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Abstract
The outbreak of coronavirus COVID-19 is spreading at an unprecedented rate to the human populations and taking several 
thousands of life all over the world. Scientists are trying to map the pattern of the transmission of coronavirus (SARS-
CoV-2). Many countries are in the phase of lockdown in the globe. In this paper we predict about the effect of coronavirus 
COVID-19 and give a sneak peak when it will reduce the transmission rate in the world via mathematical modelling. In this 
research work our study is based on extensions of the well-known susceptible-exposed-infected-recovered (SEIR) family 
of compartmental models and later we observe the new model changes into (SEIR) without changing its physical mean-
ings. The stability analysis of the coronavirus depends on changing of its basic reproductive ratio. The progress rate of the 
virus in the critically infected cases and the recovery rate have major roles to control this epidemic. The impact of social 
distancing, lockdown of the country, self-isolation, home quarantine and the wariness of global public health system have 
significant influence on the parameters of the model system that can alter the effect of recovery rates, mortality rates and 
active contaminated cases with the progression of time in the real world. The prognostic ability of mathematical model is 
circumscribed as of the accuracy of the available data and its application to the problem.

Keywords  Epidemiology · SARS-CoV-2 · Mathematical modelling · Population dynamics · Bifurcation · Extinction · 
Persistence

Mathematics Subject Classification  92B05 · 92D25 · 92D30 · 92C60

Introduction

Susceptible (S) individuals are those who have never been 
infected with and thus have no immunity against COVID-
19. Susceptible individuals become exposed once they are 
infected with the disease. The next stage is exposed (E) 
individuals in which those who have been infected with 
COVID-19 but are not yet infectious to others. An individ-
ual remains exposed for the length of the incubation period, 
after which they become infectious and experience non-crit-
ical clinical symptoms (I1) . Infected (I1) individuals with a 
non-critical infection experience symptoms like fever and 
cough and may even have mild pneumonia but do not require 

hospitalization. These individuals may either recover or pro-
gress to the critical stage of the disease. One step further 
when the infected (I2) individuals with a critical infection 
experience respiratory failure, septic shock and/or multiple 
organ dysfunction or failure and require treatment in an ICU 
(Xiaobo et al. 2020; Fei et al. 2020; Rocklov et al. 2020). 
These individuals may either recover or die from the disease. 
Recovered (R) individuals are those who have recovered and 
are assumed to be immune to future infection with COVID-
19 and lastly dead (D) individuals are those who have died 
in COVID-19. The flow chart diagram is given in Fig. 1. 
Previously, many studies have been done on the natural 
clinical progression of COVID-19 infection (Zunyou and 
McGoogan 2020). Infected individuals do not immediately 
develop severe symptoms, but instead pass through milder 
phases of infection first. In some studies, what we call mild 
infections are grouped into two different categories, mild 
and moderate, where individuals with moderate infection 
show radiographic signs of mild pneumonia. These mild and 

 *	 Saikat Batabyal 
	 stbatabyal@gmail.com

1	 Department of Mathematics and SRM Research Institute, 
SRM Institute of Science and Technology, Kattankulathur, 
Tamil Nadu 603 203, India

http://orcid.org/0000-0001-8310-7492
http://crossmark.crossref.org/dialog/?doi=10.1007/s12064-021-00339-5&domain=pdf


124	 Theory in Biosciences (2021) 140:123–138

1 3

moderate cases occur at roughly equal proportions (Penghui 
et al. 2020). There is some debate about the role of pre-
symptomatic transmission (occurring from exposed cases) 
and asymptomatic infected cases for coronavirus, which 
are not included in the present model (Biswas et al. 2014; 
Yi et al. 2009). We use a compartmental epidemiological 
model, followed by the traditional SEIR model, to illus-
trate the spread and clinical progression of COVID-19 (Safi 
and Garba 2012; Upadhyay et al. 2019). It is important to 
track the different clinical outcomes of infection, since they 
require different level of healthcare resources to care for and 
may be tested and isolated at different rates (Wu et al. 2020; 
Liu et al. 2020; Li et al. 2020; Kucharski et al. 2020). Sus-
ceptible (S) individuals who become infected start out in an 
exposed class (E), where they are asymptomatic and do not 
transmit infection. The rate of progressing from the exposed 
stage to the infected stage (I), where the individual is symp-
tomatic and infectious, occurs at rate a. Infected individuals 
begin with non-critical infection (I1) , with a recovery rate �1 , 
and progress to critical infection (I2) , at rate of � . Individuals 
with critical infection recover at rate �2 and death with rate 
of � . Recovered individuals are tracked by class (R) and are 
assumed to be protected from re-infection for life. Individu-
als may transmit the infection at any stage with the transmis-
sion rates �1 and �2 , respectively (David et al. 2020; Qifang 
et al. 2020; Zhanwei et al. 2020; Tapiwa et al. 2020). This 
model is formulated as a system of differential equations and 
the output therefore represents the expected values of each 
quantity. It does not take into account stochastic events, and 
so the epidemic cannot go extinct even when it gets to very 
low values (except when an intervention is stopped, at which 

case the number of individuals in each state is rounded to 
the nearest integer). The model does not report the expected 
variance in the variables, which can sometimes be large. 
Individuals must pass through a non-critical stage before 
reaching the critical stage. Only individuals in a critical 
stage die and all the individuals have equal transmission 
rates and equal susceptibility to infection. We introduce the 
COVID-19 model system as follows:

The in i t ia l  condi t ions  of  (1)  are  g iven as 
S(0) ≥ 0,E(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0,R(0) ≥ 0,D(0) ≥ 0 . 
The dynamical behaviour of the model system is calculated 
by a set of rate parameters which include the transmission 
rates �1 and �2 , the progression rates a and � , the recovery 
rates �1 and �2 and the death rate � . In general, the parameter 
values are not measured directly in studies, other measurable 
quantities could be supported to back out these parameters. 
The time spent in the exposed class is called the incuba-
tion period and is generally assumed to be equal to the time 

(1)

dS

dt
= −(�1I1 + �2I2)S,

dE

dt
= (�1I1 + �2I2)S − aE,

dI1

dt
= aE − (�1 + �)I1,

dI2

dt
= �I1 − �2I2,

dR

dt
= �1I1 + �2I2,

dD

dt
= �I2.

