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DNA methylation plays an essential role in the pathogenesis of coronary artery disease
(CAD) through regulating mRNA expressions. This study aimed to identify hub genes
regulated by DNA methylation as biomarkers of CAD. Gene expression and methylation
datasets of peripheral blood leukocytes (PBLs) of CAD were downloaded from the
Gene Expression Omnibus (GEO) database. Subsequently, multiple computational
approaches were performed to analyze the regulatory networks and to recognize hub
genes. Finally, top hub genes were verified in a case-control study, based on their
differential expressions and methylation levels between CAD cases and controls. In total,
535 differentially expressed-methylated genes (DEMGs) were identified and partitioned
into 4 subgroups. TSS200 and 5′UTR were confirmed as high enrichment areas of
differentially methylated CpGs sites (DMCs). The function of DEMGs is enriched in
processes of histone H3-K27 methylation, regulation of post-transcription and DNA-
directed RNA polymerase activity. Pathway enrichment showed DEMGs participated in
the VEGF signaling pathway, adipocytokine signaling pathway, and PI3K-Akt signaling
pathway. Besides, expressions of hub genes fibronectin 1 (FN1), phosphatase (PTEN),
and tensin homolog and RNA polymerase III subunit A (POLR3A) were discordantly
expressed between CAD patients and controls and related with DNA methylation levels.
In conclusion, our study identified the potential biomarkers of PBLs for CAD, in which
FN1, PTEN, and POLR3A were confirmed.

Keywords: coronary artery disease, methylation, FN1, PTEN, POLR3A

INTRODUCTION

Coronary artery disease (CAD), as the main type of cardiovascular disease, has become one of
the leading causes of morbidity and mortality in both developed and developing countries (Wood
and Eisele, 2017). This acute tendency is due to the population aging. According to the CAD
prediction model, in China, more than 20 million deaths and 16 million instances of labor loss
will be attributed to CAD from 2000 to 2029 (Moran et al., 2008). The total attributed to the
social economy connected with CAD in developing countries was estimated to be approximately
3.7 trillion dollars in 2010, which is roughly equal to 1–3% of Gross Domestic Product (GDP) across
developing countries (Gaziano et al., 2017).
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Coronary arteriography (CAG) is the gold standard of CAD
diagnosis, but the high cost and invasiveness limit its application
(De Marco et al., 2018), whereas the cheaper cost and less
invasive nature of blood biomarker detection make it easier
to promote (Rusnak et al., 2017). Epigenetics is defined as
the heritable transcriptional modifications that are not induced
by the nucleotide sequence alterations of DNA (Duan et al.,
2018). Multiple factors such as environment, diet, oxidative
stress, and inflammatory stimuli influence epigenetic contents,
including DNA methylation, RNA methylation, chromatin
histone modification, non-coding RNA and DNA methylation,
among which DNA methylation is the most indagated (Xu et al.,
2019). For example, prolonged hypoxia can induce epigenetic
modifications in myocardial fibroblasts, since methylation status
of the genome and specific genes are affected by DNA
methyltransferase (DNMT), which is regulated by a hypoxia
inducible factor 1α (HIF-1α) (Watson et al., 2014). While studies
have shown that in women who lost weight by lowering their
calorie intake, the DNA methylation levels of Leptin and TNF-
α promoters were significantly reverse modified, and the risk of
CAD was significantly reduced (Cordero et al., 2011).

Aberrant DNA methylation participates in various processes
of CAD development by regulating the mRNA expression of
interrelated genes. For instance, ABCA1 plays an essential
part in reverse cholesterol transport (RCT) by combining with
apoA-I to form high-density lipoprotein (HDL) in the cell
membrane and promoting the excretion of free cholesterol
and phospholipids from cells. ABCA1 weakens the chemotactic
ability of macrophages by reducing the content of free cholesterol
in the cell membrane and delays the pathological progress
of CAD (Bashore et al., 2019). The demethylation of the
ABCA1 promotor has been verified to be related to the high
expression of ABCA1, which can accelerate the process of CAD
by expediting the formation of foam cells and thrombogenesis
(Peng et al., 2014; Ghaznavi et al., 2018). Intriguingly, there
is a conspicuous correlation between the methylation status
of the ABCA1 promoter and physiological age. The ABCA1
promoter is hypermethylated in aged CAD patients, which can
be partially illustrated by the accumulation of aberrant epigenetic
changes during the long-term disease states (Ghaznavi et al.,
2018). Cystathionine gamma-lyase, encoded by CTH, is a crucial
part of the homocysteine metabolism pathway (Szijarto et al.,
2018). Previous studies have found that hypermethylation of
the CTH promotor in hyperhomocysteinemia in mice can lead
to the decrease of CTH expression, which in turn prevents
homocysteine from being catabolized and causes vascular
endothelial cells injury, eventually results in CAD (Li et al., 2015;
Giannakopoulou et al., 2017). A similar phenomenon has been
observed in male CAD patients, while the methylation level of
CTH promotor in female patients is not different from normal
controls (Latini et al., 2004). Aberrant methylation status of
the promoter has also been proved to impact the inflammatory
pathways, which are well known to participate in the progress
of CAD by regulating the number, ratio, and function of
immune cells. PTX3 accelerates the formation of atherosclerotic
plaques by enhancing the migration and chemotactic ability
of macrophages, promotes vascular endothelial damage, and

exacerbates vascular inflammation. The methylation level of
the PTX3 promoter in CAD patients is much lower compared
with controls, while higher PTX3 concentration and neutrophil
to lymphocyte ratio (NLR) are detected in CAD patients. It
indicates that the methylation level of the PTX3 promoter
impacts the expression of PTX3 and regulates the number
and classification ratio of white blood cells, aggravates an
inflammatory response, and then participates in the progress of
CAD (Guo et al., 2016).

However, in the past a few years, research on DNA
methylation has mainly focused on the connection between
methylation conditions of promoter regions and the expression
of genes. Recently the aberrant methylation status of other gene
regions has also been identified to be associated with CAD, but
these complex regulatory networks remain largely unexplored
(Oudejans et al., 2016; Nakatochi et al., 2017; Yamada et al.,
2018). Therefore, an integrative research study was required,
combining both genomic expression profile and epigenomic
DNA methylation of PBLs in CAD in Chinese populations. In our
study, we calculated the methylation status of 5′-C-phosphate-
G-3′ (CpGs) sites in different intragenic gene regions, including
TSS1500, TSS200, 5′UTR, 1stExon, body, and 3′UTR. Besides,
we consolidated DNA methylation and mRNA expression data
to recognize genes functioning in CAD and regulated by DNA
methylation, which might be potential PBLs biomarkers. We
identified hub genes that were both aberrantly methylated and
differentially expressed in CAD patients compared with controls.
Vital hub genes were validated in a case-control study to enhance
the reliability of bioinformatics analysis. Based on the combined
results of bioinformatics analysis and clinical sample validation,
we aimed to ascertain novel feasible PBLs biomarkers and shed
light on their possible roles in the pathogenesis of CAD.

