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Japanese encephalitis (JE) is a zoonotic, emerging disease transmitted by mosquito

vectors infected with the Japanese encephalitis virus (JEV). Its potential for emergence

into susceptible regions is high, including in the United States (US), and is a reason of

economic concern among the agricultural community, and to public health due to high

morbidity and mortality rates in humans. While exploring the complexities of interactions

involved with viral transmission, we proposed a new outlook on the role of vectors,

hosts and the environment under changing conditions. For instance, the role of feral

pigs may have been underappreciated in our previous work, given research keeps

pointing to the importance of susceptible populations of wild swine in naïve regions

as key elements for the introduction of emergent vector-borne diseases. High risk of

JEV introduction has been associated with the transportation of infected mosquitoes

via aircraft. Nonetheless, no JEV outbreaks have been reported in the US to date and

results from a qualitative risk assessment considered the risk of establishment to be

negligible under the current conditions (environmental, vector, pathogen, and host). In

this work, we discuss virus-vector-host interactions and ecological factors important for

virus transmission and spread, review research on the risk of JEV introduction to the

US considering the implications of risk dismissal as it relates to past experiences with

similar arboviruses, and reflect on future directions, challenges, and implications of a

JEV incursion.
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INTRODUCTION

The Japanese encephalitis virus (JEV) is a flavivirus transmitted by mosquitoes and the most
important cause of viral encephalitis in Southeast Asia and the Western Pacific Rim. Affecting
around 68,000 people yearly, Japanese encephalitis (JE) is a debilitating disease with no cure,
although there is a vaccine available, which is used extensively in most endemic countries. The case
fatality risk may approach 25% and up to 50% of the patients that survive can develop debilitating
permanent neurological damage (1, 2). Chronic sequelae, including cognitive dysfunction and
neurologic deficits, affect mainly children and are responsible for the high burden of disease of
JE globally (3, 4).
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Viral transmission is influenced by complex interactions
that occur among virus, vector and host, and is driven by
environmental, genetic, and ecological determinants (5). The
enzootic cycle of JEV is maintained by pigs (the main JEV
amplifying host) and ardeid birds, with more than 30 mosquito
species identified as potential vectors (3, 6–9). Humans are dead-
end hosts that do not amplify the virus nor sustain mosquito
infection due to low peaks of viremia (3).

Having expanded from Japan, where it was first isolated,
JEV has spread to all neighboring countries, now covering
most regions in Southeast Asia. Besides the wide distribution of
JEV, recent evidence of geographical genotype displacement has
pointed to the changing dynamics of JEV transmission, raising
public health concern regarding virus spread to susceptible
regions of the globe (4, 10–12). Japanese encephalitis virus genetic
material has already been identified in mosquitoes and birds
collected in northern Italy, where human cases are unreported to
date (13, 14); concurrently, other arboviruses have been emerging
in previously unaffected areas, with one of the most recent
examples being the occurrence of outbreaks of Zika (although
humans are reservoir of this virus) virus in South America
(15). In the United States (US), specifically, the introduction of
the West Nile virus (WNV) has demonstrated the vulnerability
for the emergence of exotic pathogens (16). Moreover, the
presence of competent vectors and hosts, the apt weather and
climatic conditions in most US states, the non-existence of
active JEV surveillance programs and cross-reactivity of JEV with
other flaviviruses in diagnostic testing, as well as the increased
international travel and trade, make the US a suitable region for
JEV introduction and spread (7, 16–18).

Geographical expansion of the virus depends on biotic and
abiotic factors which are not static; changes in those factors,
such as vector and host population abundance, distribution,
and composition, can influence forecasted local transmission
cycles. Thus, the aim of this article is to: (1) discuss current
advances in virus-vector-host interactions and ecological factors
important for virus transmission and spread with a review of
research addressing the risk of introduction of JEV in the US,
and (2) consider future directions, challenges and implications
for JEV introduction, including potential surveillance, and vector
mitigation strategies.