Susceptible (S) Exposed (E)
Non-critical
Infected (I1)

Critical Infected (I2)

Recovered (R)

Death (D)

β1I1

β2I2

a α

µ

γ1 γ2

Fig. 1   Extended SEIR model formulation
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between exposure to an infected source and the development 
of symptoms. In the model the average incubation period is 
1

a
 . The infectious period is the time during which an indi-

vidual can transmit to others (Qun et al. 2020; Steven et al. 
2020; Lauren et al. 2020). In this paper we study about there 
are potentially two different infectious periods, occurring 
during each clinical stage of infection I1 and I2 . We observe 
the duration of each of these stages. The study shows that an 
individual is most infectious during the stage of non-critical 
infection period. At this period population would still be in 
the community and feeling well enough to interact with oth-
ers. However, there is also a chance to transmit the disease 
into the further stage such as critical stage (Wei-jie et al. 
2020; Chaolin et al. 2020; Stephen et al. 2020; Natalie et al. 
2020; Jingyuan et al. 2020; Yang et al. 2020). We exemplify 
this phenomena such as the transmission from hospitalized 
patients to their healthcare providers. At a population level, 
we expect most transmission to occur from these individu-
als with non-critical stage of infection, since most of the 
patients do not progress past this stage. For COVID-19 we 
can estimate the duration of the first stage from the duration 
of non-critical symptoms, the time from symptom onset to 
hospitalization (e.g. progress to critical stage), or the dura-
tion of viral shedding via sputum or throat swabs, the serial 
interval between symptom onset in an index case and a sec-
ondary case they infect. The probability of progressing to the 
critical stage is equal to the proportion of all infections that 
end up to critical. Individuals with critical infection (I2) need 
hospitalization. The duration of critical infections could be 
reported as the time from hospital admission to recovery 
for individuals or the time from hospital admission to ICU 
admission (since critical cases require ICU-level care). Since 
there are not direct estimates of this duration, we instead 
use estimates of the total time from symptom onset to ICU-
admission (e.g. the length of critical infection). At the criti-
cal infection stage (I2) ICU care, generally with mechanical 
ventilation, is required. The duration of this stage of infec-
tion is the time from ICU admission to recovery or death. 
Study report shows that the total time from hospital admis-
sion to death, which can approximate the duration of the 
critical stage. The case fatality ratio (CFR) describes the 
fraction of all symptomatic infected individuals who eventu-
ally die. Since individuals must progress to critical infection 
to die, the conditional probability of someone in the critical 
stage dying vs recovering is given by the CFR divided by 
the fraction of all critical infections.

In this study, we investigate the scenario on population 
dynamics for coronavirus across the globe. The manuscript 
is organized as follows: mathematical simulations of epi-
demiological model and its properties are discussed in 
Sect. 2. Boundedness and stability analysis are elaborately 
discussed in Sects. 3 and 4. Impact of population density 
along with time is the mathematical key findings. Conditions 

of bifurcation analysis are studied in Sect. 5. Persistence of 
the model system and extinction properties are discussed 
in Sects. 6 and 7, respectively. Numerical simulation is 
described in Sect. 8. Finally in Sect. 9 we elaborately pre-
sent our conclusions.

Mathematical simulations

We are interested in knowing how the number of active cases 
is going to change in the near term. We assume that active 
cases (At) follow an exponential growth model such that 
E(At) = A0e

rt . In reality, the growth dynamics are much 
more complex than this, but for short time periods the expo-
nential model may provide a reasonable approximation. To 
fit this model, we take the natural logarithm of both sides, 
yielding lnAt = rt + lnA0 showing us that we can fit a simple 
linear regression of lnAt against t. The slope of this fit is an 
estimate of the intrinsic growth rate, r. The doubling time 
(td) is an intuitive measure of how fast a population is grow-
ing. It reports the number of days for the population to dou-
ble in size and is calculated by setting At∕A0 = 2 , yielding 
td =

ln2

r
 . Public health interventions are firmly aimed at the 

reduction of virus transmission and also in the lightening the 
growth of the number of active cases. The earliest indica-
tions of intervention success will manifest in lowered growth 
rates.

Basic reproductive ratio

Basic reproductive ratio is termed as R0 . The basic idea is 
that R0 is the sum of the average number of secondary infec-
tions generated from an individual in stage I1 and the prob-
ability that an infected individual progresses to I2 multiplied 
by the average number of secondary infections generated 
from an individual in stage I2 . The value of R0 is as follows:

where N = S + E + I1 + I2 + R + D =Total population size 
(constant).

Epidemic growth rate

Early in the epidemic, before susceptible are depleted, the 
epidemic grows at an exponential rate r, which can also 
be described with doubling time T2 = ln(2)∕r . During this 
phase all infected classes grow at the same rate as each other 
and as the deaths and recovered individuals. The cumulative 
number of infections that have happened since the outbreak 
started also grows at the same rate. This rate can be calcu-
lated from the dominant eigenvalue of the linearized system 

R0 =
�1N

� + �1
+

�

(� + �1)

�2N

(� + �2)
,
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of equations in the limit that S = N . During this early expo-
nential growth phase, there will be a fixed ratio of individuals 
between any pair of compartments. This expected ratio could 
be used to estimate the amount of under reporting in data. 
For example, we might think that all deaths are reported, 
but that some mild infections might not be reported, since 
these patients might not seek healthcare or might not be 
prioritized for testing. These ratios have expected values 
under the model for a fixed set of parameters. They can be 
calculated by finding the eigenvector corresponding to the 
dominant eigenvalue (r) for the linearized system described 
above. Ratios that deviate from these values suggest either 
(i) under reporting of cases relative to deaths, or (ii) local 
differences in the clinical parameters of disease progression. 
The expected ratios are as follows:

Updated model formulation

Now we validate our introduced extended SEIR model sys-
tem (1) with the classic SEIR model (Trawicki 2017; Li 
and Muldowney 1995; He et al. 2020; Li and Muldowney 
1995; Carcione et al. 2020). We will investigate in the devel-
opment of lifetime immunity from this infectious disease 
and observe the dynamical changes over the progress of 
time for the both of the model systems (1) and the classic 
SEIR model system, respectively, via numerical simula-
tions, which could be a similar case of the 1918 Spanish flu. 
Therefore, its significance in the real-world problem is much 
more important and we will show that this comparison can 
give the impactful results in the controlling of the pandemic 
by synthesizing the parameter data. Here, we consider the 
non-critical (I1) and critical (I2) infected individuals as a total 
number of infected individuals, i.e. I1 + I2 = I and assume 
that vital dynamics (births and deaths) can sustain an epi-
demic or allow new introductions to spread because new 
births provide more susceptible individuals. In a realistic 
population like this, disease dynamics will reach a steady 
state, where Λ and � represent the birth and death rates, 
respectively, and are assumed to be equal to maintain a con-
stant population (Kermack and McKendrick 1927; Menon 
et al. 2020). � , � and a represent transmission rate, recovery 

I2

D
=

r

�
.

