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Abstract
It is of interest to evaluate crossbred pigs for hot carcass weight (HCW) and birth weight (BW); however, obtaining a HCW 
record is dependent on livability (LIV) and retained tag (RT). The purpose of this study is to analyze how HCW evaluations 
are affected when herd removal and missing identification are included in the model and examine if accounting for the 
reasons for missing traits improves the accuracy of predicting breeding values. Pedigree information was available for 
1,965,077 purebred and crossbred animals. Records for 503,716 commercial three-way crossbred terminal animals from 
2014 to 2019 were provided by Smithfield Premium Genetics. Two pedigree-based models were compared; model 1 (M1) was 
a threshold-linear model with all four traits (BW, HCW, RT, and LIV), and model 2 (M2) was a linear model including only 
BW and HCW. The fixed effects used in the model were contemporary group, sex, age at harvest (for HCW only), and dam 
parity. The random effects included direct additive genetic and random litter effects. Accuracy, dispersion, bias, and Pearson 
correlations were estimated using the linear regression method. The heritabilities were 0.11, 0.07, 0.02, and 0.04 for BW, 
HCW, RT, and LIV, respectively, with standard errors less than 0.01. No difference was observed in heritabilities or accuracies 
for BW and HCW between M1 and M2. Accuracies were 0.33, 0.37, 0.19, and 0.23 for BW, HCW, RT, and LIV, respectively. The 
genetic correlation between BW and RT was 0.34 ± 0.03, and between BW and LIV was 0.56 ± 0.03. Similarly, the genetic 
correlation between HCW and RT was 0.26 ± 0.04, and between HCW and LIV was 0.09 ± 0.05, respectively. The positive and 
moderate genetic correlations between BW and other traits imply a heavier BW resulted in a higher probability of surviving 
to harvest. Genetic correlations between HCW and other traits were lower due to the large quantity of missing records. 
Despite the heritable and correlated aspects of RT and LIV, results imply no major differences between M1 and M2; hence, it 
is unnecessary to include these traits in classical models for BW and HCW.
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Introduction
Profitability for commercial pig breeding is contingent on 
optimizing all traits contributing to the economic value of 
the terminal line. Mortality and culling of animals are the 

most detrimental factors to financial gain. Many of the high 
economically valued traits, such as livability (LIV), have low 
heritabilities, resulting in a lengthy genetic progress (Dufrasne 
et al., 2014). The occurrence of an animal not living to harvest 
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can be accounted for in the evaluations by including a censored 
trait if death records are available (Arango et  al., 2005b). If an 
animal dies or is removed from the herd, then its survivability 
record becomes uncensored. Active animals in the herd have 
censored survivability records (Schaeffer, 2019). Harvested 
animals that obtain a hot carcass weight (HCW) measurement 
then have an uncensored record for survivability and HCW. To 
incorporate censored data in the analysis, the reason for death 
and the stage of life when the animal died must be recorded.

The growth and carcass traits are economically important, 
and breeders are continuously working to improve these rates 
of genetic gain. Because the rate of genetic process is slow at 
the commercial level in swine breeding, improving the model 
and individual identification methods will ultimately improve 
performance (Arango et  al., 2005a). Selection for heavier birth 
weight (BW) is essential for commercial pig models as it leads 
to greater chances of LIV and faster growth rates (Grandinson 
et  al., 2002; Arango et  al., 2006). Previous studies have shown 
that it is possible to considerably improve several economically 
important traits by incorporating an associative social 
interaction effect in the breeding program (Muir and Schinckel, 
2002; Bijma et al., 2007; Bergsma et al., 2008).

