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Endothelial cells play an important role in maintenance of the
vascular system and the repair after injury. Under proinflamma-
tory conditions, endothelial cells can acquire a mesenchymal
phenotype by a process named endothelial-to-mesenchymal tran-
sition (EndMT), which affects the functional properties of endo-
thelial cells. Here, we investigated the epigenetic control of
EndMT. We show that the histone demethylase JMJD2B is induced
by EndMT-promoting, proinflammatory, and hypoxic conditions.
Silencing of JMJD2B reduced TGF-β2-induced expression of mesen-
chymal genes, prevented the alterations in endothelial morphol-
ogy and impaired endothelial barrier function. Endothelial-specific
deletion of JMJD2B in vivo confirmed a reduction of EndMT after
myocardial infarction. EndMT did not affect global H3K9me3 levels
but induced a site-specific reduction of repressive H3K9me3 marks
at promoters of mesenchymal genes, such as Calponin (CNN1), and
genes involved in TGF-β signaling, such as AKT Serine/Threonine
Kinase 3 (AKT3) and Sulfatase 1 (SULF1). Silencing of JMJD2B pre-
vented the EndMT-induced reduction of H3K9me3 marks at these
promotors and further repressed these EndMT-related genes. Our
study reveals that endothelial identity and function is critically
controlled by the histone demethylase JMJD2B, which is induced
by EndMT-promoting, proinflammatory, and hypoxic conditions,
and supports the acquirement of a mesenchymal phenotype.
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Endothelial cells (ECs) covering the inner layer of vessels
control the exchange of oxygen and nutrients with underlying

tissues and play an essential role in maintaining homeostasis of
the vessel wall. In response to environmental and mechanical
stimuli, fully differentiated ECs can profoundly change their
phenotype and function. For example, transforming growth factor
beta (TGF-β) and to an extent hypoxia or disturbed blood flow,
can promote the transition of ECs to a mesenchymal phenotype
(1–3). This process is termed endothelial-to-mesenchymal transi-
tion (EndMT). The transition is associated with a reduction of
prototypical endothelial genes and with a concomitant de novo
expression of mesenchymal marker genes leading to impaired
endothelial cell function (4, 5). Cellular transitions are essential
physiological processes in the development of differentiating tis-
sues, as well as in the maintenance and repair of adult tissues.
During cardiovascular development, EndMT was shown to con-
tribute to cardiac valve formation, developmental intima thicken-
ing of the pulmonary artery, and stabilization of newly formed
vasculature (6, 7). In adults, EndMT plays an important role in
wound healing after tissue injury, where cells that have undergone
EndMT can have stabilizing functions and act in a fibroblast-like
manner (8). However, EndMT can also contribute to pathophysio-
logical conditions, e.g. by enhancing renal or cardiac fibrosis after
tissue injury or ischemia, which is accompanied by a reduction in

capillary density (9–11). Additionally, ECs undergoing EndMT are
commonly found in atherosclerotic lesions, particularly in complex
and unstable lesions in humans (12, 13). Given this importance,
many studies addressed the regulatory control of EndMT. Here,
activating and inhibitory pathways, such as the TGF-β/Smad2/3 axis
(3) and fibroblast growth factor 2 (FGF2) signaling cascade (12, 14,
15) controlling EndMT were identified. Although several studies
suggested that the related process of epithelial-to-mesenchymal
transition (EMT) is regulated by epigenetic mechanisms such as
DNA methylation and posttranslational histone modifications (16,
17), little is known regarding the epigenetic control of EndMT (3).
Jumonji C (JmjC) domain-containing proteins are a class of

histone demethylases that epigenetically regulate gene tran-
scription (18). JmjC domain-containing proteins function as
important regulators of pluripotency and control differentiation
of embryonic stem cells (19–22). Several Jumonji proteins have
been either implicated in the regulation of cancer progression or
were suggested as a biomarker for several cancer types, like
JMJD1A for gastric or JMJD3 for colorectal cancer (23, 24).
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Moreover, recent studies have highlighted the importance of
JmjC domain-containing proteins in the regulation of EMT,
which is an underlying mechanism for tumor invasion and me-
tastasis (25–31). One member of this protein family, Jumonji
domain-containing protein 2B (JMJD2B, also known as
KDM4B) transcriptionally activates gene expression by deme-
thylation of the repressive histone mark H3K9me3 and further
coordinates the methylation of the activating histone mark
H3K4me3 (32–34). JMJD2B enhances human gastric cancer me-
tastasis by physically interacting with β-catenin, thereby promoting
EMT progression (28). However, the role of JMJD2B in endo-
thelial cell plasticity has not been investigated so far. Since JMJD2B
expression was significantly induced during endothelial and cardiac
differentiation of embryonic stem cells (35), we hypothesize
that JMJD2B might play a role in epigenetically controlling the
endothelial phenotype identity and investigated its role in EndMT.