CURRENT ADVANCES

Virus-Vector-Host-Environment
Interactions
Lessons Learned Regarding Virus-Vector-Host

Interactions
Our previous studies focused on the relative role that various
vectors and hosts have on the epidemiology of JEV (7–9).
Mosquito vectors other than Culex tritaeniorhynchus were found
to have higher pooled proportions of JEV infection (7, 8), as
well as infection and transmission risks (9). To date, Culex
tritaeniorhynchus has been considered the most important JEV
vector in Southeastern Asia (6); however, this may be the result
of an overrepresentation of this species in the literature due to

issues related to study and sampling design (19). In fact, the
highest pooled infection rate estimates were observed in Culex
annulirostris, Culex sitiens, and Culex fuscocephala (9). Aedes
japonicus has also been identified as a vector with high JEV
infection1 (90%) and transmission2 rates (75%), pointing to its
importance as a potential vector species for the spread of JEV
to susceptible regions where it is also present, such as the US
(21) and Europe (22). Furthermore, reported pooled estimates
of JEV transmission risk in C. tritaeniorhynchus are as low as
36% (9), which is much lower than estimates for other mosquito
species that are not commonly associated with JEV infection
or transmission.

Despite being the primary mammalian amplifying host for
JEV (6), meta-regression modeling did not identify domestic
pigs as the host species with the highest proportion of JEV
infection (7). Nonetheless, North American domestic pigs were
shown to be susceptible to JEV experimental infection (23–
25) and although the majority of pigs in the US are housed
indoors, commercial housing does not preclude mosquito
exposure (26–28).

Other hosts, including wild pigs [i.e., pigs that have escaped or
been released in the wild (GISD)], have greater pooled proportion
of infection estimates when compared to domestic pigs (53 vs.
41%) (7)3. This could be related to the intensification of industrial
pig farming and biosecurity measures, as well as the decrease
in backyard pig rearing in Asia (4). Conversely, increasingly
higher populations of wild swine have been identified in certain
regions of Asia, potentiating the role of these animals in the
ecology of JEV (29–32). Wild pigs are known to play a role in the
transmission of several disease agents, including JEV (32), and
represent a rapidly growing, free-range population of vertebrate
hosts that is expanding worldwide (32–36). In the US, this species
has expanded to 35 states due to their adaptability to geographic
and climatic conditions and the lack of natural predators (37).
The potential of wild pigs as reservoirs and drivers of disease
is further increased due to their destructive behavior, which
has created new mosquito larval habitats (38), and the possible
vector-free JEV transmission between pigs (39, 40).

The estimated proportion of JEV infection in ardeid birds
such as herons, although lower than in swine, was reported
to be 28% (7). In the US, national surveys from 1966 to
2015 showed that some ardeid bird populations are increasing
annually (41). This includes ring-bill gulls (Larus delawarensis)
and great egrets (Ardea alba), which are susceptible to JEV under
experimental conditions, with virus shedding via oral and cloacal
secretions (17). The epidemiological significance of the latter is
not yet known, but like the recent evidence of vector-independent

1Infection rate being defined as the sum of individual mosquitoes that test positive

for JEV (or pools of mosquitoes, if applicable) divided by the total number of

mosquitoes (or pools) tested (9).
2Transmission rate is the proportion of mosquitoes that were orally exposed to

JEV and transmitted the virus on refeeding or contained the virus in their saliva or

salivary glands (9, 20).
3Global Invasive Species Database (GISD). Invasive Species Specialist Group.

Available online at: http://www.iucngisd.org/gisd/species.php?sc=73 (accessed

September 26, 2019).
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FIGURE 1 | Map of the geographic distribution of JEV genotypes. *No human cases of JE have been reported in Italy to date.

transmission in pigs, it highlights fundamental knowledge gaps
surrounding JEV transmission.

JEV Genomics and Phylogeny
The JEV strains that have been isolated since its discovery can
be classified into one of five JEV genotypes [genotype I (GI) to
V (GV)] (42). Historically, JEV circulated throughout most of
Asia, but various genotypes have spread geographically or have
re-emerged in recent years (Figure 1). In 1995, JEV (genotype
GII) demonstrated to spread outside of Asia with widespread
activity in the Torres Strait of the Australasia region for the first
time (43). Approximately 5 years later, a new JEV genotype (GI)
was isolated from sentinel pigs andmosquitoes found in the same
area as the previous outbreak (44).

Genotype V virus was first isolated in Malaysia in the 1940s
and then went undetected until 2009, when it was isolated
from a pool of mosquitoes in Tibet and then again in 2010 in
the Republic of Korea (45, 46). Genotype V is not a common
genotype, with only three isolates having been detected. However,
the question arises if the re-emergence after so many years is
indicative of genotypic shift in the area.

