex bound
to alternative sites on the nuclear lamina.

Implications for genome targeting. In contrast to most cellu-
lar genes at the nuclear periphery that are associated with hetero-
chromatin and transcriptionally inactive, we have found that the
targeting of the input HSV genomes to the nuclear periphery, an
association that requires lamin A/C and the viral protein VP16, is
linked to transcriptional activation of the viral IE genes and reduc-
tion in heterochromatin association with the viral genome. Our
results argue that lamina subdomains can either silence genes
through heterochromatin association or serve to activate gene
transcription through euchromatin association. This was first
raised as a general concept by Shimi et al. (19) who reported mi-
crodomains enriched for lamin A or lamin B that were associated
with actively transcribing genes or inactive genes, respectively.
Our work provides specific examples of genes that are activated by
association with the nuclear periphery, likely in association with
molecules associated with the nuclear lamina. It will be important
to define the molecules associated with the nuclear lamina and
with which the VP16 activator complex or viral genome interact
that facilitate assembly of the complex on viral IE promoters. Fur-
ther studies are needed to confirm that viral DNA is located in the
sites to which input VP16 is localized and to identify the cellular
factors and gene products needed for targeting of VP16 and viral
DNA to these sites.

It is interesting to note that some of the gene constructs that
resisted silencing when tethered to the nuclear lamina were based
on the human cytomegalovirus immediate-early enhancer pro-
moter (18). Therefore, it is conceivable that viral immediate-early
promoters have evolved to evade chromatin-silencing mecha-
nisms at the periphery of the nucleus when the viral genomes
invade the nucleus.

Implications for viral latent infection. These results may also
have implications for the mechanisms by which HSV undergoes a
latent infection in neurons. Sensory neurons may be deficient for
a component(s) associated with the nuclear lamina, which is
needed for assembly of the VP16 activator complex. It is known
that HCF-1 is localized in the cytoplasm in sensory neurons, and
there is evidence that this is due to retention at the Golgi apparatus
(26). Given our results, it is conceivable that a component of the
nuclear lamina that normally tethers HCF-1 in the nucleus is
missing in sensory neurons or that the nuclear lamina regulates
the export of HCF-1 from the nucleus by the HPIP protein (49).
Our initial results indicate that murine trigeminal ganglia that are
latently infected and express the viral latency-associated transcript
(LAT) do contain lamin A (L. Chang and D. M. Knipe, unpub-
lished data) , but other components might be missing or altered in
the neurons. Once the molecules that bridge the viral genome
complexes to the nuclear periphery are identified, these would be
obvious candidates for molecules that might be altered or missing
in the nuclei of sensory neurons.

Our results document the importance of intranuclear nuclear
targeting of the HSV genome during lytic infection, and this may
extend to latent infection as well. These results raise a potential
new model for HSV lytic versus latent infection mechanisms in
which intranuclear targeting of the viral genome determines the
fate of the viral genome. VP16 and its associated proteins target
the incoming viral genome to sites on the nuclear lamina where

FIG 8 Reduced association of HCF-1 and VP16-GFP in the absence of lamin
A/C. Lmna�/� and Lmna�/� MEFs were infected with HSV-1 DG1 virus at an
MOI of 100 and harvested at 2 hpi for immunoprecipitation with antibodies
specific for GFP (A) or HCF-1 (B). Rabbit IgG was used as a control. Immu-
noprecipitated proteins were resolved by SDS-PAGE, and VP16-GFP and
HCF-1 were detected by GFP- and HCF-1-specific antibodies, respectively.
WB, Western blotting; �-GFP, anti-GFP antibody; �-HCF-1, anti-HCF-1 an-
tibody.
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the activator complex can form on the viral DNA, euchromatin is
assembled, and IE gene transcription can ensue. In contrast, in
neurons, VP16 and HCF-1 are not available to target the viral
genome to these sites, but other factors such as CCCTC binding
factor (CTCF) which are known to affect genome targeting in the
nucleus (54), could target the viral genome to sites on the nuclear
lamina or elsewhere in the nucleus where heterochromatin silenc-
ing take place, resulting in a latent infection. In addition, this may
integrate with transcription of LAT that may target the viral ge-
nome to Polycomb bodies in the nucleus where heterochromatin
is assembled on viral lytic genes (55–57).