Individual identification is essential for traceability, 
phenotype tracking, and advancing breeding programs. The 
identification device must be retained and readable throughout 
the entire process to record measurements from birth to 
slaughter. A feasible identification method would accommodate 
the systematic processes at commercial harvest and provide a 
logical cost–benefit return. Efforts for social interaction models 
require a reliable animal identification method and group 
information, so group mates and their indirect genetic effects 
can be identified. However, group information is not usually 
attained in most commercial pig operations, and the percentage 
of animals that lose the identification tag can be as high as 30%. 
Accounting for the reason animals were unable to obtain a HCW 
measurement may help overcome this issue and provide better 
estimates of HCW, given that data were not available for some 
animals because of mortality and missing tags.

The objective of this study was to compare genetic 
parameters, correlations, and breeding values for BW and HCW 
in a two-trait model or a four-trait model that also accounted for 
retained tag (RT) and LIV records.

Materials and Methods
Animal Care and Use Committee approval was not needed 
because information was obtained from pre-existing databases.

Data

Data were recorded from two farms for animals born between 
2014 and 2019 and were provided by Smithfield Premium 
Genetics (Rose Hill, NC). The pedigree included 1,965,077 
animals; however, phenotypes were only available for 

503,716 commercial three-breed cross terminal animals. The 
phenotyped animal’s dams were crossbred Landrace and Large 
White, and sires were purebred Duroc. The traits included BW, 
HCW, and two binary traits, RT and LIV. All 503,716 animals used 
in the dataset had a BW record. There were 237,041 animals 
with a HCW measurement. Each farm brought their animals 
to a different harvest site, in which the instrumentation used 
to measure HCW may differ between sites. However, this 
potential difference is accounted for by including farms in the 
contemporary group.

RT and LIV traits consisted of reasons for the animals’ 
inability to obtain a HCW record and were included in the model 
to analyze their effects on HCW evaluation. The RT categories 
were retained tag and non-retained tag and coded as 1 and 2, 
respectively. If an animal was missing its ear tag, the HCW trait 
was unobtainable, and death information was not recorded; 
thus, it is unknown if the animal was harvested. Once an animal 
loses its tag, phenotypes can no longer be recorded for the 
remainder of its life. There were no data available indicating at 
which life stage an animal lost its tag.

LIV evaluates if the animal lived to be a full-value pig and was 
harvested or if the animal failed to live until harvest. A missing 
ear tag is considered a missing record for LIV since it is unknown 
if the animal made it to harvest or was removed from the herd 
before harvest, and the animal could not obtain a HCW record. 
A total of 11,013 animals survived to harvest, retained their ear 
tag, but did not have a HCW measurement. This could be due 
to scale malfunction, errors in pig identification after initial 
processing, etc. Table 1 includes the number and proportion of 
animals that have each trait and level.

The dataset included 471,360 animals after editing. Summary 
statistics for all continuous traits and effects after editing are 
given in Table 2. Records were discarded for all animals born in 
2014 due to the lack of LIV phenotypes. Animals in contemporary 
groups containing less than 10 animals were also excluded from 
the dataset. Contemporary groups were composed of farm, 
week, and year of birth. Group or pen information was not 
recorded and cannot be included in the contemporary groups. 
All animals were identified by a unique identification number 
on a plastic ear tag administered at birth.

Model and Analyses

Pedigree-based analyses were performed using a four-trait 
threshold-linear model (BW-HCW-RT-LIV) and a two-trait linear 
model (BW-HCW) defined as M1 and M2, respectively. M1 was 
considered to be the full model and compared with the reduced 
M2. The equation for both models can be expressed as:

Abbreviations

BW	 birth weight
EBV	 estimated breeding values
HCW	 hot carcass weight
LIV	 livability
LR	 linear regression, or Legarra-Reverter 

method
RT	 retained tag

Table 1.  Number of animals with records for each trait and level

Trait Code Level N %

BW1   471,360 100.0
HCW2   221,311 47.0
RT3 1 Missing Tag 134,523 28.5

2 Retained Tag 336,837 71.5
LIV4 0 Missing Tag 134,523 28.5

1 Died/Culled 104,513 22.2
2 Harvested 232,324 49.3

1Birth weight
2Hot carcass weight
3Retained tag
4Livability
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y = Xb+ Zu+Wc+ e,� (1)

where y is the vector of phenotypes; b is the fixed vector of 
systematic effects; u is the vector of random additive genetic 
effects; c is the vector of random litter effects; e is the vector 
for random residual effects; X, Z, and W are incidence matrices 
relating elements of y to b, u, and c, respectively. The systematic 
effects included in vector b were contemporary group (farm, 
year, and week of birth), sex, age at harvest (only for HCW), and 
dam parity.