Results
JMJD2B Is Induced by EndMT-Promoting Stimuli. Regulation of
JMJD2B was first assessed in vitro in cultured human umbilical
vein endothelial cells (HUVECs). The EndMT-promoting stimuli
TGF-β2 and interleukin-1β (IL-1β) both induced JMJD2B ex-
pression (Fig. 1A). JMJD2B mRNA and protein level were also
up-regulated by hypoxia (Fig. 1 B and C), which is known to in-
duce EndMT (2, 36, 37). Furthermore, we assessed the impact of
mechanical activation of ECs. We show that JMJD2B is reduced
by laminar flow, which was shown to prevent EndMT (1, 38) (Fig.
1D). Furthermore, in comparison to the ECs exposed to stable
blood flow (nonligated controls), exposure of ECs to disturbed flow
by partial carotid ligation induced the expression of JMJD2B in vivo
in a time-dependent manner (Fig. 1 E and F). Thereby, JMJD2B
expression correlated with the induction of mesenchymal markers

(Fig. 1G and SI Appendix, Fig. S1A). These data collectively
demonstrate that EndMT-promoting stimuli induce JMJD2B ex-
pression, whereas EndMT-preventing stimuli reduced JMJD2B
expression.

Silencing of JMJD2B Reduces EndMT. To determine the role of
JMJD2B in EndMT, we silenced JMJD2B by pooled siRNAs,
which significantly reduced JMJD2B protein levels (Fig. 2A).
Knockdown of JMJD2B resulted in a significant decrease of
smooth muscle and mesenchymal genes such as smooth muscle
protein 22-alpha (SM22) and calponin (CNN1) on mRNA and
protein level during TGF-β2-induced EndMT in human ECs
(Fig. 2 A–E and SI Appendix, Fig. S2A). Additionally, protein
expression of the mesenchymal marker Vimentin was up-
regulated upon EndMT induction, and knockdown of JMJD2B
prevented these changes (SI Appendix, Fig. S2 B and C). Similar
findings were observed when using three alternative siRNA se-
quences directed against JMJD2B (SI Appendix, Fig. S2D) and
CRISPR-Cas9–mediated gene knockdown (Fig. 2D and SI Ap-
pendix, Fig. S2E). Morphological and immunohistochemical
(IHC) analysis showed that the percentage of SM22pos. cells was re-
duced after knockdown of JMJD2B compared to control transfected
cells (Fig. 2 E and F). Furthermore, siJMJD2B-treated ECs showed
preserved CDH5 protein expression and the typical CDH5 organi-
zation at adherens junctions after EndMT induction (SI Appendix,
Fig. S2F and Fig. 2 E and G). Silencing of JMJD2B further reduced
the EndMT-associated increase of endothelial permeability (Fig. 2H),
as well as hypoxia-enhanced EndMT (SI Appendix, Fig. S2G). To
address whether inhibition of the enzymatic activity of JMJD2B ex-
hibits similar effects, we used the previously described JMJD2B in-
hibitor CCT365599 (39). Treatment with CCT365599 reduced TGF-
β2-stimulated SM22 expression in a dose-dependent manner (SI
Appendix, Fig. S2H). Single-cell RNA sequencing (scRNA-seq)
confirmed that silencing of JMJD2B reduced the number of mes-
enchymal marker gene-expressing ECs (SI Appendix, Fig. S3 A–F).
The role of JMJD2B as a positive regulator of EndMT was further
emphasized in an additional model of EndMT induction by a
combination of IL-1β and TGF-β1 (SI Appendix, Fig. S4 A–E) (40).