In addition to the geographic spread, changes in the molecular
epidemiology of JEV have occurred throughout Asia. Until
the 1990s, GIII was the dominant genotype in Asia, however,
surveillance data revealed that GI gradually replaced GIII as
the most frequent genotype in many Asian countries. Sequence

analysis identified a few variations in the genome that may
have played a role in the phenotypic change (42). However,
further research is needed to determine if these genetic changes
provided an advantage for the virus to survive and thrive in the
temperate area. Other studies compared replication efficiency
of GI isolates to GIII isolates. Depending on the study, GI
was shown to replicate more efficiently in pig, avian, and
mosquito cells than GIII (10, 47, 48). Genotype I had a higher
infection rate and shorter extrinsic incubation period than GIII
during in vivo studies using C. quinquefasciatus (12). Whereas,
these studies help to explain how GI might have displaced the
previous genotype, other host and environmental factors, such
as effects of immunity of a population to the different genotypes,
changes in farming, and animal husbandry practices, and changes
in migratory patterns of birds, may have also contributed to
the emergence of GI. The recent spread and displacement of
JEV demonstrates the importance of understanding how small
changes in viral genetics or the introduction of a different
strain can lead to an expansion in host range, enhanced vector
competence, and hence, arboviral emergence, and increase
transmission potential (49).

Ecological Factors Important for Viral Transmission

and Spread
Emergence of arboviruses frequently follows change in one
or various ecological or environmental factors. For JEV, these
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include precipitation, humidity, temperature, altitude, as well
as aspects related to vegetation, land usage, and agricultural
practices (5, 50, 51).

Gould et al. (50) discussed the impact of urbanization due to
the increase in population densities, which have led to a higher
exposure of humans to mosquito vectors and to changes in the
interaction patterns occurring among virus, vectors, and hosts.
The intensification of deforestation, agriculture, and animal
production is the natural response to the pressures of a growing
urbanized population. Likewise, the domestication of arthropods
in order to adapt to the modern human environment is rampant,
as is the invasion of humans into areas that were previously only
inhabited by wild flora and fauna, hence changing completely
pre-existing dynamics (50). Increased urbanization can also lead
to concentration of susceptible human hosts, which depending
on their socioeconomic status, can also be conducive to enhanced
transmission (49).

Geographic expansion of the virus can result from viral
adaptation and displacement. Vector and host population growth
and expansion, and improved viral amplification in vertebrate
hosts may be related to elongation of seasons, shortening of
gonotrophic cycles, and creation of new niches that are associated
with environmental changes (e.g., global warming). Invasion and
expansion of hosts and vectors through dispersal or migration,
are also facilitated by tropical storms or other natural disasters
(e.g., flooding) (51).

FUTURE DIRECTIONS AND CHALLENGES

Future Directions and Implications for the
Risk of Introduction
Assessing the Risk of Introduction of JEV
Several epidemiological studies have been conducted to quantify
vector and host parameters and to evaluate the risk of emergence
of JEV in the US (5, 7–9, 52, 53). Risk assessment, as a decision
tool, is a method to make decisions under uncertainty (54). This
implies that approximations and assumptions often need to be
made using data that are available, rather than ideal data (55).

The risk of introduction of JEV in the US, evaluated using
a risk assessment framework, through infected adult mosquito
vectors was predicted to be very high: there is a 0.95 median
probability (95% CI: 0.80–0.99) of at least one infected mosquito,
and a median of three infected mosquitoes (95% CI: 1–7),
being introduced during March to October via aircraft, the most
likely pathway of entry, to the US from JEV-affected countries
(52). Mediterranean California and Eastern Temperate Forests
ecoregions (covering all US states on the East Coast, except
Southern Florida, the Midwest, and the Southeast), which are
similar to the ecosystems found among the regions at risk, were
the areas in the US with the highest risk of JEV introduction via
infected mosquitoes transported in aircraft (52).

When considering other pathways of entry (e.g., birds, hosts,
vaccines, other biologicals), the risk of JEV introduction was
considered negligible. The risk of transmission was considered
variable and the risk of establishment negligible given current
conditions (53). Changing aspects and preconditions related to

the introduction and transmission of JEV will also imply a
change in probability estimation. Thus, revisiting the pathways
of introduction and considering paths that were previously
deemed as non-important (e.g., domestic and wild pigs)
can lead to different assumptions and therefore, different
probability estimates.