MATERIALS AND METHODS

The methods used in our study mainly contained microarray
data collection, differential expression, and methylation analysis,
functional and pathway enrichment analysis, Protein-protein
interaction (PPI) network establishment, module analysis, and
hub genes identification, followed by experimental validation
in PBLs, correlation analysis, and multivariate stepwise linear
regression analysis. The research flow diagram of this study is
shown in Supplementary Figure S1.

Microarray Data Collection
We retrieved GEO of The National Center for Biotechnology
Information (NCBI) to screen datasets that contained profiling
information about mRNA expressions and DNA methylations
in CAD patients versus controls. A series of datasets were
obtained and only those that met both the inclusion and exclusion
criteria were analyzed. The detailed inclusion criteria were
as follows: (Wood and Eisele, 2017) datasets involved mRNA
expression information or DNA methylation status detected
from PBLs; (Moran et al., 2008) those that contained both
CAD patients and controls; (Gaziano et al., 2017) sample size
was no less than 5 of each subgroup. Besides, datasets were
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excluded if the specimen type was one of the components
of PBLs, such as monocytes, granulocytes, or platelets. Only
two datasets were up to the selection criteria, GSE42148,
and GSE107143. Gene expression profiling array (GSE42148),
measured by the Agilent-028004 SurePrint G3 Human GE
8 × 60K Microarray, provided mRNA expression data from 11
controls with normal electrocardiogram diagnoses and 13 CAD
patients. The series matrix and platform files (GPL13607) were
downloaded from the GEO database. The genome-wide DNA
methylation profiling array (GSE107143) contained information
on DNA methylation status from 8 controls with normal physical
conditions and 8 CAD patients. The data were measured
by Illumina HumanMethylation450 BeadChip and the series
matrix file, as well as the platform file (GPL13534), which were
obtained from the GEO database. In consideration of mRNA
expression array, GSE71226 did not meet the inclusion criteria
with a small sample size of 3 CAD patients and 3 controls,
meaning we only used it to evaluate the discriminating ability of
candidate gene mining.

Differential Expression Analysis
The R package named “limma” was utilized to select differentially
expressed genes (DEGs) from the series matrix file downloaded
from the GEO database (Ritchie et al., 2015). Probes without
matching gene symbols were deleted and genes with multiple
probes were averaged in the subsequent analysis. We took
P < 0.05 and absolute value of log2FC (fold change) > 0.3
as the threshold of significant DEGs. A heatmap based on the
expression data was drawn using the R package “pheatmap.”

Differential DNA Methylation Analysis
AS, one of the mainstream detection platforms for DNA
methylation, Illumina HumanMethylation450 BeadChip covered
roughly 450,000 CpGs that randomly separate in different gene
regions, including TSS1500, TSS200, 5′UTR, 1stExon, body,
3′UTR, and intergenic regions. TSS1500 and TSS200 are regions
from 201 to 1500 bases and 1 to 200 bases of the upstream
of transcriptional start site (TSS), respectively. The “5′UTR
(5′ untranslated region)” is considered as the region between
TSS and the first initiation codon. “1stExon (the first exon)”
is one of the most extensively studied translated regions that
is generally influenced by methylation status. “Body” stands
for the sequence from the first initiation codon to the stop
codon of a gene. The “3′UTR (3′ untranslated region)” is the
area between the stop codon and poly-A tail. The 6 intragenic
regions mentioned above are the main components of a gene
and we took the average of the beta value of CpGs from
the same region as the comprehensive methylation level of
each intragenic region. The limma package of R was used for
identification of differentially methylated CpGs sites (DMCs),
differentially methylated regions (DMRs), and differentially
methylated genes (DMGs) with the threshold P < 0.05 and
log2FC > 0.3. Single CpGs met the threshold were taken as
DMCs, meanwhile, intragenic regions that matched the threshold
were identified as DMRs. Genes with one or more DMRs that
differentially methylated in the same direction were considered
as DMGs. We defined genes that were identified both as

DEGs and DMGs as differentially expressed-methylated genes
(DEMGs). The Upset plot performed by R package “UpSetR”
was utilized to describe the distribution of DMCs in different
intragenic regions (Conway et al., 2017). The locations of DMCs
on chromosomes were visualized by R package “RIdeogram”
(Zhaodong et al., 2019).

Functional and Pathway Enrichment
Analysis
The r package “clusterProfiler” was USED to implement Gene
ontology (GO) enrichment analysis and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) for pathway analysis (Kanehisa
and Goto, 2000; Gene Ontology Consortium, 2006). More
precisely, GO enrichment analysis was carried out within 3
classical subschemas: biological process (BP), cellular component
(CC), and molecular function (MF). Subsequently, we utilized
“ggplot2” for visualization of the results. The cutoff value of
statistical significance was set as P < 0.05.

PPI Network Establishment, a Module
Analysis, and Hub Gene Identification
A PPI network was preliminarily constructed through the Search
Tool for the Retrieval of Interacting Genes (STRING) database, as
a way to explore the inherent relation and regularity of DEMGs.
The cutoff value of the interaction score in the STRING database
was set at 0.4. To make the PPI network more legible, we
used Cytoscape to visualize the network based on interaction
information calculated from STRING (Shannon et al., 2003).
An auxiliary application named Molecular Complex Detection
(MCODE) from Cytoscape was used for module analysis to
identify modules with significant interaction under threshold
MCODE scores > 3, k-score = 2 and nodes numbers > 4.
CytoHubba, another application from Cytoscape, provided 12
algorithms to estimate evidence levels of interaction within genes
from the PPI network (Chin et al., 2014). We summarized these
12 evaluation scores as the comprehensive assessment standard
for screening top hub genes.

Study Population and PBLs Collection
We performed a case-control study to consolidate the expression
status of hub genes filtered through bioinformatics analysis.
PBLs of 40 CAD patients from Zhongnan Hospital of Wuhan
University (Wuhan, China) were collected from December
2018 and July 2019. The diagnostic criterion for CAD was
based on coronary angiography that showed stenosis caused
by atherosclerotic plaque was more than 50% in at least one
coronary artery. Meanwhile, 36 age and sex matched people who
were negative in the examination of ultrasound or coronary CTA
or coronary angiography were enrolled as controls. None of the
participants were diagnosed with the following diseases: cancer,
acute inflammation, hematological system disorders, congenital
heart disease, history of previous myocardial infarction (MI),
hepatic failure, or other severe disorders. The basic information
and clinical characteristics of participants are shown in Table 1.
Our study was authorized by the Medical Ethics Committee of
Zhongnan Hospital of Wuhan University.
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TABLE 1 | Clinical characteristics of subjects in validation study.