I1

D
=

(� + �2 + r)

�

r

�
.

Total symptomatic

D
=

(I1 + I2)

D
=

r

�

[

1 +
(� + �2 + r)

�

]

.

E

D
=

(� + �1 + r)

a

(� + �2 + r)

�

r

�
.

rate and progression rate, respectively, and the variables 
are carried the same meaning as above. Then, system (1) 
becomes:

The in i t ia l  condi t ions  of  (2)  are  g iven as 
S(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0 . We know from the 
fundamental theory of functional differential equations, 
there is a unique solution (S(t), E(t), I(t), R(t)) to system (2) 
with above initial conditions.

Well‑posed system

Feasible solution set of the system (2)

Here ℝ4
+
 denotes the non-negative cone of ℝ4 with its lower-

dimensional faces. If N >
Λ

𝜇
 , we have dN

dt
≤ 0 , suggests that 

the host population decreases asymptotically to the carrying 
capacity. However, if N ≤

Λ

�
 , each solution with initial con-

ditions belongs to ℝ4
+
 and the solution of (2) is positive for 

all values of t > 0 . So, the region Ω is positively invariant 
and the system (2) is well-posed.

Basic reproductive ratio

Basic reproductive ratio is termed as R0 . The basic idea is 
that R0 is the probability that an exposed individual pro-
gresses to I multiplied by the average number of infections 
generated from an individual in stage I. The value of R0 is 
as follows:

where N = S + E + I + R =Total population size (constant).
The endemic equilibrium point is termed as

(2)

dS

dt
=Λ − �S −

�SI

N
,

dE

dt
=
�SI

N
− (� + a)E,

dI

dt
=aE − (� + �)I,

dR

dt
=�I − �R.

Ω = (S,E, I,R) ∈ ℝ
4
+
∶ 0 ≤ S + E + I + R = N ≤

Λ

�
.

R0 =
a

(a + �)

�

(� + �)
,

E∗(S
∗
,E

∗
, I

∗
,R

∗) = E∗

(

N

R0

,
(� + �)(R0Λ − �)N

a�
,

(R0Λ − �)N

�
,
(R0Λ − �)�N

��

)

.
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Theorem 1  For R0 > 1 , there exists an unique endemic equi-
librium E∗.

Proof  When disease becomes endemic, mathematically we 
represent dE

dt
> 0 and dI

dt
> 0 . The following inequalities are 

obtained from the system (2):

.
Now we are using the fact S

N
< 1 , we obtain the following 

inequality:

which follows R0 > 1.
This proves the theorem. 	�  ◻

Boundedness of the system

Here we establish the condition of uniform boundedness of 
the model system (2). As per estimation, population level 
may generate with an exponential rate. The uniform bound-
edness suggests that the global solution of the model sys-
tem exists. For the sake of our calculation, here we assume 
N(t) as variable otherwise rest of cases we consider N as 
constant.

Theorem 2  All the solutions of the system (2) which initiated 
in ℝ4 are uniformly bounded.

Proof  Let (S(t), E(t), I(t), R(t)) be any solution of the system 
(2) with positive initial condition.

Let us consider that, N(t) = S(t) + E(t) + I(t) + R(t) , 
where we treat N(t) as variable and initial value is termed as 
N(0). Now we have,

Applying the theory of differential inequality we obtain 
N(t) = N(0)e−t + Λ.

Therefore, N(t) = Λ[ as t → ∞].
Hence, all the solutions of (2) that initiated in ℝ4 are uni-

formly bounded. 	� ◻

𝛽SI

N
− (𝜇 + a)E > 0,

aE − (𝛾 + 𝜇)I > 0

𝛽I

(𝜇 + a)
>

(𝜇 + 𝛾)I

a
,

dN

dt
+ �N =

dS

dt
+

dE

dt
+

dI

dt
+

dR

dt
+ �(S + E + I + R)

= Λ − �S −
�SI

N
+

�SI

N
− (� + a)E + aE

− (� + �)I + �I − �R + �(S + E + I + R)

= Λ

Stability analysis of the system

Our primary focus lies in examining the possible solution set 
of a dynamical system in a particular environment. Ecologi-
cal stability rules resilience, persistence, elasticity, ampli-
tude and constancy. The proper definition belongs to the 
context of the ecosystem. The concept of neighbourhood 
in stability and the domain of attraction in the ecosystem 
are introduced by dynamical system. A system is said to be 
locally stable if it is stable over small perturbations and glob-
ally stable if the system has a unique equilibrium point in 
the entire domain of attraction. We construct a mathematical 
model with respect to a given environment and then investi-
gate the stability of that model by linearizing it. The Lyapu-
nov stability method is also widely used for establishing the 
global stability in any mathematical model.

Properties of local stability

Model systems have three possible non-negative equilibria, 
namely E0(0, 0, 0, 0) , E1(N, 0, 0, 0) and E∗(S

∗,E∗, I∗,R∗) . 
Now we show the feasibility and stability properties of 
the first two equilibria of the system in Table 1 along with 
the corresponding feasibility and stability properties for 
endemic equilibrium point E∗ . The Jacobian Matrix of the 
system (2) is as follows,

Theorem 3  Endemic equilibrium E∗ of system (2) is locally 
asymptotically stable in Ω when R0 > 1.