As discussed elsewhere (53), bird migration (e.g., flyways
coming from Asia into the US through Alaska) was considered
a negligible pathway for JEV introduction into the US. Short
viremia in avian hosts [2-4 days (56)] and their long migration
flights, life-long immunity after infection, the low probability
of co-occurrence of an infectious migrant bird with competent
vectors and susceptible birds, low number of competent vectors
(e.g., Aedes vexans) in Alaska, where flyways coming from
Asia and heading south to the US overlap, and Alaska’s short
mosquito season, are factors contributing to the dismissal of this
pathway for JEV to enter and establish in the US (17, 53). When
disregarding the entry of viremic migratory birds as a potential
pathway of introduction for JEV, we may have not considered
the role of climate change and land perturbation, which could
push birds toward new habitats, with new mosquito vectors, and
modulate pathogen dynamics.

Legal and illegal importation of potentially infected birds
was deemed not important. Legal import of birds is regulated
through the U.S. Department of Agriculture, Animal and Plant
Health Inspection Service and the U.S. Fish and Wildlife Service.
Although quarantine procedures are unlikely to support virus
transmission to mosquitoes and to other birds, illegally imported
birds, if infected, not subjected to quarantine or examination
would be more likely to transmit the virus to mosquitoes and
other birds (57).

It is important to note that all pathways of JEV introduction
assessed in both the qualitative and quantitative risk assessment
models (52, 53) pertained to inadvertent and intentional sources.
Despite being considered of low, negligible or unknown risk,
most intentional (e.g., illegal importation of animals) causes
should not be disregarded. However, the scarcity and uncertainty
of empirical data on movement of increasing populations of
potentially infected competent vertebrate host animals (e.g., feral
swine or ardeid birds) or illegal importation of animals, make
these routes extremely challenging to be examined (51, 58).

Parallels With Other Arboviruses
Bluetongue virus, and Venezuelan equine encephalitis virus are
examples of arboviruses whose emergence has been associated
with the dispersal of vector species, introduction of animal
hosts, climate effects, urbanization and globalization, among
other factors (49). Similarly, WNV, a closely related flavivirus,
was introduced to and became endemic in North America over
a period of a few years (59). During the summer of 1999,
several Culex pipiens complex mosquitoes were identified as the
principal vector and house sparrows as important maintenance
hosts (60–64). American crows (and some other corvids) suffered
fulminating systemic disease and were deemed critical amplifying
hosts (65–69). Previous experience in temperate regions of
Europe suggested that introduced strains of WNV from Africa
or the Mediterranean did not persist, and re-introduction was
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necessary for repeated outbreaks of disease (70); however, WNV
is now endemic in Europe (as well as in the Middle East, Africa,
Asia and Australia) (71). In North America, where WNV is also
endemic, virus persistence was achieved, and sustained by long-
term infections of both mosquitoes and birds (72, 73). Factors
such as normal migration and legal or illegal importation of
zoo, pet, domestic, or wild birds have been hypothesized to have
played a role in the introduction of the WNV to the western
hemisphere, whereas complex ecological factors determined its
geographic spread (57). It is important to note that the North
American introduction and establishment of theWNV overcame
similar unfavorable circumstances to the ones faced with JEV,
given sufficient time and introduction opportunities.

Challenges
The recent decline in overall arboviral surveillance capacity (and
lack of JEV surveillance in particular) in the US can compromise
our ability to rapidly detect and respond to existing and emerging
threats (74). There have been 14 travel-associated JE human
cases reported among US citizens from 1973 to 2008, with cases
most likely being acquired in Thailand, the Philippines, Vietnam,
Singapore, Japan and China (75). Cases occurred among military
personnel, tourists visiting friends and relatives, and expatriates.
Since then, two additional cases were recorded, one fatal case in a
US child that visited the Philippines, and a refugee traveling from
Thailand to the US (76). All cases, thus far, have been imported.

Despite an estimated high risk of entry into the US via
infected adult mosquitoes by aircraft (52, 53), no evidence of
JEV emergence, transmission, or establishment has been reported
up until now in the US under current conditions related to
virus, vector, host and environment. Potential hypotheses for
explaining the non-emergence of JEV in the US include: (1) the
fragility of JEV in the environment, which is easily destroyed by
heat, UV light and common detergents (52, 77); (2) potentially
lowmosquito distribution and host density in airport and seaport
areas (which are considered the most likely pathways of US
introduction) (52, 53, 78); (3) short apparent periods of viremia
in pigs and ardeid birds, ranging from 3–4 days (56, 79); (4)
insufficient contact rates between hosts and vectors; (5) cross-
protection of JEV with other endemic flaviviruses, such as WNV
and St. Louis encephalitis virus; and (6) a potentially limited
infection capacity of mosquitoes during establishment.