Characteristic Controls CAD patients P value

Demographics

Male/Female 17/13 22/8 0.2789

Age (year) 55.27 ± 9.03 59.80 ± 9.26 0.0598

Risk factors

History of HP (yes/no) 9/21 20/10 0.0092

History of DM (yes/no) 1/29 8/22 0.0257

Clinical parameters

TC (mmol/L) 4.25 ± 0.72 4.53 ± 1.45 0.3429

TG (mmol/L) 1.14 ± 0.39 1.89 ± 1.43 <0.001

LDL-C (mmol/L) 2.60 ± 0.60 2.80 ± 1.08 0.3701

HDL-C (mmol/L) 1.41 ± 0.34 1.30 ± 0.47 0.2964

FPG (mmol/L) 5.48 (5.03, 5.73) 5.69 (5.18, 6.90) 0.0740

WBC ( × 109) 5.84 ± 1.33 6.33 ± 1.77 0.2290

Monocyte ( × 109) 0.43 ± 0.11 0.58 ± 0.21 <0.001

Neutrophil ( × 109) 3.31 ± 1.03 3.97 ± 1.28 0.0315

Lymphocyte ( × 109) 1.93 ± 0.51 1.60 ± 0.61 0.0250

LMR (ratio) 4.68 ± 1.17 2.98 ± 1.21 <0.001

NMR (ratio) 7.70 (6.13, 8.85) 6.48 (5.53, 8.90) 0.1973

NLR (ratio) 1.68 (1.30, 2.05) 2.58 (1.94, 3.20) <0.001

Data were showed as mean ± SD, median (25 percentiles, 75 percentiles).
HP, hypertension; DM, diabetes mellitus; TC, total cholesterol; TG, triglycerides;
LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein
cholesterol; FPG, fasting plasma glucose; WBC, white blood cell; LMR, lymphocyte
to monocyte ratio; NMR, neutrophil to monocyte ratio; NLR, neutrophil to
lymphocyte ratio. Entries in bold font indicate statistically significant (P < 0.05).

The mRNA Expression Analysis
RNA was isolated from PBLs of 30 CAD patients and 30 controls
using TRIZOL reagent (Life Technologies, United States). To
assess the concentration and purity of RNA, NanoDrop 2000C
was applied. About 1 microgram RNA of each sample was
used for reverse transcription into complementary DNA (cDNA)
through the PrimeScriptTM RT reagent kit with gDNA Remover
(Takara, Japan). The qPCR was carried out using SYBR Green I
UltraSYBR Mixture (CWBIO, China) on Bio-Rad CFX96 (Bio-
Rad Laboratories, United States). We took glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) as an endogenous reference
gene to normalize the expression level among multiple samples.
The specific sequences of each pair of primers were available
in Supplementary Table S1. All experiments were performed
twice. Relative gene expression status was calculated by the
2−1Cq method, in which 1Cq stands for the difference between
the mean Cq (quantification cycle) of a target gene and the
endogenous reference gene (GAPDH).

The DNA Methylation Analysis
Genomic DNA was extracted from the PBLs of 30 CAD patients
and 30 controls using standard phenol/chloroform extraction.
DNA was quantified by the NanoDrop-2000C (Thermo Fisher
Scientific, United States) and stored at -20◦C until use. Due
to the limited volume of the PBLs, PBLs from 10 CAD
patients and 6 controls were only utilized to extract DNA,
and PBLs from 10 CAD patients and 6 controls were only
used to extract RNA. PBLs from 20 CAD patients and 24

controls were used to extract both DNA and RNA. Methylation-
dependent restriction enzyme digestion based quantitative PCR
(MDRE-qPCR) and methylation-sensitive restriction enzyme
digestion based quantitative PCR (MSRE-qPCR) were adopted
in methylation detection (Redshaw et al., 2014). Methylation-
dependent restriction enzyme MspJI and FspEI (New England
Biolabs, United States) were used in the analysis of FN1 and
PTEN, respectively. POLR3A was detected using methylation-
sensitive restriction enzyme Hin6I (SibEnzyme, China). The
sequences of primers used in the experiments were listed in
Supplementary Table S1. The methylation level was calculated
by 100% × [1–21Cq(undigested−digested)] in MDRE-qPCR, while
100% × 21Cq(undigested−digested) was the formula used in MSRE-
qPCR (Zhang et al., 2015). To verify the efficacy of enzyme
digestion, Methylated HCT116 gDNA, and Unmethylated
HCT116 DKO gDNA (Takara, China) was adopted as the positive
control and the negative control, respectively, in each experiment.
Only when the methylation levels of positive controls were close
to 1 and the methylation levels of negative controls were close
to zero, the enzyme digestion could be taken as eligible. All
experiments were performed twice to enhance the dependability.

Statistical Analysis
Mean ± standard deviation (SD) was utilized to describe
the basic information and clinical characteristics that were
normal distributed continuous variables. Abnormal distributed
continuous variables were depicted as the median and
inter-quartile range. Categorical variables were exhibited by
frequencies. We applied a student’s t test or Mann-Whitney
U tests to compare the difference between 2 groups based on
the distribution type. Chi-square test or Fisher’s exact test were
performed, enabling comparison of categorical variables between
groups. The Pearson or Spearman test was used for correlation
analysis. We utilized multivariate stepwise linear regression to
eliminate interference factors in regression analysis. The receiver
operation curve (ROC) was drawn to appraise the diagnostic
value of hub genes. Youden’s index was used to screen out the
optimum cutoff point of sensitivity (Se) and specificity (Sp). All
statistical analyses of this research were conducted through SPSS
version 25.0 (SPSS Inc., United States) and GraphPad Prism
8.0 (GraphPad Inc., United States). A statistically significant
threshold of two-sided P value was set at 0.05.

RESULTS

General Characteristics of DEGs, DMCs,
DMGs, and DEMGs
A total of 3351 DEGs were identified, among which 1863 genes
were up-regulated, and 1488 genes were down-regulated in CAD
patients’ PBLs compared with controls’. Another microarray
dataset from GEO (GSE107143) was used to explore DMCs
among approximately 450, 000 CpGs in 8 CAD patients and
8 controls. In aggregate, 7694 DMCs were identified and 3362
of DMCs were hypermethylated, and the other 4332 DMCs
were hypomethylated according to the log2FC of delta of beta
value. The distribution of DMCs on chromosomes is exhibited
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in Figure 1. Interestingly, none of DMCs were found on sex
chromosomes nor the short arms of chromosomes 13, 14, 15,
21, and 22. Meanwhile, it could be observed that DMCs in
regions around centromeres were relatively sparse compared
to other chromosome regions. To further investigate whether
the difference in DMCs density distribution was significant
statistically, we calculated the DMCs density in centromere
regions and other chromosome regions. We took the 11.1
subbands from both the short arm and the long arm of one
chromosome as the centromere region based on genome version
GRCh37.p13. As shown in Table 2, the DMCs density was
much lower in centromere when compared with other regions
(P < 0.001), which indicates that there might be a correlation
between chromosome regions and gene methylation status.