In Vivo Regulation of EndMT in Jmjd2bfl/fl Cdh5-iCre Mice. To confirm
the causal involvement of Jmjd2b in regulation of EndMT in vivo,
we generated an inducible EC-specific knockout mouse model of
Jmjd2b (C57BL/6J Cdh5-iCre; Jmjd2bfl/fl mice) (Fig. 3 A and B).
Tamoxifen (TAM) treatment efficiently reduced Jmjd2b expres-
sion in ECs isolated from Jmjd2bfl/flCdh5Cre+ (Jmjd2biEC-KO)
mice compared to Jmjd2bfl/flCdh5Cre− (Ctrl) mice (Fig. 3C). To
assess the effect of Jmjd2b on EndMT, we induced myocardial
infarction (MI), which is known to augment EndMT (11). First,
we performed scRNA-seq of Jmjd2biEC-KO and control mice 3
d after MI and assessed the percentage of EndMT-positive
ECs. Single-cell RNA sequencing revealed that Jmjd2b knock-
out resulted in a relative reduction of ECs with additional mes-
enchymal marker gene expression (Fig. 3D). The reduction of
mesenchymal transition in Jmjd2biEC-KO was consistent for vari-
ous EndMT marker combinations, such as Col3a1 and Tgfbr1,
Serpine1 and Fn1, Col1a1 and Vim, Ctgf and Tgfbr3 (Fig. 3D and
SI Appendix, Fig. S5A). These results were further supported by
histological assessment of EndMT postinfarction, demonstrating
that Jmjd2biEC-KO mice showed a significant reduction of ECs in
the myocardium, which were positive for the fibroblast marker
S100A4 (Fig. 3 E and F). Of note, despite a significant inhibi-
tion of EndMT in Jmjd2biEC-KO mice, we only observed modest
effects on cardiac function 2 wk after infarction (SI Appendix, Fig.
S5 B and C).

Epigenetic Regulation of EndMT. To identify yet undescribed global
and gene-specific changes in histone methylation in EndMT, we
performed immunoblotting and chromatin immunoprecipitation
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Fig. 1. Regulation of JMJD2B by EndMT-promoting stimuli in vitro and
in vivo. (A) JMJD2B mRNA was measured in untreated (Ctrl) or with differ-
entiation medium (DM) + TGF-β2- or IL-1β-treated HUVECS by RT-qPCR and
depicted as fold to Ctrl (n = 3). (B) HUVECs were cultivated for 24 h under
0.2% O2 (hypoxia) or 21% O2 (normoxia), and mRNA level were determined
by RT-qPCR and normalized to RPLP0 (2-ΔCt) (n = 3). (C) Representative im-
munoblot (IB) and densiometric quantification of JMJD2B protein level in
hypoxia (1% O2) or normoxia, β-ACTIN served as a loading control (n = 5). (D)
RNA expression levels of JMJD2B in HUVECs incubated under static and
laminar flow conditions determined by RNA sequencing (n = 2). (E–G) Partial
carotid artery mice model (nonligated, right carotid artery; ligated, left ca-
rotid artery) after 12 h and 48 h of ligation. (E) Jmjd2b mRNA levels were
determined by RT-qPCR; values were normalized to 18s rRNA level (n = 4). (F–
G) Jmjd2b mRNA levels were determined by RNA sequencing; values are
depicted as fold to nonligated (F) or Fragments Per Kilobase Million (FPKM)
values as Pearson’s correlation (G). Data are depicted as mean ± SEM. Statis-
tical significance was determined using Student’s t test or ANOVA Bonferroni
post hox test (A–F), and Pearson’s correlation (G); *P < 0.05.
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sequencing (ChIP-Seq) analysis after TGF-β2-mediated induction
of EndMT in ECs. Whereas global levels of the repressive histone
mark H3K9me3 and the activating mark H3K4me3 were un-
changed after EndMT (SI Appendix, Fig. S6 A and B), ChIP se-
quencing revealed gene-specific reduction of the repressing
histone mark H3K9me3 following EndMT (Fig. 4 A and B and SI
Appendix, Fig. S7A). Subsequent gene ontology analysis showed
that the TGF-β, Integrin, Wnt, and the Gonadotropin signaling
pathways are most profoundly associated with the gene-specific
changes in H3K9me3 level (Fig. 4C). A selection of EndMT- or
EMT-related genes showing significantly reduced H3K9me3 peak
levels after EndMT induction are depicted in Fig. 4B and SI Ap-
pendix, Fig. S7 B–F. The mesenchymal marker gene CNN1 was
among the genes with high H3K9me3 marks at baseline, which
were reduced following EndMT (Fig. 4B and SI Appendix, Fig.
S7C). Consistently, CNN1 mRNA expression was augmented by
EndMT-promoting conditions as shown by bulk RNA and single-
cell RNA sequencing (SI Appendix, Fig. S8 A and B and Fig. 4D).
Silencing of JMJD2B augmented H3K9me3 marks at the CNN1