Proof  We evaluate the Jacobian matrix (3) at the endemic 
equilibrium to obtain

Now our aim is to determine the stability condition of the 
endemic equilibrium point E∗(S

∗,E∗, I∗,R∗) for systems (2). 
We obtain a characteristic equation,

(3)J =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−� −
�I

N
0 −

�S

N
0

�I

N
− (� + a)

�S

N
0

0 a − (� + �) 0

0 0 � − �

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4)J =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−� −
�I∗

N
0 −

�S∗

N
0

�I∗

N
− (� + a)

�S∗

N
0

0 a − (� + �) 0

0 0 � − �

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Thus, the characteristic equation becomes

where

P(�) = det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−� −
�I∗

N
− � 0 −

�S∗

N
0

�I∗

N
− (� + a) − �

�S∗

N
0

0 a − (� + �) − � 0

0 0 � − � − �

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

P(�) = �4 +m
1
�3 +m

2
�2 +m

3
� +m

4
= 0,

m1 = 4� + � + a +
�I

N
,

m2 =

[{

(a + �)(� + �) −
a�S

N
+ (2� + a + �)

(

� +
�I

N

)}

+ �

{

(2� + a + �) +

(

� +
�I

N

)}]

,

m3 =

[{(

(a + �)(� + �) −
a�S

N

)(

� +
�I

N

)

−
a�2SI

N2

}

+ �

{

(a + �)(� + �) −
a�S

N
+ (2� + a + �)

(

� +
�I

N

)}]

,

m4 = �

[{

(a + �)(� + �) −
a�S

N

}(

� +
�I

N

)

−
a�2SI

N2

]

.

Thus, from Routh–Hurwitz criterion (Gantmacher 1960) we 
have the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 m2 m4 �4

m1 m3 0 �3

m2 −
m3

m1

m4 0 �2

m3 −
m1m4

m2−
m3

m1

0 0 �

m4 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Table 1   Stability analysis of boundary equilibria of system (2)

Equilibrium and coordinate Feasibility condition Jacobian matrix and eigenvalues Stability status

(i) E0(0, 0, 0, 0) always
⎛

⎜

⎜

⎜

⎝

−� 0 0 0

0 − (� + a) 0 0

0 a − (� + �) 0

0 0 � − �

⎞

⎟

⎟

⎟

⎠

Asymptotically

�1 = −�, �2 = −(� + a), �3 = −(� + �), �4 = −� Stable
(ii) E1(N, 0, 0, 0) R0 < 1

⎛

⎜

⎜

⎜

⎝

−� 0 − � 0

0 − (� + a) � 0

0 a − (� + �) 0

0 0 � − �

⎞

⎟

⎟

⎟

⎠

Asymptotically

�1 = −�, �2 = −(� + a), �3 = −(� + �), �4 = −� Stable
(iii) E∗(S

∗,E∗, I∗,R∗)
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−� −
�I∗

N
0 −

�S∗

N
0

�I∗

N
− (� + a)

�S∗

N
0

0 a − (� + �) 0

0 0 � − �

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

m1 > 0 Asymptotically
m2 −

m3

m1

> 0 Characteristic equation: �4 +m
1
�3 +m

2
�2 +m

3
� +m

4
= 0 Stable

m3 −
m1m4

m2−
m3

m1

> 0 Routh–Hurwitz

m4 > 0 Criterion
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According to the Routh–Hurwitz criterion when R0 > 1 , the 
endemic equilibrium E∗(S

∗,E∗, I∗,R∗) is locally asymptoti-
cally stable if

	�  ◻

Properties of global stability

A system is said to be globally stable if it can return to 
the equilibrium point from any possible starting point. 
Global stability conveys that a system possesses a unique 
equilibrium point in the entire domain of attraction that is 
the attracting basin of trajectories of a dynamical system 
is either the state space or a particular region in the state 
space, which is the identifying region of the state variables 
of the system. Global stability is a kind of asymptotic sta-
bility. Here, we describe the global stability of the endemic 
equilibrium point, E∗(S

∗,E∗, I∗,R∗) . The global stability of 
the endemic equilibrium is analysed using the following con-
structed Lyapunov function.

Theorem  4  When R0 > 1 , endemic equilibrium point 
E∗(S

∗,E∗, I∗,R∗) is globally asymptotically stable if A < B 
where

and

Proof  Let E∗(S
∗,E∗, I∗,R∗) be the co-existing equilibrium 

point. The proof can be reached by constructing a Lyapunov 
function. Now, we consider a positive definite function as

Therefore,

m1 > 0,

m2 −
m3

m1

> 0,

m3 −
m1m4

m2 −
m3

m1

> 0,

m4 > 0.

A =
S − S

∗

S
Λ +

E − E
∗

E

�SI

N
+

I − I
∗

I
aE +

R − R
∗

R
�I

+S∗N + E
∗� + E

∗
a +

�S∗I

N
+ �I∗ + �I∗ + �R∗

B =

(

SN + E� + Ea +
�SI

N
+ �I + �I + �R

)

.

V(S∗,E∗
, I∗,R∗) =

(

S − S∗ − S∗log
S

S∗

)

+

(

E − E∗ − E∗log
E

E∗

)

+

(

I − I∗ − I∗log
I

I∗

)

+

(

R − R∗ − R∗log
R

R∗

)

.

Thus, collecting positive terms together and negative terms 
together from the above

where

and

Thus if A < B , then we obtain that dV

dt
≤ 0 , noting 

that dV
dt

= 0 if and only if S = S∗ , E = E∗ , I = I∗ and 
R = R∗ . Therefore, the largest compact invariant set in 
{(S∗,E∗, I∗,R∗) ∈ Ω ∶

dV

dt
= 0} is the singleton {E∗} , where 

E∗ is the endemic equilibrium of system (2).
Thus, by LaSalle’s invariance principle (Hale 1969), 

it implies that E∗ is globally asymptotically stable in Ω if 
A < B . Therefore, the function V in the interior of the posi-
tive octant is a Lyapunov function. Hence, the equilibrium 
point E∗ is globally asymptotically stable in the positive 
octant. 	�  ◻

Analysis of bifurcation

For the qualitative behaviour of model system (2), we analyse 
the bifurcation of the equilibrium points and explain the results. 
In the bifurcation, endemic equilibrium point E∗ exchanges sta-
bility, limit points of cycles in which a stable and an unstable 
cycles collide. In this section, we have mainly used Sotomayer’s 
theorem (Perko 2001) and the Hopf bifurcation theorem (Mur-
ray 1993) to discuss the bifurcation analysis of our system.

dV

dt
=

S − S
∗

S

dS

dt
+

E − E
∗

E

dE

dt
+

I − I
∗

I

dI

dt
+

R − R
∗

R

dR

dt

=
S − S

∗

S

(

Λ − �S −
�SI

N

)

+
E − E

∗

E

(

�SI

N
− (� + a)E

)

+
I − I

∗

I

(

aE − (� + �)I

)

+
R − R

∗

R

(

�I − �R

)

=

(

S − S
∗

S
Λ +

E − E
∗

E

�SI

N
+

I − I
∗

I
aE +

R − R
∗

R
�I

+ S
∗� + E

∗� + E
∗
a +

�S∗I

N
+ �I∗ + �I∗ + �R∗

)