To probe into the potential effect of the whole intragenic
regions’ methylation status on gene function, we considered
genes with one or more DMRs that differentially methylated in
the same direction as DMGs. About 2413 hypermethylated genes
and 2952 hypomethylated genes were classified based on DMRs.
Subsequently, 135 genes were identified as up-regulated and
hypermethylated (up-hyper genes), 212 genes were confirmed as
up-regulated and hypomethylated (up-hypo genes), 100 genes
were taken as down-regulated and hypermethylated (down-
hyper genes), 88 genes were considered as down-regulated and
hypomethylated (down-hypo genes) by overlapping DEGs and
DMGs (Figure 2A).

Our integration analysis combined both expression and
methylation data. The sensitivity and specificity of identifying
potential functional genes might be affected when compared with
traditional one type microarray data mining. Another expression
microarray GSE71226 was analyzed as a quality assessment.

As displayed in Figure 2B, there were 281 (2.2%) overlapped
up-regulated genes, and 234 (1.8%) overlapped down-regulated
genes in overlaps of GSE42148 and GSE71226 expression arrays.
By contrast, a combination of expression and methylation arrays
identified overlapped DEMGs with 135 (1.7%) up-hyper genes
and 88 (1.1%) down-hypo genes (Figure 2A).

In total, 535 differentially expressed and methylated genes
were screened out as DEMGs. It was worth noting that up-
hyper genes and down-hypo genes occupied virtually half of
DEMGs, which indicated the multidirectional regulation of
methylation on gene function that is worth further study.
Heatmaps were formed according to the hierarchical clustering
of gene expressions or methylations levels to exhibit the top
50 ranked DEMGs by log2FC, respectively (Figures 2C,D). The
full list of DEGs, DMCs, DMGs, and DEMGs can be found in
Supplementary Table S2.

Distributions of DMCs in Intragenic
Regions
DMCs were inhomogenously distributed in 6 intragenic regions
of DMGs and DEMGs. As Figure 3A,B show, DMCs located in
TSS1500 and the body of both DMGs and DEMGs accounted
for over 50% of the total DMCs numbers. In contrast, there was
less than 3% DMCs distributed in 3′UTR. In terms of linear
lengths, the TSS1500 body is much longer than TSS200 and
5′UTR, and it is more reasonable to take TSS200 and 5′UTR
as the high enrichment areas of DMCs. These results indicated
the significant correlation of TSS200 and 5′UTR methylation
status and gene expression. A similar distribution mode can be
found in 4 kinds of DEMGs (Figure 3C). It can be observed

FIGURE 1 | Chromosome distributions of DMCs. Hypermethylated DMCs were marked in red, hypomethylated DMCs were marked in blue.
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TABLE 2 | Density distribution of intragenic DMCs in centromere and other chromosome regions.

Chromosome
ID

Centromere
length (Mb)

Other regions
length (Mb)

DMCs in
centromere

DMCs in other
regions

DMCs density in
centromere

(n/Mb)

DMCs density in other
regions (n/Mb)

P value

1 7.40 241.85 0 805 0.00 3.33 <0.001*

2 6.30 236.68 1 486 0.16 2.05

3 6.00 192.02 2 465 0.33 2.42

4 4.50 186.65 1 294 0.22 1.58

5 4.60 176.32 0 445 0.00 2.52

6 4.60 166.52 0 607 0.00 3.65

7 3.70 155.44 0 440 0.00 2.83

8 5.00 141.36 1 257 0.20 1.82

9 3.40 137.81 0 172 0.00 1.25

10 4.30 131.23 2 355 0.47 2.71

11 4.10 130.91 0 483 0.00 3.69

12 4.90 128.95 1 422 0.20 3.27

13 3.20 111.97 0 149 0.00 1.33

14 3.00 104.35 0 213 0.00 2.04

15 4.90 97.63 0 238 0.00 2.44

16 4.00 86.35 0 322 0.00 3.73

17 3.60 77.60 2 476 0.56 6.13

18 3.60 74.48 1 109 0.28 1.46

19 4.20 54.93 1 519 0.24 9.45

20 3.80 59.23 1 215 0.26 3.63

21 3.40 44.73 0 53 0.00 1.18

22 5.70 45.60 4 152 0.70 3.33

*Paired t test between DMCs density in centromere and DMCs density in other regions. Mb, million base pair.

that DMCs in 6 intragenic regions were mostly possessed by up-
hypo genes, which manifested up-hypo genes as major roles in
epigenetic regulation of CAD. These results indicate a significant
correlation between TSS200 and 5′UTR methylation status and
gene expression.

To demonstrate relevance among intragenic regions, UpSet
plots were drawn to describe the methylation status of
a certain DMGs with one or more DMRs. Over 70%
of both hypermethylated genes and hypomethylated genes
were single region-specific in TSS1500, TSS200, 5′UTR, or
body (Figures 3D,E), while DMGs with multiple DMRs
were mainly occupied by 5′UTR and 1stExon, TSS1500
and TSS200, TSS200, and 5′UTR. Even more noteworthy is
the fact that approximately 6% of DMGs had 3 or more
differentially methylated regions, which represented a general
differential methylation status of a certain gene in CAD patients
compared to controls.

GO Functional and KEGG Pathway
Enrichment Analysis of DEMGs
We performed GO functional and KEGG pathway enrichment
analysis on up-hyper, up-hypo, down-hyper, down-hypo
genes separately to explore the inner connection of DEMGs.
The top 5 GO enrichment terms were illustrated in Table 3,
from which we could find DEMGs enriched in numerous
processes. Up-hyper genes were enriched in the biological
process and 2 terms were associated with actin cytoskeleton

reorganization. Four-fifths of terms enriched on up-hypo
genes were related to organelle membrane or granule
membrane. Notably, the rest 1 term of up-hypo genes was
neutrophil activation, which enriched most genes among
the top 5 terms. AS for down-hyper genes, GO terms
were majorly centered on DNA-directed RNA polymerase
activity, which indicates a potential connection between
DNA methylation and mRNA expression. Besides, 2 terms of
down-hypo genes were involved in the regulation of calcium
ion transportation.