promoter (Fig. 4H) and reduced CNN1 mRNA expression levels
(Fig. 2C), demonstrating an epigenetic regulation of this mesen-
chymal gene by JMJD2B.
To identify additional putative direct JMJD2B-regulated

genes, we analyzed the microarray-based gene expression after
silencing of JMJD2B, which revealed significant changes in
EndMT-related genes and pathways (Fig. 4G and SI Appendix,
Fig. S8C). Direct candidates were then narrowed down by
selecting those genes which additionally exhibited reduced
H3K9me3 marks at the promoter after silencing of JMJD2B (SI
Appendix, Fig. S8D). We identified 148 overlapping candidates,
which were associated with cardiovascular and metabolic dis-
eases (SI Appendix, Fig. S8E). Among these candidate genes, we
selected the extracellular matrix protein sulfatase 1 (SULF1),
which has been implicated in TGF-β signaling, fibrosis, and
wound repair (41–43), and the serine/threonine kinase 3 (AKT3),
which is part of the noncanonical TGF-β signaling pathway,
for further validation. Reduced H3K9me3 peak levels at the
SULF1 and AKT3 promoters are shown in Fig. 4B and SI
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Appendix, Fig. S7 D and E). Consistently, expression of AKT3
and SULF1 mRNA was significantly augmented by EndMT
induction as shown by scRNA-seq (Fig. 4 E and F), microarray
analysis (Figs. 4G and 5A), RT-qPCR (Figs. 4J and 5B), and
on the protein level (Fig. 4K). After silencing of JMJD2B, both
genes showed augmented H3K9me3 marks at their promoter
(Figs. 4I and 5C). This was coinciding with the repression of
AKT3 (Fig. 4 J and K) and SULF1 (Fig. 5 A and B) expression
in JMJD2B-silenced ECs.
To assess whether these genes causally contribute to JMJD2B-

mediated augmentation of EndMT, we silenced SULF1 and
AKT3 expression by siRNAs. Only siRNAs directed against
SULF1, but not against AKT3, reduced TGF-β2-induced ex-
pression of mesenchymal marker genes (Fig. 5 D and E and SI
Appendix, Fig. S9), confirming the importance of SULF1 in
EndMT. Interestingly, silencing of SULF1 also reduced the in-
duction of TGF-β2 upon EndMT treatment (Fig. 5F). TGF-β2
was down-regulated upon JMJD2B silencing (Fig. 5G), but did
not show H3K9me3 marks (SI Appendix, Fig. S7F). Together,

these data suggest that SULF1 expression is epigenetically
controlled by JMJD2B and subsequently activates TGF-β2
expression.

Discussion
The present study demonstrates that the histone demethylase
JMJD2B regulates TGF-β1-, TGF-β2-, IL-1β-, and hypoxia-
induced EndMT in vitro and in vivo. EndMT is associated with
a change in H3K9me3 marks at distinct sets of promoters, whereas
global histone trimethylation at H3K9 was not significantly
changed. This study provides evidence of an epigenetic pathway
that controls EndMT on the level of histone H3K9 demethylation
(Fig. 5H).
Cellular differentiation and plasticity is critically regulated by

epigenetic control mechanisms, including DNA methylation as
well as histone modifications. While multiple studies investigated
the involvement of epigenetic regulators in EMT, little is known
regarding the role of epigenetic mechanisms in EndMT. DNA
hypermethylation of the promoter of Ras-Gap-like protein 1 was
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shown to mediate hypoxia-induced EndMT via DNMT3A (37).
At the level of histones, the H3K27me3-specific histone meth-
yltransferase EZH2 interferes with TGF-β- and IL-1β-induced
EndMT (44), whereas the histone deacetylase HDAC3 repro-
grams aortic ECs into mesenchymal cells (45). Using ChIP se-
quencing, we observed a change in H3K9me3 marks at various
promoters upon induction of EndMT. Affected genes preferentially
belonged to the TGF-β, Integrin, and Wnt signaling pathways, all of
which are known regulators of EndMT (46). Particularly, TGF-β
and its down-stream canonical SMAD proteins and noncanonical
proteins, e.g. the phosphatidylinositol 3-kinase (PI3K) or c-Jun
N-terminal kinase, are major mediators of EndMT induction.
Likewise, Wnt/β-catenin act synergistically with TGF-β to induce
EndMT during heart cushion development (47).