Viruses have often provided very sensitive probes of the mech-
anisms by which their host cells function. These studies of HSV
infection showing the importance of intranuclear targeting of the
viral genome for initiation of viral gene transcription raise the
concept of gene regulation mechanisms that involve the targeting
of genes to specific sites in the nucleus where preformed protein
complexes are located or where new complexes are formed on the
genes that either activate or silence the genes. This concept differs
from the view that genes and binding factors diffuse in solution
and find each other randomly. These studies of the HSV genome
provide insight into this little-studied area of gene regulation in
mammalian cells and highlight the need for further investigation
of the role of intranuclear targeting of other specific viral and
cellular genes.

MATERIALS AND METHODS
Cells and viruses. HeLa, Vero, and U2OS cells were obtained from the
American Type Culture Collection (Manassas, VA). Immortalized
Lmna�/� murine embryonic fibroblasts (MEFs) and litter-matched
Lmna�/� control MEFs (58) were provided by Brian Kennedy, Buck In-
stitute for Research on Aging. Cells were maintained in Dulbecco’s mod-
ified Eagle medium (DMEM) (Gibco) supplemented with 5% fetal bovine
serum (FBS) plus 5% bovine calf serum (BCS), 2 mM L-glutamine,
100 U/ml penicillin, and 100 �g/ml streptomycin at 37°C in 5% CO2. The
wild-type strain of HSV-1 (17syn�) (59) used in this study was grown and
titrated on Vero cells. The HSV-1 in1814 VP16 insertion mutant and
in1814R rescued viruses (43) were provided by Chris M. Preston and
grown and titrated on U2OS cells. The VP16-GFP-tagged HSV-1 DG1
virus (42) was grown and titrated on Vero cells. HSV-1 KOS 7134 virus,
which has a lacZ expression cassette in place of the ICP0 gene and the
7134R rescued viruses (44) were originally provided by Priscilla Schaffer,
and the titers of the viruses were determined on U2OS cells.

Virus infections. HeLa cells, Lmna�/� MEFs, or Lmna�/� MEFs were
seeded 24 h prior to infection. Virus was diluted in phosphate-buffered
saline (PBS) containing 0.1% glucose (wt/vol) and 1% heat-inactivated
calf serum and applied to cells for 1 h at 37°C. One hour after the addition
of viral inoculum, the cells were washed three times for 30 s each time with
an acid wash buffer (135 mM NaCl, 10 mM KCl, 40 mM citric acid [pH 3])
and then washed with DMEM before incubation in DMEM with 1% FBS
at 37°C for the indicated time period.

Immunofluorescence microscopy. HeLa cells, Lmna�/� MEFs, or
Lmna�/� MEFs were seeded at 1 � 105 cells/well on glass coverslips in
24-well plates 24 h prior to infection. The cells were processed for indirect
immunofluorescence as described previously (60). The primary antibod-
ies used were histone H3K9me3 (Abcam), HSV-1 ICP4 58S (N. DeLuca),
GFP (Clontech), lamin B1 (Abcam), or HSV-1 ICP8 mouse monoclonal
39S (61). Secondary antibodies conjugated to Alexa Fluor 594 and 488
dyes and Prolong gold antifade mounting reagent were obtained from
Molecular Probes Inc.

Wide-field images of cells were acquired on a Zeiss Axioplan 2 micro-
scope with a Plan Apochromat 63� 1.4-numerical-aperture (1.4-NA) ob-
jective lens, a Photometrics CoolSNAP HQ2 charge-coupled device

(CCD) camera, and the Zeiss AxioVision 4 image acquisition software.
Three-dimensional confocal images of cells were captured on a spinning
disk confocal imaging system consisting of a Zeiss Axiovert 200M micro-
scope, a Plan Apochromat 63� 1.4-NA objective lens, a PerkinElmer Yok-
ogawa spinning disk confocal head, a Roper Scientific, Cascade electron
microscope (EM)-CCD camera, and SlideBook 4.2 image acquisition and
analysis software (Intelligent Imaging Innovations).