Table 4 exhibits top KEGG pathways of 4 kinds DEMGs.
Enrichment analysis suggested up-hyper genes were significantly
enriched in the VEGF signaling pathway and adipocytokine
signaling pathway that might link with blood lipids. Up-hypo
genes are mainly enriched in autophagy, vitamin digestion
and absorption, and PI3K-Akt signaling pathway. There were
fewer KEGG pathways enriched in down-hyper and down-hypo
genes by comparison with up-regulated DEMGs. Only RNA
polymerase and Fanconi anemia pathways, were identified in
down-hyper genes. Down-hypo genes were associated with other
types of O-glycan biosynthesis, cytosolic DNA-sensing pathway,
mRNA surveillance pathway, and non-homologous end-joining.

PPI Network Establishment, a Module
Analysis, and Hub Genes Identification
To excavate the interaction among DEMGs, PPI networks
based on STRING were visualized by Cytoscape for 4 kinds
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FIGURE 2 | Identification of differentially expressed-methylated genes. (A) Venn plot of differentially expressed genes in dataset GSE42148 and differentially
methylated genes in dataset GSE107143. (B) Venn plot of differentially expressed genes in dataset GSE42148 and GSE71226. (C,D) Representative heat map of
the top 50 DEMGs in dataset GSE42148 and GSE107143.

of DEMGs, respectively. The radius of each gene circle in
the PPI network was positively associated with the absolute
value of log2FC of mRNA expression between CAD patients
and controls. Analogously, the color depth of each gene
circle represents the methylation status of genes in the PPI
network. The darker the color, the greater the difference
of methylation levels between 2 study populations. Module
analysis was performed to simplify the PPI network and focus
on certain modules with stronger interactions. Subsequently,
hub genes were filtered by 12 algorithms based on the
bioinformatics analysis.

As displayed in Figure 4A,B, the top 10 hub genes
of up-hyper genes are FN1, STAT3, CDC42, DDX5, ABL1,
PTGS2, PCSK2, PNISR, XRN2, and SF1. PPI network, top
3 modules, and top 10 up-hypo hub genes were shown
in Figures 4C,D. More precisely, the top 10 hub genes of
up-hypo genes including PTEN, KRAS, MMP9, MAP1LC3A,
ITCH, TGOLN2, CD34, KIT, WDFY4, and SPTBN1. The same
module analysis and hub gene screening were performed on
down-hyper genes, identifying the top 10 hub genes were
POLR3A, HIST1H4B, CTTNBP2, EED, CETN3, TUBE1, FHL2,
GRID2, GMNN, and MRPL39 (Figures 4E,F). While the top
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FIGURE 3 | Consolidation analysis results of gene region distributions of intragenic DMCs. (A) Bar plot for intragenic DMCs in different regions of DMGs. (B) Bar plot
for intragenic DMCs in different regions of DEMGs. (C) Bar plot for intragenic DMCs in different regions of four DEMGs groups. (D) UpSet plot for intragenic DMCs in
different regions of hypermethylated genes. (E) UpSet plot for intragenic DMCs in different regions of hypomethylated genes.

10 hub genes based on interaction information from the PPI
network of down-hypo genes were UBR1, TREX1, CDKN1C,
UBE2T, ID3, DHX36, LFNG, LIMD1, EPHB3, and AIM2
(Figures 4G,H).

GO Functional Enrichment Analysis of
Hub Genes
To illustrate the functional interrelation of hub genes, GO
enrichment analysis was conducted in the top 10 hub genes of 4

DEMGs subgroups (Figure 5). Up-hyper hub genes were majorly
enriched in terms of acute-phase response and positive regulation
of the post-transcription. Regulation of synaptic function and
membrane biogenesis were the main terms enriched in up-
hypo genes. Intriguingly, down-hyper genes were observed to be
associated with the regulation of histone H3-K27 methylation
and participated in the regulation of postsynaptic in ways
that were similar to up-hypo genes. Terms enriched in down-
hypo genes were mostly related to response to interferons and
urogenital system development.
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TABLE 3 | List of top enriched GO terms of 4 DEMGs groups.

Category Terms ID Description Gene count % P value Genes

Up-hyper genes BP GO:0034446 Substrate adhesion-dependent cell spreading 6 5.77 2.02E-05 ABL1, CDC42, FER, FN1, MICALL2,
TRIOBP

BP GO:2000251 Positive regulation of actin cytoskeleton
reorganization

3 2.88 1.52E-04 ABL1, BAIAP2L1, CDC42

BP GO:0042749 Regulation of circadian sleep/wake cycle 3 2.88 2.08E-04 CHRNB2, NR1D1, PER3

BP GO:0031532 Actin cytoskeleton reorganization 5 4.81 2.52E-04 ABL1, BAIAP2L1, CDC42, FER,
MICALL2

BP GO:2000637 Positive regulation of gene silencing by miRNA 3 2.88 2.74E-04 DDX5, STAT3, TRIM71

Up-hypo genes CC GO:0016323 Basolateral plasma membrane 11 6.01 6.06E-06 ABCC1, AQP9, ATP6V1B1, B4GALT1,
CD34, EZR, FLOT2, KCNQ1, MAP7,
SLC19A1, SLC23A1

CC GO:0035579 Specific granule membrane 7 3.83 2.22E-05 CD59, MMP25, MS4A3, PLAUR,
PLD1, PTPRJ, VAMP1

CC GO:0030667 Secretory granule membrane 12 6.56 2.33E-05 B4GALT1, CD59, CEACAM6, FLOT2,
ICA1, MMP25, MS4A3, PLAUR, PLD1,
PTPRJ, SLC11A1, VAMP1

CC GO:0033116 Endoplasmic reticulum Golgi intermediate
compartment membrane

6 3.28 5.11E-05 AREG, CD59, CSNK1D, ERGIC1,
MPPE1, NAT8

BP GO:0042119 Neutrophil activation 15 8.62 6.84E-05 B4GALT1, CAP1, CD59, CEACAM6,
CXCL6, IMPDH1, MMP25, MMP9,
MPO, MS4A3, OLFM4, PLAUR, PLD1,
PTPRJ, SLC11A1

Down-hyper genes MF GO:0003899 DNA-directed 5′-3′ RNA polymerase activity 3 3.53 9.99E-04 CD3EAP, POLR3A, ZNRD1

CC GO:0030008 TRAPP complex 2 2.30 1.23E-03 TRAPPC4, TRAPPC5

CC GO:0055029 Nuclear DNA-directed RNA polymerase
complex

4 4.60 1.29E-03 CD3EAP, POLR3A, RPRD1A, ZNRD1

MF GO:0034062 5′-3′ RNA polymerase activity 3 3.53 1.31E-03 CD3EAP, POLR3A, ZNRD1

MF GO:0097747 RNA polymerase activity 3 3.53 1.31E-03 CD3EAP, POLR3A, ZNRD1

Down-hypo genes BP GO:0034644 Cellular response to UV 4 5.80 2.40E-04 CRIP1, DHX36, TREX1, TRIAP1