−

(

S� + E� + Ea +
�SI

N
+ �I + �I + �R

)

.

dV

dt
= A − B

A =

(

S − S
∗

S
Λ +

E − E
∗

E

�SI

N
+

I − I
∗

I
aE +

R − R
∗

R
�I

+ S
∗� + E

∗� + E
∗
a +

�S∗I

N
+ �I∗ + �I∗ + �R∗

)

B =

(

S� + E� + Ea +
�SI

N
+ �I + �I + �R

)
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Theorem 5  (Sotomayer’s theorem) (Perko 2001) Consider 
the system

where � ∈ ℝ , a parameter �0 with being the bifurcation 
threshold. Suppose that f

(

x0,�0

)

= 0 and that the n × n 
matrix A = Df

(

x0,�0

)

 has a simple eigenvalue � = 0 with 
eigenvector � and that AT has an eigen vector � correspond-
ing to the eigenvalue � = 0 . Furthermore, suppose that A 
has k eigenvalues with negative real part and (n − k − 1) 
eigenvalues with positive real part and that the following 
conditions are satisfied

Then, there is a smooth curve of equilibrium points of (5) in 
ℝ

n ×ℝ passing through 
(

x0,�0

)

 and tangent to the hyper-
plane ℝn × {�0} . Depending on the signs of the expressions 
in (6), there are no equilibrium points of (5) near x0 when 
𝜇 < 𝜇0 

(

or when 𝜇 > 𝜇0

)

 and there are two equilibrium 
points of (5) near x0 when 𝜇 > 𝜇0 

(

or when 𝜇 < 𝜇0

)

 . The 
two equilibrium points of (5) near x0 are hyperbolic and 
have stable manifolds of dimensions k and k + 1 , respec-
tively, i.e. the system (5) experiences a saddle-node bifurca-
tion at the equilibrium point x0 as the parameter � passes 
through the bifurcation value � = �0.

Saddle‑node bifurcation

Theorem 6  The system (2) exhibits a saddle-node bifurca-
tion around the equilibrium point E1(N, 0, 0, 0) when the 
bifurcation parameter (�) tends to zero.

Proof  The Jacobian matrix J of the system (2) around the 
disease free equilibrium point E1 = (N, 0, 0, 0) is given by

Clearly, two of the eigenvalues of JE1
 are negative and the 

other two eigenvalues will tend to zero. If V and W denote 
the eigenvectors corresponding to the eigenvalue zero of the 
matrices JE1

 and JT
E1

 , respectively, then we obtain V = 
(� − � , �, �, 0)T and W = (1, 0, 0, 1)T.

Now,

(5)ẋ = f (x,𝜇)

(6)�
T f �

(

x0,�0

)

≠ 0, �
T [D2f

(

x0,�0

)

(�, �)] ≠ 0.

JE1
=

⎛

⎜

⎜

⎜

⎝

−� 0 − � 0

0 − (� + a) � 0

0 a − (� + �) 0

0 0 � − �

⎞

⎟

⎟

⎟

⎠

.

WTf�(E1,�
(sn)) = −N ≠ 0,

WT [D2f (E1,�
(sn))(V ,V)] = −� ≠ 0.

By Sotomayer’s theorem (5), system (2) undergoes a 
saddle-node bifurcation around the equilibrium point 
E1(N, 0, 0, 0) . 	�  ◻

Hopf bifurcation

On the basis of Poincaré–Bendixson theorem, in this section 
we analyse the existence of limit cycle.

Theorem 7  (Poincaré–Bendixson theorem) (Meiss 2007) Let 
D be a simply connected subset of ℝ4 and � is a flow on D. 
Suppose that the forward orbit of some z ∈ D is contained 
in a compact set and �(z) contains no equilibrium points. 
Then, �(z) is a periodic orbit.

Let us consider � as bifurcation parameter of a system 
where the characteristic equation corresponding to an equi-
librium point E∗(S

∗,E∗, I∗,R∗) of the system is

then the statement of the Hopf bifurcation theorem is as 
follows:

Theorem  8  (Hopf bifurcation theorem) (Murray 1993) 
If Ci(�);i = 1, 2, 3, 4 are continuous functions of � in 
N𝜖(𝛼0), (𝜖 > 0), 𝛼0 ∈ R such that the characteristic equa-
tion has

( i )  a  p a i r  o f  c o m p l e x  e i g e n v a l u e s 
H = k(�) + il(�)(with k(�), l(�) ∈ R) so that they become 
purely imaginary at � = �0 and (

dk

d�
)�=�0 = 0,

(ii) the other eigenvalue is negative at � = �0 , then a Hopf 
bifurcation occurs around E∗(S

∗,E∗, I∗,R∗) at � = �0.

Remark 1  From Poincaré–Bendixson theorem (7) and (4), 
there exists an unique limit cycle.

Remark 2  The above similar process follows for the bifurca-
tion parameter �2.

Analysis of persistence of the system

Persistence is an important dynamical characteristic of any 
system in the sense that it describes long-term behaviour 
of the system. Suppose P(t) > 0 for t ≥ 0 , then P(t) is per-
sistent if limt→∞ infP(t) > 0 . A differential equation shows 
persistence provided all the solutions with positive initial 

(7)P(�) = �4 +m
1
�3 +m

2
�2 +m

3
� +m

4
= 0,



131Theory in Biosciences (2021) 140:123–138	

1 3

conditions are persistent (i.e. if there is a fixed bounded 
region then all the trajectories lie in the region for suffi-
ciently large time t) (Butler et al. 1986). In accordance 
with population biology, differential equations among 
interactive populations illustrate the persistence of the sys-
tem associated with the survival of all interacting popula-
tions. The most significant part is the peak times of 
infected population and its repeated nature (Feng 2007). 
The peaks are related to local or global extremums of I(t). 
From system (2), we have I(t) = aE(t)

�+�
 . This can be solved 

by the solution variables (S,E, I,R)T . It has been observed 
that there are many more local peaks of the infected popu-
lation over the time along with repeated behaviours, which 
has been noticed in the earlier pandemics such as Spanish 
flu (1918 pandemic influenza), which had three pandemic 
waves of infection within quick interval of few months 
(Goncalves et al. 2011).

Definition 1  If there exist positive constants m and M, which 
are independent of the solution of system (2) such that solu-
tion I(t) of system (2) satisfies

then system (2) is persistent.