ChIP. Chromatin immunoprecipitation (ChIP) assays were per-
formed as described previously (20). Briefly, HeLa cells were seeded at 3 �
106 cells per 100-mm dish 24 h prior to infection. Cells were infected at an
MOI of 1 with the WT parental strain 17syn� or the VP16 mutant virus
in1814. Chromatin samples were incubated with 1.5 �g of anti-histone
H3 IgG (Abcam), 0.9 �g anti-histone H3K9me3 IgG (Abcam), or equiv-
alent amounts of rabbit immunoglobulin G (Millipore) as the negative
control. ChIP assays for Oct-1 and VP16-GFP were performed by the
method of Malhas et al. (51) using antibodies from Santa Cruz Biotech-
nology and Abcam, respectively.

Real-time PCR. Real-time PCR was performed using the Power SYBR
Green PCR master mix and a Prism 7300 sequence detection system (Ap-
plied Biosystems) as previously described (20). The primers used in this
study are shown in Table 1. The percent immunoprecipitated values were
determined by subtracting the normal rabbit IgG control values from the
enriched antibody immunoprecipitation (IP) values and dividing by the
input DNA. The fold enrichment of viral DNA immunoprecipitated com-
pared to the input sample was normalized to the fraction of cellular
GAPDH DNA precipitated in the same reaction.

IP. Lmna�/� and Lmna�/� MEFs were seeded at ~1 � 107 cells in
150-mm dishes 24 h prior to infection. MEFs were infected at an MOI of
100 with the HSV-1 DG1 virus. At 2 hpi, the cells were washed twice with
cold PBS on ice. The cells were resuspended in 0.5 ml of IP buffer (120 mM
potassium acetate, 20 mM Tris acetate [pH 7.9], 5 mM EDTA, 1 mM
dithiothreitol, 10% glycerol, 0.1% Nonidet P-40, 1 mM leupeptin, 1 mM
aprotinin, and 1 Complete protease inhibitor cocktail tablet [Roche]) as
previously described (62). Lysates were incubated with 1.5 �l of the GFP
rabbit polyclonal antibody (Abcam), the HCF-1 rabbit polyclonal anti-
body (Bethyl Lab) or normal rabbit IgG (Millipore). Beads containing
immune complexes were boiled in Laemmli buffer, and proteins were
resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE).

Cell fractionation. Lmna�/� and Lmna�/� MEFs were infected with
the HSV-1 DG1 virus at an MOI of 50 in the presence of cycloheximide
(100 �g/ml) and fixed at 3 hpi. Cell fractionation was performed as de-
scribed previously (63). Briefly, the cells were washed with PBS twice,
swelled in reticulocyte standard buffer (RSB) (10 mM Tris hydrochloride
[pH 7.6], 10 mM NaCl, 1.5 mM MgCl2) for 5 min on ice. The cells were
disrupted with 40 to 50 strokes with a Dounce homogenizer, and 0.2 vol-
ume of 60% sucrose in RSB was added. The cytoplasmic fraction was
transferred to a new tube after centrifugation at 3,000 rpm for 5 min. The
crude nuclear fraction pellet was washed with 1 ml of RSB containing 10%
sucrose and 0.5% NP-40. The nuclear fraction pellet was recovered by
centrifugation. The pellet was lysed in standard radioimmunoprecipita-
tion assay (RIPA) buffer. Protease inhibitor (Roche) was added to all the
buffers during the fractionation.

SDS-PAGE and Western blotting. Proteins in the IPs were resolved in
4 to 12% polyacrylamide gradient gels (Invitrogen) and then transferred
to a polyvinylidene difluoride membrane (PerkinElmer Life Sciences).
The anti-HCF-1 (Bethyl Lab) and anti-GFP (Clontech) antibodies were
used at 1:10,000 dilutions.
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