BP GO:0002244 Hematopoietic progenitor cell differentiation 5 7.25 3.71E-04 C12orf29, DHX36, TCF12, TREX1,
ZBTB24

BP GO:0051281 Positive regulation of release of sequestered
calcium ion into cytosol

3 4.35 4.33E-04 F2RL3, P2RY6, TRPC1

BP GO:0045668 Negative regulation of osteoblast differentiation 3 4.35 8.86E-04 HOXA2, ID3, LIMD1

BP GO:0010524 Positive regulation of calcium ion transport into
cytosol

3 4.35 1.05E-03 F2RL3, P2RY6, TRPC1
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Clinical Characteristics of Subjects in
the Validation Study
The clinical parameters of CAD patients and controls are
summarized in Table 1. Groups of participants were matched
in terms of gender and age. More CAD patients suffered
from hypertension (HP) (P = 0.009) and diabetes mellitus
(DM) (P = 0.025) compared with the controls. Among
the serum lipid parameters, no conspicuous differences were
observed in total cholesterol (TC), low density lipoprotein
cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-
C). While the level of triglyceride (TG) was much higher in
CAD patients (P < 0.001), the leucocyte differential count
revealed a significant increase of monocytes (P < 0.001)
and neutrophils (P = 0.031), but a prominent decrease of
lymphocytes (P = 0.025) in CAD patients. Parameters based
on leucocyte differential counts such as the lymphocyte to
monocyte ratio (LMR) (P < 0.001) were decreased while the
neutrophil to lymphocyte ratio (NLR) (P < 0.001) was increased
in CAD patients.

Hub Genes’ Expression and Methylation
Status in the Validation Study
In order to validate the significance of the hub genes identified
during bioinformatics analysis, the mRNA expression levels
of top 1 hub genes from 4 DEMGs groups were detected
by qPCR. In accord with the bioinformatics results, the FN1
(P = 0.001) from up-hyper genes and PTEN (P < 0.001)
belonged to up-hypo genes and were remarkably upregulated
in CAD patients when compared with controls (Figures 6A,B).
The mRNA expression level of POLR3A, the top 1 hub gene
of down-hyper genes, was conspicuously decreased in patients
with CAD, which was also consistent with the bioinformatics
results (P = 0.004, Figure 6C). Nevertheless, the foremost
hub gene UBR1 from down-hypo genes was not differentially
expressed between CAD patients and controls (P = 0.687,
Figure 6D).

When considering the hub genes from DEMGs, we speculated
that the significant expression differences of FN1, PTEN, and
POLR3A were correlated with the aberrant DNA methylation
status in CAD patients. According to the results of our
bioinformatics analysis, FN1 was hypermethylated in 5′UTR,
PTEN was hypomethylated in 5′UTR, and POLR3A was
hypermethylated in TSS200. We detected the methylation
status of corresponding regions by MDRE-qPCR and MSRE-
qPCR. As displayed in Figure 6E, the 5′UTR of FN1 was
prominently hypermethylated in CAD patients (P < 0.001).
The methylation level was lower in the 5′UTR of PTEN in
patients with CAD (P = 0.014, Figure 6F). TSS200 of POLR3A
showed higher methylation status in CAD patients (P = 0.031,
Figure 6G).

Meanwhile, the methylation of FN1 was positively related with
the expression level (r = 0.379, P = 0.011, Figure 6H). Negative
correlation between PTEN methylation and expression was
demonstrated in Figure 6I (r = −0.338, P = 0.025). However, no
obvious correlation was found in the methylation and expression
of POLR3A (r =−0.125, P = 0.418, Figure 6J).
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FIGURE 4 | PPI network, top 3 modules, and top 10 hub genes of 4 DEMGs groups. (A,B) Up-hyper genes. (C,D) Up-hypo genes. (E,F) Down-hyper genes. (G,H)
Down-hypo genes.

Predictive Validity of Hub Genes
To evaluate the predictive validity of hub genes as potential
biomarkers in CAD, ROC analysis was performed based on the
mRNA expression and DNA methylation levels of hub genes
separately or combinedly. As displayed in Figure 6K and Table 5,
the expression (AUC = 0.738, P = 0.002) and methylation
(AUC = 0.839, P < 0.001) of FN1 were with moderate diagnostic
value. The predictive validity of FN1 was improved with the
combination of expression and methylation data (AUC = 0.894,
P < 0.001). Moderate diagnostic value was verified in the
expression of PTEN (AUC = 0.776, P < 0.001, Figure 6L).
Although the methylation of PTEN had lower predictive value
(AUC = 0.683, P = 0.015), the predictive value was remarkably
increased when combined with the expression data (AUC = 0.856,
P < 0.001). POLR3A showed comparatively lower diagnostic
validity in both expression (AUC = 0.691, P = 0.011) and
methylation levels (AUC = 0.662, P = 0.031, Figure 6M). The
diagnostic ability of POLR3A was improved by taking expression
and methylation data into integration (AUC = 0.779, P = 0.002).

Correlations Between Hub Genes
Expressions and Clinical Characteristics
Correlation analysis and multivariate stepwise linear regression
analysis were performed to investigate the underlying connection
between the clinical characteristics of all enrolled subjects and
expression levels of hub genes. As displayed in Table 6, both FN1
(r = 0.268, P = 0.039) and PTEN (r = 0.326, P = 0.011) were
identified as positively correlated with monocyte counts. LMR
was observed to be negatively related with FN1 (r = −0.255,
P = 0.049) and PTEN (r = −0.315, P = 0.014), and positively
correlated with POLR3A (r = 0.288, P = 0.026). Besides, PTEN

was reversely associated with NMR (r = −0.311, P = 0.016) and
the expression of POLR3A decreased with aging (r = −0.320,
P = 0.013). In addition, although the expression of UBR1 was
not confirmed to be different between CAD patients and controls,
a prominent reverse correlation was verified between UBR1 and
TG when all subjects were involved (r =−0.312, P = 0.012).

After adjustment of LMR by multivariate stepwise linear
regression, there still existed a positive correlation of FN1 with
monocyte counts (β = 0.268, P = 0.039). When eliminated
the interference of LMR and NMR, PTEN was still associated
with monocyte amounts (β = 0.326, P = 0.011), while
POLR3A remained related to age (β = −0.320, P = 0.013)
after adjusting LMR.