Lemma 1  (Chen 2005) If a > 0, b > 0 and dX
dt

≥ (b − ax) 
when t ≥ 0 and x(0) > 0 , we have

If a > 0, b > 0 and dX
dt

≤ (b − ax) when t ≥ 0 and x(0) > 0 , 
we have

Theorem 9  Let I(t) be any solution of system (2), then

then system (2) is persistent.

Proof  Let I(t) be a solution of system (2). From system (2), 
we have

Applying Lemma (1) to (8), it immediately follows that

0 < m ≤ lim
t→∞

inf I(t) ≤ lim
t→∞

sup I(t) ≤ M,

lim
t→+∞

infX(t) ≥
b

a
.

lim
t→+∞

supX(t) ≤
b

a
.

0 <
a

𝛾 + 𝜇
≤ lim

t→∞
inf I(t) ≤ lim

t→∞
sup I(t) ≤

aN

𝛾 + 𝜇
,

(8)
dI

dt
=aE − (� + �)I,

≤(aN − (� + �)I).

(9)lim
t→+∞

sup I(t) ≤
aN

� + �
.

Again we have,

Applying Lemma (1) to (10), it immediately follows that

	�  ◻

Now we conclude that from Definition (1), Lemma (1) 
and Theorem (9), we have that the system (2) is persistent.

Remark 3  Over the progression of time, the fatal disease can 
be repeated pseudo-periodically, i.e. coronavirus can return 
once again in the later seasons of the year or over the years 
in the worldwide and it becomes into a persistent disease in 
the long term of period. The amplitude and time gap of the 
infection peaks totally rely on the parameters of the system 
(2).

Extinction properties

The termination of an individual is termed as extinction. 
When the death of the last individual of any population 
occurs, then the extinction of that individual is confirmed, 
although the capacity to breed and recover may have been 
lost before this point. The absence of any surviving indi-
viduals (that can reproduce and create a new generation) 
of that particular individual confirms the extinction of that 
populations. However, an individual may become function-
ally extinct when only a few number of that individuals 
survive. This section shall give us the conditions for which 
exposed and infected populations wash out from the sys-
tem in long run of the time. Let us consider the notation: 
limt→∞ sup I(t) = Ī . Here, we assume the following fact: 
I < Ī + 𝜖 , where limt→∞ sup I(t) ≤ Ī.

Theorem 10  If 𝜇+a
𝛽

> Ī , then limt→∞ E(t) = 0.

Proof  Choose 0 < 𝜖 <
𝜇+a

𝛽
− I  Then ∃ t1 > 0 ,  s.t . 

I(t) < Ī + 𝜖,∀t > t1 . Also we know that, N = S + E + I + R . 
Then from the model system (2), we have

(10)
dI

dt
=aE − (� + �)I,

≥a − (� + �)I.

(11)lim
t→∞

inf I(t) ≥
a

� + �
.
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Hence, limt→∞ E(t) = 0 . 	�  ◻

Remark 4  The progression rate is enough to extinct the 
exposed populations.

Theorem 11  If (1 + 𝛾+𝜇

a
) > N , then limt→∞ I(t) = 0.

Proof  Here we know that N = S + E + I + R . Then from the 
model system (2), we have

Hence, limt→∞ I(t) = 0 . 	�  ◻

dE

dt
=

𝛽SI

N
− (𝜇 + a)E

=
𝛽(N − E − I − R)I

N
− (𝜇 + a)E

< 𝛽I − (𝜇 + a)E

< 𝛽(Ī + 𝜖) − (𝜇 + a)E

< −E[(𝜇 + a) − 𝛽(Ī + 𝜖)],

[

holds if 𝛽(Ī + 𝜖) < 𝛽(Ī + 𝜖)E

]

< 0

[

If
𝜇 + a

𝛽
> Ī

]

.

dI

dt
=aE − (𝛾 + 𝜇)I

=a(N − S − I − R) − (𝛾 + 𝜇)I

<a(N − I) − (𝛾 + 𝜇)I

=aN − (a + 𝛾 + 𝜇)I

< − I((a + 𝛾 + 𝜇) − aN),

[

holds if aN < aNI or I > 1

]

<0

[

If

(

1 +
𝛾 + 𝜇

a

)

> N

]

.

Remark 5  The higher recovery rate helps to extinct the 
infected populations.

Numerical simulation

We validate the analytical results of our model systems 
(1) and (2) which are obtained by the numerical simula-
tion (Sameni 2020; Prem et al. 2017; Mossong et al. 2008; 
Tapiwa et al. 2020; Kissler et al. 2020; Pan et al. 2020). 
The transmission rates are generally impossible to directly 
observe or estimate. Instead, these values can be backed out 
by looking at the early exponential growth rate (r) of an 
epidemic and choosing transmission rates that recreate these 
observations. The growth of COVID-19 outbreaks has varied 
a lot between settings and over time. Some values reported 
in the literature are in Tables 2, 3 and 4. We consider that 
the dominant source of transmission is from individuals with 
having non-critical infections who are likely to still be in 
the community, as opposed to isolate in the hospital. In the 
first column of Fig. 2, we distinguish the outbreak of corona 
virus between model systems (1) and (2), respectively, and 
it is noticed that the lifetime immunity has been developed 
from this viral disease, so there is no sign of returning cases 
recovered to susceptible compartment. In second and third 
columns of Fig. 2, the interesting fact is noticed that the 
peaks are decaying over the progress of the time for the 
both of the model systems (1) and (2), respectively, which 
has been similar situation to the 1918 Spanish flu. So from 
above we conclude that our parameter selection for both of 
the model systems (1) and (2) is very much significant and 
it gives us satisfactory result indeed. In Figure 3(i), we illus-
trate the effect of lockdown, applied by the government to 
determine the exposed and infected cases and it gives us a 