Among the specific gene loci, which showed changes in
H3K9me3 marks upon EndMT and JMJD2B silencing, we se-
lected CNN1, AKT3, and especially SULF1 for further analysis.
CNN1 is a well-established mesenchymal/smooth muscle marker
gene and our data suggest that CNN1 is repressed in ECs by
H3K9me3 marks. This repression can be reversed by JMJD2B-
mediated demethylation during EndMT-promoting conditions,
followed by the subsequent activation of gene expression. AKT3
belongs to the PI3K pathway, which has been shown to be rel-
evant for both EMT (48, 49) and EndMT (50). During EndMT,
PI3K is induced by TGF-β2 and its activation results in a
SMAD-independent induction of EndMT (51). Whether or to
which extent AKT3 contributes to this process is unknown. Our
results now suggest that AKT3 is not essential for TGF-β2-induced
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EndMT in cultured primary ECs. However, it has been shown that
the AKT pathway and specifically AKT3 regulates valve formation
during embryonic development (52). Therefore, a contribution to
EndMT in this context might be possible.
The third gene of interest, SULF1, is a heparan sulfate 6-O-

endosulfatase (53), which is important for migration of epithelial
cells during wound repair and is activated by liver damage (42,
54–56). Heparan sulfate proteoglycans localize to the cell surface
and the basement membrane and are a component of the extra-
cellular matrix. Modification by 6-O-sulfation is important for
protein interaction and cytokine signaling (57, 58). In this regard,
the 6-O-sulfation of heparan sulfate was shown to regulate TGF-β,
FGF, and VEGF signaling (43, 59). A dose- and time-dependent
induction of SULF1 expression by TGF-β was previously dem-
onstrated in human lung fibroblasts and in murine lungs in vivo
(43). SULF1 was further reported to inhibit FGF signaling and
FGF-induced angiogenesis in vivo (60) and to increase the avail-
ability of TGF-β1 in carcinoma cells (42). Additionally, our data
demonstrate that SULF1 controls the expression of TGF-β2.
Thus, SULF1 affects at least two crucial pathways in EndMT:
it promotes TGF-β2 expression and signaling (42) and post-
transcriptionally inhibits the EndMT-impeding action of FGF
(60). JMJD2B epigenetically controls this crucial modulator and
augments SULF1 expression by reducing H3K9me3 marks.
Endothelial plasticity and EndMT are critically regulated by

various environmental factors, including growth factors, cyto-
kines, oxygen tension, as well as mechanical forces (46). The
present study shows that many of these factors regulate JMJD2B
expression. Thus, hypoxia and disturbed flow induced JMJD2B
expression, indicating that JMJD2B may be one common regulator

of the endothelial phenotype and identity. However, how JMJD2B
is regulated on a molecular level is not well known. JMJD2B
transcription was shown to be induced in a HIF1-dependent
manner in HeLa cells (61). Conserved hypoxia response elements
binding HIF1 were identified in the promoter of Jmjd2b in humans
and mice and were functionally validated by luciferase reporter and
ChIP assays (61). Thus, JMJD2B may be regulated by several
pathways to synergize with TGF-β2 signaling to induce EndMT
in vitro and in vivo.
In summary, we identified JMJD2B as an important epigenetic

regulator of EndMT in vitro and in vivo, which is elevated by
disturbed flow and hypoxia in the endothelium. Although our
study uses histological immunostainings and single-cell RNA
sequencing to document the effects of endothelial-specific Jmjd2b
deletion on EndMT in vivo, lineage tracing of endothelial cells
certainly would have further substantiated these findings. More-
over, although endothelial-specific deletion of Jmjd2b reduced
EndMT induction after myocardial infarction, we did only observe
modest effects on heart function. This may relate to the complex
role of EndMT after infarction. While several studies suggested
that EndMT contributes to cardiac fibrosis (11, 50, 62, 63), more
recent lineage tracing studies suggest that repopulating fibroblasts
mainly derive from preexisting fibroblasts and not from other
sources (64). However, a transient induction of EndMT may still
impair endothelial cell functions contributing to a worsening of
heart function after injury. Changes in endothelial phenotypes
further play important roles in various pathologies, which
might be controlled by epigenetic mechanisms such as histone
demethylation.