DISCUSSION

Identify epigenetic regulation patterns and certain biomarkers
from PBLs would be conducive to the diagnosis, therapy,
and monitor of CAD in a non-invasive approach. In this
study, we filtrated genes that were both discrepantly expressed
and methylated in CAD patients compared with controls.
Pathways enriched by these genes were demonstrated and
hub genes were screened out based on the PPI network. To
verify the results of bioinformatics data analysis, expression
and methylation levels of top hub genes were experimentally
compared in CAD patients and controls. Furthermore, we
investigated methylation patterns of different gene regions and
gave evidence of the most vulnerable region to methylation in
CAD. The differential expressions of top hub genes filtered from
DEMGs were associated with altered DNA methylation status,
which shed light on the underlying regulatory mechanism of
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FIGURE 5 | GO functional enrichment analysis of the top 10 hub genes of 4 DEMGs groups. (A) Up-hyper hub genes. (B) Up-hypo hub genes. (C) Down-hyper hub
genes. (D) Down-hypo hub genes.

DNA methylation in CAD and helped identify the novel nucleic
acid biomarkers.

As the chromosome distribution map exhibited, differentially
methylated CpGs covered almost every region of each
chromosome. This can be regarded as the universality of
methylated regulation in the pathogenesis of CAD (Deng et al.,
2018). However, no DMCs were observed on sex chromosomes
in our study, and a similar phenomenon was also observed in
another published study of Parkinson’s disease (Wang et al.,
2019). We speculated this was partly due to the relatively
short liner length and fewer CpG sites on sex chromosomes.
Meanwhile, it is interesting to note that DMCs distributed
in regions near centromeres were relatively fewer than other
regions. The phenomenon might be partly attributed to the
supercoiling structure and hyper-reiterated DNA sequence
around the centromeres (Ichikawa et al., 2017).

Numerous published studies took promoters as key
differentially methylated regions in CAD, while other intragenic
regions were less concerned (Heidari et al., 2019; Indumathi et al.,
2019). Recently, a few studies have demonstrated methylation

sites in the gene body or TSS1500 were also essential to the
pathogenesis of CAD (Liu et al., 2017). Our research confirmed
that the gene body and TSS1500 possessed almost half of DMCs,
no matter in DMGs or DEMGs. Nevertheless, TSS200 and
5′UTR were the most enriched intragenic areas of DMCs when
we considered the linear length. A portion of hypermethylation
and hypomethylation genes showed discrepant methylation
status in both 5′UTR and 1stExon, or TSS1500 and TSS200,
or TSS200 and 5′UTR. Given the adjacent spatial positions of
the 3 pairs regions, a rational inference could be raised that the
methylation status of CpGs was spatiality and regionality. We
divided DEMGs into 4 groups and demonstrated up-hypo genes
as the major part functioning in the progress of CAD.

Contrary to the conventional concept that DNA methylation
always negatively regulates gene expression, our study found
that up-hyper genes and down-hypo genes made up 42%
of DEMGs. The up-hyper and down-hypo genes have been
reported in a few published studies. About 43% of 32 prognostic
genes showed a significant positive correlation between the
expression level and the DNA methylation status in breast
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FIGURE 6 | Relative expression, methylation, and ROC of top hub genes from 4 DEMGs subgroups. Expression level in 30 CAD patients and 30 controls. (A) FN1.
(B) PTEN. (C) POLR3A. (D) UBR1. Methylation levels in 30 CAD patients and 30 controls. (E) FN1. (F) PTEN. (G) POLR3A. Correlation between expression and
methylation. (H) FN1. (I) PTEN. (J) POLR3A. ROC is based on expression and methylation separately or combined. (K) FN1. (L) PTEN. (M) POLR3A. All
experiments were performed twice. *P < 0.05, **P < 0.01, ***P < 0.001.

cancer (Gyõrffy et al., 2016). In another report of lung cancer,
the correlations between DNA methylation and gene expression
were detected for approximately 750 genes, but for one-third of
these, the correlations were positive (Bjaanæs et al., 2016). More
than 30% of significant methylation-expression correlations
were positive in human monocytes (Liu et al., 2013), however,
no convincing explanation for this has yet been raised. We
speculate that the aberrant methylated regions might encompass
potential cis-acting elements, such as enhancers and silencers.
The interaction between cis-acting elements and trans-acting
elements can be multidirectional, depending on their characters
in gene expression regulations. The regulatory mechanisms
will become more complicated when the cis-acting elements
have a different methylation status, given that methylation
may influence the combining capacity of transcription factors
through the changes of DNA spatial structure. These findings
and hypotheses suggest a great diversity and complexity of
epigenetic regulatory mechanisms and highlight the need for
further molecular investigations.

Kyoto Encyclopedia of Genes and Genomes pathway
enrichment analysis suggested up-hyper genes mainly
enriched in adipocytokine signaling pathway and VEGF
signaling pathway. This was consistent with previous
studies in which increased expression of the adipocytokine
omentin was detected in the epicardial adipose tissue of
CAD patients and the unbalance of isoforms of VEGF
was associated with the complexity and severity of CAD
(Harada et al., 2016; Shibata et al., 2018). Up-hypo genes are
primarily enriched in neutrophil activation and it has been
confirmed in several studies that an increased neutrophil
count was connected with the severity of CAD (Li et al.,
2018). Intriguingly, hub genes belonged to down-hyper
genes and were directly correlated with the regulation of
histone H3-K27 methylation according to GO enrichment
analysis, which indicated an underlying association between
DNA methylation and histone methylation. Regulation of
calcium ion transport into the cytosol was the term enriched
by down-hypo genes and has been proved to affect the
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TABLE 5 | ROC analysis based on the expression and methylation status of hub genes.

Hub gene Classification AUC 95% CI P value Se (%) Sp (%)

FN1 Expression 0.738 0.614–0.861 0.002 93.333 43.333

Methylation 0.839 0.740–0.938 <0.001 86.667 70.000

Combination 0.894 0.801–0.987 <0.001 95.000 75.000

PTEN Expression 0.776 0.656–0.895 <0.001 93.333 56.667

Methylation 0.683 0.549–0.817 0.015 76.667 53.333

Combination 0.856 0.746–0.967 <0.001 90.000 66.667

POLR3A Expression 0.691 0.558–0.824 0.011 36.667 96.667

Methylation 0.662 0.525–0.800 0.031 96.667 36.667

Combination 0.779 0.645–0.913 0.002 80.000 66.667

AUC, area under the receiver operating characteristic curves; Se, sensitivity; Sp, specificity.

progress of CAD through the coronary smooth muscle
(Badin et al., 2018).