Table 2   Estimated parameters for COVID-19 clinical progression

Quantity Value

Duration of asymptomatic infections 6 days
Duration of pre-symptomatic infectiousness (Zhanwei et al. 2020; Tapiwa et al. 2020; Yang et al. 2020) 2 days
Portion of asymptomatic infections (Qifang et al. 2020; Kenji et al. 2020; Hiroshi et al. 2020) 30%
Incubation period (Stephen et al. 2020; Qun et al. 2020; Natalie et al. 2020; Qifang et al. 2020; Steven et al. 2020) 5 days
Proportion of non-critical infections (Zunyou and McGoogan 2020; Penghui et al. 2020; Jingyuan et al. 2020) 80%
Duration of non-critical infections (Steven et al. 2020; Lauren et al. 2020; Roman et al. 2020) 5 days
Proportion of critical infections (Zunyou and McGoogan 2020; Penghui et al. 2020; Jingyuan et al. 2020) 20%
Time from symptoms to ICU admission (Chaolin et al. 2020; Jingyuan et al. 2020; Xiaobo et al. 2020; Fei et al. 2020) 12 days
Time from hospital admission to death (Wei-jie et al. 2020; Natalie et al. 2020; Steven et al. 2020; Fei et al. 2020) 14 days
Duration of critical infection (Fei et al. 2020) 8 days
Time from symptom onset to death (Robert et al. 2020; Joseph et al. 2020; Fei et al. 2020) 20 days
Case fatality ratio (David et al. 2020; Julien et al. 2020; Timothy 2020; Robert et al. 2020; Joseph et al. 2020; Zunyou and McGoogan 

2020)
2%

Serial interval 8  days
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proper idea about the effect of quarantine period and also 
suggests that the population ratio of infected and exposed 
peaks have decreased after the lockdown period. However, 
3(ii) indicates the mortality rate does not significantly fluc-
tuate after the six months period of lockdown. The main 
reason of this because of after the lockdown period is over, 
a fraction of the exposed population can again restart the 
corona virus spread. In Fig. 3(iii), it is observed that the 
recovery rate has been increased after the lockdown period 
and the significance of this phenomenon pays a major role to 
fight against COVID-19. In Fig. 3(iv), we investigate that the 
effect of healthcare system capacity reaches to its threshold 
point for the model system (1) during the lockdown period. 
In Fig. 4, we show the Hopf bifurcation phenomenon in 
the three-dimensional space with respect to the bifurcation 
parameters �2 and � , respectively, whilst portraying the sta-
bility analysis of model system (1) at the endemic equilib-
rium point E∗ . Other parameter values are given as follow-
ing: �1 = 0.6, �2 = 0.002, a = 0.056, �1 = 0.0025,� = 0.02.   

Conclusions and discussion

Some recent reports have suggested that healthcare workers 
are disproportionally infected with COVID-19, suggesting 
that there is some role to hospital-based transmission (e.g. 

from individuals in states I1 and I2 , or individuals who are 
hospitalized with only mild infection). In China, approxi-
mately 5% of all infections were in healthcare workers 
(Jiancong et al. 2020), and in Italy the number is currently 
around 10% (Jiancong et al. 2020). One of the biggest dan-
gers of a widespread COVID-19 epidemic is the strain it 
could place on hospital resources, since individuals with 
critical infection require hospital care. The critical stage of 
infection requires mechanical ventilation, which is ICU-
level care. Individuals with non-critical infection do not 
require hospitalization and could recover at home on their 
own or can be treated in a regular hospital ward. However, 
in many countries these individuals have also been hos-
pitalized, likely as a way to isolate them and decrease the 
transmission rate, as well as to observe them for progres-
sion to more aggressive disease stages. In recent studies on 
COVID-19, it has been noticed that nearly all individuals 
included had symptoms, since the presence of symptoms 
was used to determine whether someone would be admitted 
for a test of COVID-19. However, it is possible that some 
individuals may be infected and be able to transmit to oth-
ers without developing symptoms. Recent studies show that 
asymptomatic individuals were also screened for infection 
and tested positive. The model also suggests the possibility 
of pre-symptomatic transmission. In general compartmental 
epidemiological models assume that the onset of symptoms 

Table 3   Observed early 
epidemic growth rates r across 
different settings, along with the 
corresponding doubling times. 
There are many other settings 
where growth rates are now 
close to zero

Growth rate r Doubling time 
(days)

Location Dates

0.1 6.9 Wuhan Early January (Qun et al. 2020)
0.14 5 Wuhan Early January (Robert et al. 2020)
0.25 2.8 Wuhan January (Abbott 2020)
0.3 2.3 Wuhan January (Steven et al. 2020)
0.5 1.4 Italy February 24 (Abbott 2020)
0.17 4.1 Italy March 9 (Abbott 2020)
0.3 2.3 Iran March 2 (Abbott 2020)
0.5 1.4 Spain February 29 (Abbott 2020)
0.2 3.5 Spain March 9 (Abbott 2020)
0.2 3.5 France March 9 (Abbott 2020)
0.2 3.5 South Korea February 24 (Abbott 2020)
0.5 1.4 UK March 2 (Abbott 2020)

Table 4   Sampling of the estimates for epidemic parameters

Reproduction number (R0) Incubation period (in 
days)

Infectious period (in days) Location

3.0 (1.5–4.5) 5.2 2.9 Wuhan (Rocklov et al. 2020)
2.2 (1.4–3.9) 5.2 (4.1–7.0) 2.3 (0.0–14.9) Wuhan (Wu et al. 2020)
2.68 (2.47–2.86) 6.1 2.3 Greater Wuhan (Liu et al. 2020)
4.5 (4.4–4.6) 4.8 (2.2–7.4) 2.9 (0–5.9) Guangdong (Li et al. 2020)
14.8 5 10 Princess Diamond (Kucharski et al. 2020)
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and the onset of infectiousness coincide, but recent evidence 
indicates that symptoms may be delayed relative to when 
an individual is infectious. Viral loads are measured over 
time in symptomatic individuals, studies show that they are 
at a peak on the first day of symptoms, suggesting that they 
were already high before symptoms started (Roman et al. 
2020). Detailed contact tracing studies that have tracked 
transmission chains where the infector and the infectee are 
both known have found the serial interval, which is the time 
between symptom onset in the infector and infectee, is some-
times less than the incubation period. This means there must 
be pre-symptomatic transmission. A wide range of values for 
the proportion of all transmission that is pre-symptomatic 
have been estimated (12–62%), so we choose an interme-
diate value of 25%, consistent with (Yang et al. 2020). A 
related line of evidence for the presence of pre symptomatic 
infection is that the average length of the serial interval is 
quite close to the average length of the incubation period in 
a few studies. This suggests either a very short symptomatic 
and infectious period, or, significant pre-symptomatic trans-
mission. The main uncertainty thing in this pandemic has 
been undetected cases. COVID-19 has been quite a sneaky 