Estimates of (co)variance components and breeding values 
for both models were obtained using THRGIBBS1F90 and were 
run as a single Gibbs chain of 50,000 rounds, with 1 in every 
10 samples stored (Tsuruta and Misztal, 2006). The prior 
distributions were assumed to be uniform for fixed effects. The 
vectors u, c, and e were assumed to be distributed as multivariate 
normal with mean zero and the following covariance structure:

Var



u
c
e


 =




A⊗ G0 0 0
I⊗ L0 0

symm I⊗ R0


 ,� (2)

in which A is the numerator relationship matrix, I is the identity 
matrix, G0 is the additive genetic (co)variance matrix, L0 is the 
litter (co)variance matrix, and R0 is the residual (co)variance 
matrix. After discarding the first 15,000 sampled as burn-in, 
3,500 samples were kept to calculate the means and standard 
deviations of the posterior distributions of variance components 
used as estimations for the remainder of the analyses. 
Convergence and burn-in were assessed by visual inspection of 
the sample and distribution graphs. Additionally, the residual 
variances were set to 1.00 for the binary traits.

Validation metrics were estimated with the linear regression 
(LR) method to compare both models (Legarra and Reverter, 
2018). The validation dataset consisted of 73,617 animals born 
in 2019. EBV were calculated for the animals in the validation 
set with all data available (ûwhole) and with phenotypes removed 

for the validation animals (ûpartial). The validation measurements 
obtained were accuracy, dispersion, bias, and Pearson 
correlations. These measures were obtained to compare the 
estimability of HCW for both models. Accuracy was calculated 

for the focal animals using: ρ̂cov(whole,partial) =
√

cov(ûwhole,ûpartial)
(1−F̄)σ̂2

u
 

(Legarra and Reverter, 2018), where F̄ is the average inbreeding 
coefficient for animals born in 2019, and σ̂2

u is the estimated 
additive genetic variance of the whole dataset. INBUPGF90 was 
used to calculate inbreeding coefficients for each animal by a 
recursive method based on pedigree (Aguilar and Misztal, 2008). 
Dispersion (b1)was measured as the regression coefficient of 

the regression of ûwhole on ûpartial: b1 =
cov(ûwhole, ûpartial)

var(ûpartial)
. The bias is 

defined as the difference in the average EBV from partial and 
whole datasets. Lastly, Pearson correlations were calculated 
between ûwhole and ûpartial.

Results and Discussion

Variance components

Variances for the direct additive genetic, litter, and residual 
effects for both models are given in Table 3. The estimated BW 
variances were the same for both models (M1 and M2) and were 
0.09, 0.24, and 0.48 for the direct additive genetic, litter, and 
residual effects, respectively. The estimated HCW variances 
for M1 (M2) were 26.4  ± 1.32 (25.9  ± 1.24), 45.1  ± 0.85 (43.6  ± 
0.83), and 285.6 ± 2.25 (273.8 ± 1.13) for additive genetic, litter, 
and residual effects, respectively. There was no difference in 
variance estimates for BW and HCW between M1 and M2 in 
agreement with the lowly heritable aspects of RT and LIV. The 
variance estimates for RT (LIV) were 0.02 (0.05) and 0.10 (0.18) for 
the additive genetic and litter effects, respectively.