A

E

B

D

0

40

80

120

160

TG
F-

β2
 m

R
N

A
(fo

ld
 s

iS
cr

C
trl

)

**
TGF-β2 

TGF-β2 

0

20

40

60

TG
F-

β2
m

R
N

A
(fo

ld
 s

iS
cr

C
trl

)

**

0

2

4

6

8

10

12

SU
LF

1 
m

R
N

A 
(fo

ld
 s

iS
cr

C
trl

)

* *
SULF1

0

20

40

60

80

SM
22

 m
R

N
A 

(fo
ld

 s
iS

cr
C

trl
) * *

SM22 F

siSULF1siScrsiSULF1siScr

0

3

6

9

12

15

SU
LF

1 
ex

pr
es

si
on

 
(fo

ld
 s

iS
cr

C
trl

) 

siScr siJMJD2BsiScr

G

* *
IgG

H3K9me3

0

10

20

30

SU
LF

1 
m

R
N

A 
(fo

ld
 s

iS
cr

C
trl

)

**

siJMJD2BsiScrsiJMJD2BsiScr

* *

siScr siJMJD2B

SULF1 promoter

Ctrl EndMTCtrl EndMT

C

Ctrl EndMT
siSULF1siScrsiSULF1siScr

Ctrl EndMT

H

siSULF1siScrsiSULF1siScr

Ctrl EndMT

siJMJD2BsiScrsiJMJD2BsiScr
Ctrl EndMT

0

2

4

6

8

Re
l. 

En
ric

hm
en

t (
fo

ld
 Ig

G
)

R
el

. E
nr

ic
hm

en
t (

fo
ld

 Ig
G

)

SULF1 SULF1

Fig. 5. Analysis of JMJD2B target genes in EndMT. (A) SULF1 mRNA expression after silencing of JMJD2B in TGF-β2-stimulated ECs using microarray RNA
sequencing (n = 3). (B) mRNA levels of SULF1 after siRNA-mediated knockdown of JMJD2B using RT-qPCR, normalized to RPLP0 (n = 4). (C) ChIP-Seq RT-qPCR
showing H3K9me3 levels at promoter of SULF1, normalized to IgG (n = 5). (D–F) mRNA levels after siRNA-mediated knockdown of SULF1 or siScr siRNA in
HUVECs followed by EndMT. Total RNA was isolated and mRNA levels were determined by RT-qPCR, normalized to GAPDH (2-ΔCt). (D) SULF1, (E) SM22, (F)
TGF-β2 expression levels are depicted as fold siScr Ctrl (n = 3). (G) TGF-β2 mRNA level after siRNA-mediated knockdown of JMJD2B in HUVECs. mRNA levels
were determined by RT-qPCR, normalized to RPLP0 (2-ΔCt), depicted as fold to siScr Ctrl (n = 9). (H) Cartoon summarizing our findings. Data are depicted as
mean ± SEM. Statistical significance was determined using Student’s t test; *P < 0.05.

Glaser et al. PNAS | February 25, 2020 | vol. 117 | no. 8 | 4185

CE
LL

BI
O
LO

G
Y



Materials and Methods
A brief description of the materials and methods can be found below,
whereas an expanded methods section can be found in SI Appendix.

Endothelial-to-Mesenchymal Transition Assay. For the EndMT assay, two dis-
tinct media were used, referred to as either full medium (“Ctrl”) or differ-
entiation media (“DM”). HUVECs were incubated in Ctrl media or DM with
either TGF-β2 (referred to as “EndMT”), or TGF-β1 and/or IL-1β. After 48 h of
incubation, the treatment was repeated.

JMJD2B Inhibitor Treatment. Final concentrations of 1, 5, or 10 μM inhibitor
(CCT365599) or DMSO as a control was added to the medium. CCT365599
was provided by Julian Blagg, Cancer Research UK Cancer Therapeutics Unit
at the Institute of Cancer Research, London, UK.