pathogen, and observation has often not been adequate, often 
resulting in a large number of infections in a country before 
it is noticed. Practically all cases are not detected and so the 
reported number of active cases is almost always lower than 
the true number of cases. Non-detected cases are such as 
undiagnosed, those that will be diagnosed soon. Individuals 
who are infected but yet to notice the symptoms and unde-
tected, those that will never be diagnosed. Individuals that 
present with mild symptoms, or are missed by surveillance. 
In the first case, there is shown a lateness between infec-
tion and diagnosis. However, if we know something about 
the length of this delay then we can use this information 
to inflate the observed case numbers to produce estimates 
of the number of undiagnosed cases. The most important 
determinant of the delay is the incubation period of the 
infection. This is known to be highly variable but can be 
modelled using a probability distribution, which is called 
the incubation distribution. Information about the incubation 
distribution exists from external sources. It is known that the 
average incubation period is 5–6 days and that 95 per cent of 
infections have reported with an incubation period of time 
not more than 12–13 days. The daily diagnosis counts reflect 
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Fig. 2   Compare the simulation between the model systems (1) 
and (2), respectively. In the first column we illustrate the simu-
lation of around six–seven months and in the second and third 
columns we consider the time about ten years. Here violet rep-
resents susceptible (S), green indicates exposed (E), orange illus-
trates infected (I), brown stands for recovered (R) and sky-blue 

is for dead (D) populations. Parameter values of system (1): 
�1 = 0.6, �2 = 0.002, a = 0.056, � = 0.85, �1 = 0.0025, �2 = 0.1,� = 0.02 
and parameter values of system (2): 
Λ = 0.1, � = 0.015, a = 0.017, � = 0.15,N = 1,� = 0.001 (colour fig-
ure online)
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a larger and unknown number of COVID-19 infections in 
the population, aggregated with the incubation distribution. 
The undetected cases are completely missed by surveillance. 
To estimate these, we use a heuristic that assumes deaths 
do not go undetected, that there is community transmission 
(and a closed population), that there is a case fatality rate 
for symptomatic cases (here assumed to be quite high 3.3 
per cent and lower numbers will cause our detection esti-
mate to be lower), that detection is constant, and that there 
is a fixed time between onset and death. In countries with 
many undetected cases, there are many more deaths than 
there should be given reported case numbers. One obvious 
source of bias in both estimates is imported cases. When 
there is movement between countries and large differences in 
case-load, countries with small numbers of cases will have 
a large proportion of imported cases. These will cause us to 
estimate a larger number of non-detections than there are. To 
control this epidemic, government has to impose lockdown 
situation so that the effectiveness of the virus spreading is 

delaying over the time and the peaks of the infected popula-
tion becomes minimize. However, this process is insufficient 
for a long term of period. Social distancing, effectiveness of 
quarantine and less crowd gathering are most feasible con-
ditions to become the zero contaminated zone for a longer 
period of time. In many countries it has been noticed that 
with limited test kits, medication, hospitalization, excessive 
fatigue or mortality of the healthcare personnel, economic 
breakdowns, etc. cause healthcare system to reach its thresh-
old capacity. This situation looked as worst-case scenario 
for pandemic strategies. Now the situation becomes more 
worried as there are observed instability in the community 
since the outbreak of such pandemic is spreading rapidly. 
Mathematically we investigate the whole situation in this 
paper. We offer some proposals to control this fatal epidemic 
disease followings:

•	 Embed maximum lockdown of the entire population in 
the country, send to quarantine of the infected cases, 
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Fig. 3   (i) Simulation of the model system (1) with a lockdown period 
correspond to the effect of before and after the lockdown. (ii) The effect 
of mortality rate before and after the lockdown. (iii) The effect of recov-
ered rate before and after the lockdown. (iv) Healthcare capacity system 
reaches its threshold point at I = 0.1 . Parameter values of system (1): 
�1 = 0.6, �2 = 0.002, a = 0.056, � = 0.085, �1 = 0.0025, �2 = 0.1,� = 0.02 . 
During the lockdown period �1 and �2 are decreased to 0.1 and 0.001, 

respectively, whilst other parameters are fixed. When the lockdown 
period is over, the value of �1 is increased to 0.4 (more than lockdown 
period); however, �2 remains unchanged as 0.001 which implies that 
after the lockdown is lifted people remain keep social distance with the 
infected populations



136	 Theory in Biosciences (2021) 140:123–138

1 3

0

0.4

2

10-7

2

0.1
0.350.160

E

I2

(a)

0 0.5 10

4

0

9
10-11

..............................

E

I1

(b)

Fig. 4   a Hopf bifurcation diagram of system (1) with respect to the 
bifurcation parameter �2 is drawn in the three-dimensional space 
(�2, I2,E) . This figure shows that the coexistence equilibrium E∗ is 
unstable focus for 𝛾2 > 0.16 , now system converges to stable limit 
cycle (depicted by different colour cycles different values of �2 ), sta-
ble focus for 𝛾2 < 0.16 (depicted by dotted line) and a Hopf bifurca-
tion occurs at �2 = 0.16 . b Hopf bifurcation diagram of system (1) 

with respect to the bifurcation parameter � is drawn in the three-
dimensional space (�, I1,E) . This figure shows that the coexistence 
equilibrium E∗ is unstable focus for 𝛼 < 0.5 , now system converges to 
stable limit cycle (depicted by different colour cycles different values 
of � ), stable focus for 𝛼 < 0.5 (depicted by dotted line) and a Hopf-
bifurcation occurs at � = 0.5 . Other parameters are in the text
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impose home isolation of the asymptomatic cases (rest 
of the people who are not infected) and look after in the 
application of these above mentioned cases as soon as 
possible.

•	 Figure out the number of exposed cases and distinguish 
the level of their infectiousness.

•	 Maximal lockdown remains until as many of all the 
number of estimated exposed cases are calculated.

•	 Lift the lockdown and apply strict social distancing 
upon economical conditions.

•	 Back to normal life if there is no new cases have been 
registered for a long period of time.

•	 Select a state as a model state and apply all the above 
regulations and observe the effectiveness if results will 
fruitful then apply the regulations in whole country.

The condition of human lives are such metastable so that 
we all need to think as united against the deadly coronavi-
rus and make a way through this such fatal phase. Unless 
the parametric conditions, nothing is specified about the 
coronavirus. Here we present both theoretical and analyti-
cal studies and compare them to real-world problem by fit-
ting our model over real data and predict the infected and 
mortality rates with all possible patterns of the epidemic 
disease over the progression of time.
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