Table 4 shows the heritability and genetic correlations for 
both models and between all traits. Genetic correlations between 
traits were either weak or moderate. The genetic correlation 
between BW and RT was 0.34 ± 0.03, and between BW and LIV 

Table 2.  Summary statistics for continuous traits and effects

Trait Min Max Mean Median SD

BW1, kg 0.24 2.70 1.42 1.40 0.41
HCW2, kg 51.3 153.8 100.2 99.8 9.9
Age at Harvest, d 150.0 210.0 182.4 182.0 12.5

1Birth weight
2Hot carcass weight

Table 3.  Variances for direct additive genetic, litter, and residual effects for both models and all traits1

σ2
u σ2

c σ2
e

 M1 M2 M1 M2 M1 M2

BW2 0.09 0.09 0.24 0.24 0.48 0.48
HCW3 26.4 ± 1.32 25.9 ± 1.24 45.1 ± 0.85 43.6 ± 0.83 285.6 ± 2.25 273.8 ± 1.13
RT4 0.02  0.10  1.00  
LIV5 0.05  0.18  1.00  

1Standard deviations are shown for HCW. All standard deviations for BW, RT, and LIV were less than 0.01.
2Birth weight
3Hot carcass weight
4Retained tag
5Livability
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was 0.56  ± 0.03. These positive, moderate genetic correlations 
are logical with the code used for RT and LIV (Table 1). Previous 
studies have shown that piglets with a heavier BW have greater 
survival chances (Arango et  al., 2006). As BW increases, the 
probability of an animal to live to harvest increases. Similarly, 
piglets with a lighter BW have a higher probability of early 
death, culling, or not retaining their ear tag. Both HCW and BW 
had positive genetic correlations between the two binary traits; 
however, the lower correlations between HCW can be explained 
by the inability of 53% of this population to obtain HCW records. 
The heritability of HCW was less than BW, which explains the 
more significant impact of HCW between RT and LIV.

It should be noted that no information was given on the 
number of animals in each pen or if animals were removed from 
the pen at different times. If the larger animals were removed 
from the pen first, and the smaller animals had more time and 
pen space available to grow, this could impact the predictions 
for HCW. The genetic correlations between BW and HCW also 
showed no significant difference between models and were 
0.31 ± 0.03 and 0.32 ± 0.03 for M1 and M2. Comparably, Dufrasne 
et al. (2014) reported a genetic correlation of 0.55 between BW 
and HCW for a commercial pig population.

The heritabilities for BW (0.11) and HCW (0.07) showed no 
difference between models. Heritability estimates for RT and 
LIV were 0.02 and 0.04. Heritability estimate ranges in previous 
literature seem to be lower for BW (0.03–0.06) and higher for 
HCW (0.12–0.28) than the estimates found in this study (Knol 
et al., 2002; Arango et al., 2006; Zumbach et al., 2007; Dufrasne 
et al., 2013; Miar et al., 2014). Analogously to LIV, (Dufrasne et al., 
2014) analyzed a binary culling trait including death for all stages 
of life and found the heritability estimate to be 0.06. Currently, 
there is no published research in estimating the heritability of 
RT for any species. As the genetic correlations are moderate 
between RT and LIV and the weight traits, as well as the higher 
h2 for weight traits, the indirect selection for weight may move 
the population means for RT and LIV to more desirable values. 
Accounting for RT and LIV gives no additional benefits for 
variance component estimations of HCW and BW evaluations.

Validation

The validation measures give a further justification of the 
insignificant differences between the models (Table 5). Bermann 
et  al. (2021) showed that the LR method is suitable for binary 
traits and yields consistent accuracy measures (Legarra and 
Reverter, 2018). The accuracy, dispersion, and correlations for 
HCW were higher than BW (Table 5). The EBV for HCW and BW 

were more biased in M2 than M1. Bias was less than 0.01 for BW 
and -0.01 for HCW in M1. In M2, bias was 0.01 for BW and 0.06 for 
HCW. Biases were less than 0.01 for RT and LIV. The dispersion 
for HCW was less than for LIV and BW. The greatest dispersion 
was for RT (b1 = 0.65). The binary traits had lower accuracy and 
correlations than both linear traits, indicating the difficulty of 
modeling binary traits of low heritability.