CRISPR-Cas9–Based Knockdown of JMJD2B. Lentivirus stocks were produced
in HEK 293T cells using pCMVΔR8.91 as packaging plasmid and pMD2.G
(Addgene No. 12259). Empty backbone vectors were used as control.

Small Interfering RNA Knockdown. For siRNA-mediated gene silencing, HUVECs
were transfected with GeneTrans II.

RNA Sequencing. Total HUVEC RNAwas used as input for whole transcriptome
RNA-Seq library preparation (TruSeq Stranded Total RNA, Illumina) following
low throughput protocol. Sequencing was performed on NextsEq. 500
(Illumina) using V2 chemistry and a 75-bp single-end setup. RNA expression
levels in partial carotid ligation operated age-matched male C57BL/6 mice
was performed by the laboratory of H.J. The cDNA libraries were sequenced
on an Illumina 2000 HiSeq using v3 chemistry following low throughput
protocol; 50 million 100-bp paired-end reads were generated per library. All
differentially expressed genes were identified using Cuffdiff2. RNA expres-
sion levels under static and laminar flow conditions determined by RNA
sequencing were analyzed using published dataset GSE54384.

Microarray Analysis. Gene-expression analysis was performed using the
GeneChip Human Exon 1.0 ST array. Data were analyzed by using the Exon
Array Analyzer (EAA) Web interface (http://eaa.mpi-bn.mpg.de/).

ChIP-Seq. The 4 × 106 cells per IP were cross-linked with a final concentration
of 1% formaldehyde for 10 min. Shearing was done using a Covaris S220.
DNA was amplified and sequenced on Illumina NextSeq. Trimmed sequences
were mapped to GRCH38 with STAR 2.4.2a 4. Peaks were called using homer
findPeaks version 4.0311.

Animals. All animal experiments were performed in accordance with the
animal welfare guidelines and German national laws and were authorized by

the competent authority (Regierungspräsidium Darmstadt, Hessen, Germany).
C57BL/6J Jmjd2bfl/fl mice were obtained from Hitoshi Okada (Kindai University,
Osaka-Sayama, Japan) (65) and crossed with C57BL/6J Cdh5-CreERT2 mice.
Mice were treated with tamoxifen for 2 wk. After an additional 2 wk,
myocardial infarction was performed.

MI. MI was performed in 12- to 14-wk-old male and female Cdh5-iCre;
Jmjd2bfl/fl mice. MI was induced by permanent ligation of the left anterior
descending coronary artery (LAD). After 3 d post MI, the heart and the liver
was harvested for single-cell RNA sequencing (heart) or for knockout check
(liver), 14 d post-AMI for immunohistochemistry. Echocardiography was
performed on days 0, 7, and 14.

scRNA-Seq. Cellular suspensions were loaded on a 10X Chromium Controller
(10X Genomics). Libraries were prepared using the Chromium Single Cell 3′
v2 Reagent Kit and Chromium Single Cell 3′ v3 Reagent Kit, respectively.
Indexed libraries were equimolarly pooled and sequenced using paired-end
26 × 98 bp as sequencing mode by GenomeScan. Single-cell RNA-Seq outputs
were processed using the Cell Ranger suite versions 2.1.1 (in vitro control vs.
EndMT samples, mapped to GRCh38) or 3.0.1 (in vivo samples; mapped to
mm10, in vitro JMJD2B knockdown samples, mapped to GRCh38). We used
Seurat 2.3.4 or 3.0.2 for secondary analysis, following the distributer’s
tutorial (satijalab.org).

Statistics. Mann–Whitney U test or Student’s t test was used to test for
statistical differences between two groups as appropriate. For more groups
ANOVA with Dunnett’s multiple comparison test was used. A value of
P <0.05 was considered statistically significant. To test potential associations,
Pearsons’s correlation was used. Significance for differential gene expression
in scRNA-Seq analysis was calculated with bimodal maximum likelihood ratio
test and χ2 statistic. Microsoft Excel and GraphPad Prism 6 were used to
calculate statistical differences.

Data Availability. The RNA sequencing, ChIP sequencing, and single-cell RNA
sequencing data have been deposited in the Gene Expression Omnibus (GEO)
database (accession no. GSE143148). The microarray has been deposited in
the GEO database (accession no. GSE143150).
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