Co-circulation and strain displacement are not new to
flaviviruses as they have occurred in multiple areas for
dengue virus and in the US for WNV (80–83). Gould et al.
(50) speculated that given the vectors’ widespread geographic
range and high adaptability toward changing environmental
conditions, another genotype could emerge in new regions
(50). Similarly, the possible movement of vectors and hosts
associated with urbanization, carried by tropical storms, or other
natural disasters, could increase rates of contact and hence,
transmission potential.

Future genotype displacement or genetic modifications
can compromise current cross-protection, and in turn
threaten vaccine effectiveness, current immunization and
other public health programs (12). Other challenges associated
with emergence or reemergence of JEV genotypes could

include changes in transmission paths, disease burden, or host
demographics (11, 84).

Although viremia in the amplifying host is short, recent
studies pointing at transmission via oronasal secretions between
pigs without the involvement of vectors (39), suggest a previously
unrecognized mechanism of transmission may exist. Incomplete
knowledge regarding JEV transmission in wild and domestic pigs
may cause the role of these species in the epidemiology of JEV to
be underestimated.

Japanese encephalitis is a vaccine-preventable disease, but
recent research suggests that currently available vaccines (both
inactivated and attenuated) may not provide complete protection
against GV infection (85). Additionally, and because humans
are dead-end hosts, JEV vaccination does not provide herd
immunity (3). Whether or not new vaccines are needed to
deal with this challenge is still under debate. Moreover, the
introduction of JEV could have devastating public health
consequences, especially in locations with naïve and aging
populations such as in the US, usually affected by chronic
diseases (immunocompromised population), where there is
potentially no herd immunity against JEV. In addition to
vaccines, reducing contact between mosquito vectors with
humans and animal reservoirs would limit the duration and
extent of viral outbreaks in the environment (5). In JE endemic
countries, larval habitat treatment of rice fields by chemical
or mechanical manipulation (86, 87) and adult aerial spraying
(88) are the main methods used for management of mosquito
vectors; these methods are also used by mosquito and vector
control districts throughout the US. The public perception of
the health and environmental effects associated with the use of
pesticides, however, has greatly impacted the area coverage and
the type of products used for mosquito mitigation. Larval habitat
treatments with Bacillus thuringiensis israelensis, spinosad, and
other dipteran-specific larvicides are largely unimpacted, but
adulticidal treatments are heavily regulated by US state and
federal agencies. States like California limit the application
of some adulticide active ingredients in riparian zones (e.g.,
coastal marshes) where endangered species are found. Mosquito
vector control districts in this state must consult the Pesticide
Regulation’s Endangered Species Custom Realtime Internet
Bulletin Engine or PRESCRIBE dataset, prior to pesticide
application in public areas, however, pesticide application in
residential areas does not have such restrictions (89). These
limitations could make proper and timely mitigation of vectors
very difficult.

Although JEV has not established in the US, the conditions
are rapidly changing. Reduced mosquito control in areas at
highest risk (i.e., west coast), no active surveillance for JEV
in place, increasing populations of vector species and host
reservoirs, and emerging viral genotypes that may change the
probability of establishment, may dictate the future emergence,
and subsequent spread of JEV in the US. Similarly, the increase
in population density and in human and animal movement,
coupled with climate effects, habitat modification and other
anthropogenic factors, emphasize the need for early detection
of arboviral diseases through surveillance in areas at higher
risk. Hence, we propose monitoring changes in host or vector
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population composition or dynamics, and/or environmental
configuration that can be beneficial for virus introduction, in
US areas at higher risk. Similarly, ongoing identification of
emerging disease risks through surveillance (e.g., detection of
virus in vectors and hosts) efforts will increase the speed by which
US officials can detect pathogen emergence. Rapid response
to outbreaks can be achieved by increasing preparedness
efforts including education of citizens (e.g., through citizen
science campaigns), clinicians and laboratory diagnosticians
on disease recognition and prevention, and improvement of
laboratory detection capabilities. Lastly, conducting an economic
assessment linking disease risk at the wildlife-livestock interface
and comparing the benefits and costs of risk management (e.g.,
surveillance, biosecurity) in both livestock and wildlife, as well
as determining where public health efforts are required, can
reduce the vulnerability and potential consequences of a JEV
incursion in the US. The potential impact of the emergence
of arboviral diseases, in particular JEV, a disease with high
morbidity and mortality rates in humans, in a susceptible
region such as the Americas and the US specifically, which has
an increasingly globalized commerce and tourism as well as
concentrated and interconnected livestock production, is large

and can lead to long lasting effects on public health, economies,
and production systems.
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