We hypothesized that by including the reasons for missing 
records, RT, and LIV information, HCW evaluations would 
have better predictions. However, no performance distinctions 
were observed when this information was accounted for in 
the model. Bias was marginally less in M1 compared to M2 for 
both BW and HCW. The dispersion was 0.02 greater for HCW 
and 0.01 less for BW when missing record information was 
included in the analyses. The Pearson correlation of ûwholeand 
ûpartial is a direct estimator of the magnitude of change between 
evaluations when phenotypes are added; therefore, a higher 
Pearson correlation indicates a more stable model (Legarra 
and Reverter, 2018). There was no difference in correlations 
between M1 and M2 for both BW and HCW, which further 
indicates the lack of dissimilarity between the models. It is 
logical that including the missing trait information does not 
benefit models for BW evaluations since RT and LIV are traits 
measured after BW is recorded and can cause extra noise in 
the model. Despite subtle differences between the models, the 
inconsistencies are negligible, and the prediction performance 
is the same for both models. As in Arango et  al. (2005b), 
censoring models could not be implemented with this dataset 
since there were no records of in which life stage each animal 
lost its ear tag. An alternative would be to link animals with 
missing tags back to the data by using parentage tests based 
on SNP (Maiorano et  al., 2019); however, this would require 
much cheaper genotyping platforms because the crossbreds 
are terminal animals.

Conclusions
HCW and BW accuracies were unchanged when the causes of 
missing records were included in the model. Positive genetic 
correlations were observed between BW and HCW and the 
binary traits indicating relationships exist between these traits. 
Low genetic correlations between HCW can be attributed to 
this trait’s high percentage of missing records. Results imply 
a higher survival probability with heavier BW, shown in the 

Table 5.  Validation statistics for both models

Trait Model accLR1 b12 Bias3 cor(ûwhole, ûpartial)4

BW5 M1 0.33 0.74 0.00 0.59
M2 0.33 0.75 0.01 0.59

HCW6 M1 0.37 0.93 -0.01 0.74
M2 0.37 0.91 0.06 0.74

RT7 M1 0.19 0.65 0.00 0.56
LIV8 M1 0.23 0.78 0.00 0.56

1Accuracy as defined in the LR method
2Dispersion: the coefficient of the regression of ûpartial on ûwhole
3The difference in the average of ûwhole and ûpartial in terms of genetic 
standard deviation
4Pearson correlation between ûwhole and ûpartial
5Birth weight
6Hot carcass weight
7Retained tag
8Livability

Table 4.  Estimates of heritability (diagonal) and genetic correlations 
(off-diagonal) for both models

BW1 HCW2 RT3 LIV4

Model 1
BW1 0.11 ± 0.00 0.31 ± 0.03 0.34 ± 0.03 0.56 ± 0.03
HCW2  0.07 ± 0.00 0.26 ± 0.04 0.09 ± 0.05
RT3   0.02 ± 0.00 0.00 ± 0.06
LIV4    0.04 ± 0.00
Model 2
BW1 0.11 ± 0.00 0.32 ± 0.03   
HCW2  0.07 ± 0.00   

1Birth weight
2Hot carcass weight
3Retained tag
4Livability
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moderate and positive genetic correlations between BW and RT 
and LIV. The low heritabilities of RT and LIV potentially explain 
the small impact of including animal removal reasons on HCW 
evaluations. An alternative option would be to implement a 
social interaction model; however, group information and a 
more reliable identification method are needed. A low-density, 
inexpensive parentage SNP panel could possibly help with the 
latter. This study shows no major differences in results when 
accounting for causes of missing records, and RT and LIV traits 
are not necessary to include in HCW evaluations.
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