Protein-protein interaction networks were established to
excavate the interaction among DEMGs and filtrate the most
central 10 hub genes from each group. Although these top
hub genes were only enriched in several items from GO
enrichment analysis, many of these enriched items were validated
by published large-scale transcriptomics sequencing and DNA
methylation studies in CAD. For instance, dysregulation of
cell-substrate adhesion has been demonstrated to accelerate
the progress of CAD by promoting macrophages migration in
both peripheral blood and aortic tissue, which was accordant
with our findings in up-hyper hub genes (Sinnaeve et al.,
2009; Rask-Andersen et al., 2016). We observed that up-
hypo hub genes were enriched in response to metal ion, a
response also found in both peripheral blood and adipose
tissue from CAD patients (Ek et al., 2016; Vacca et al., 2016).
Besides, activation of the immune system was the main item
that down-hypo hub genes enriched in, and similar results
were indicated in plaques from the internal mammary artery,
coronary artery, and great saphenous vein (Elashoff et al., 2011;
Nazarenko et al., 2015). These findings indicate the molecular
mechanism intercommunity in various tissues when organisms
suffer from CAD.

Because of the small sample size of datasets obtained
from the GEO database and accumulative deviation from
bioinformatics analysis, we performed laboratory verification
with a considerable sample size for each top 1 hub genes
in each DEMGs subgroup. The results suggested accordant
expression and methylation levels of FN1, PTEN, and POLR3A in
comparison with bioinformatics analysis results. The expression
of FN1 was positively related to the methylation level.
Negative relevance was found between the expression and
methylation status of PTEN. These significant correlations
hinted that aberrant DNA methylation was involved in the
regulation of FN1 and PTEN expression in CAD patients.
To further investigate the mechanism of FN1, PTEN, and
POLR3A in the pathogenesis of CAD, correlation analysis and
multivariate stepwise linear regression analysis were performed.
FN1 was positively correlated with monocyte counts. A positive
correlation was also observed in PTEN with monocyte amounts.
POLR3A was negatively related to age. These results indicated

that FN1 and PTEN might function in the system infection since
the monocytosis was the acknowledged systemic infection index.

Inflammatory cytokines activated TGF-β signaling pathway,
which promoted the expression of FN1 in human endothelial
cells (Chen et al., 2015). Fibronectin, encoded by FN1, was
enriched in vascular subendothelial basement membrane during
the early process of atherosclerotic plaque formation and
aggravated the monocytes recruitment (Al-Yafeai et al., 2018).
The significant up-regulation of FN1 was positively related
to monocyte amounts in CAD patients. In considering the
significant correlation between the expression and 5′UTR
methylation of FN1, it could be inferred that the aberrant
5′UTR methylation status of FN1 induced the over expression
of FN1 and triggered the recruitment of monocytes in CAD
patients. However, the methylation status of 5′UTR of FN1
was positively related to the expression level, which was
opposite to the conventional concept that DNA methylation
was always negatively correlated with gene expressions. Since
the 5′UTR of FN1 was hypermethylated, the upstream of FN1
might also be hypermethylated. We speculated the upstream
of FN1 encompassed silencers, which were incapacitated due
to hypermethylation. Further studies are needed to verify the
hypothesis. Vascular endothelial cell injury, caused by chronic
inflammation in atherosclerosis, accelerated atherosclerotic
plaque formation. A series of microRNAs could bind to
the 3′UTR of PTEN, altering the proliferation of vascular
endothelial cells through the PI3K-Akt pathway and influencing
the procession of CAD (Wang et al., 2017). Previous reports have
suggested that PTEN was up-regulated in the peripheral blood
mononuclear cells of CAD patients, which was consistent with
our findings in PBLs and confirmed the reliability of our research
(Nariman-Saleh-Fam et al., 2019). Besides the involvement of
microRNAs in the regulation of PTEN, we proved that the 5′UTR
methylation of PTEN might also participate in the regulation
network. Currently, no study was carried out to research the
function of POLR3A in CAD or atherosclerosis. POLR3A was
reported to mainly trigger leukodystrophy (Choquet et al., 2017).
The correlation between POLR3A methylation and expression
was not statistically significant, hinting there might be other
elements that participated in the expression regulation of
POLR3A, such as the wildly reported POLR3A mutations,
miRNAs and transcript factors. The aberrant expression and

Frontiers in Genetics | www.frontiersin.org 14 September 2020 | Volume 11 | Article 778

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00778
Septem

ber7,2020
Tim

e:21:31
#

15

Zhang
etal.

D
ifferentially

E
xpressed-M

ethylated
B

iom
arkers

in
C

A
D

TABLE 6 | Correlation analysis and multivariate stepwise linear regression analysis of gene expression with clinical parameters of all participants.

Characteristics FN1 (n = 60) PTEN (n = 60) POLR3A (n = 60) UBR1 (n = 60)

r P value β P value r P value β P value r P value β P value r P value β P value

Age 0.221 0.090 0.134 0.308 −0.320 0.013 −0.320 0.013 −0.223 0.087

Gender −0.114 0.385 −0.087 0.508 0.030 0.817 0.099 0.449

History of HP 0.083 0.530 0.141 0.284 −0.219 0.093 −0.140 0.285

History of DM 0.151 0.250 0.019 0.884 0.050 0.707 −0.143 0.276

TC 0.092 0.494 0.037 0.784 0.124 0.358 0.164 0.224

TG 0.192 0.153 0.123 0.361 −0.071 0.598 −0.312 0.012 −0.312 0.012

LDL-C 0.052 0.701 0.014 0.918 0.145 0.283 0.132 0.327

HDL-C −0.129 0.341 −0.150 0.267 0.042 0.759 0.194 0.148

WBC −0.086 0.512 −0.066 0.619 −0.021 0.871 −0.030 0.818

Monocyte 0.268 0.039 0.268 0.039 0.326 0.011 0.326 0.011 −0.089 0.497 0.022 0.866

Neutrophil 0.004 0.974 0.070 0.593 −0.102 0.439 −0.102 0.440

Lymphocyte 0.144 0.271 0.089 0.500 0.207 0.113 0.113 0.390

LMR −0.255 0.049 −0.216 0.055 −0.315 0.014 −0.203 0.086 0.288 0.026 0.104 0.128 0.075 0.568

NMR −0.125 0.342 −0.311 0.016 −0.235 0.069 0.046 0.730 −0.136 0.301

NLR 0.230 0.077 0.025 0.847 −0.185 0.157 −0.120 0.361

Entries in bold font indicate statistically significant (P < 0.05).
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methylation of POLR3A may indicate a new target for CAD,
while the regulatory mechanisms still need further investigation.

In summary, our study consolidated both mRNA expression
and DNA methylation microarrays of PBLs in CAD into
bioinformatics analysis and executed experimental validation.
The methylation patterns of CAD were profiled based on the
distribution of DMCs in intragenic regions. FN1, PTEN, and
POLR3A were screened as top hub genes through bioinformatics
analysis and were confirmed through subsequent experimental
verification in a Chinese case-control study. Further molecular
and clinical experiments with a larger sample size are needed
to illuminate the underlying mechanism of the differential
expression and methylation of FN1, PTEN, and POLR3A in the
pathogenesis of CAD.
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