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The rubella virus nonstructural protease recognizes
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Summary. The substrate requirement for rubella virus protease trans-activity
is unknown. Here, we analyzed the cleavability of RV P200-derived substrates
varying in their N-terminal lengths (72–475 amino acids) from the cleavage site
by the RV protease trans-activity. Only substrates with at least 309 amino acid
residues N-terminal to the cleavage site were able to undergo cleavage. Further,
rubella sequence was found to be necessary in the N-terminal region of the
substrate, whereas a heterologous sequence C-terminal to the cleavage site was
tolerated. These results demonstrated a requirement for residues located between
amino acids 994–1102 of the RV P200 polyprotein, besides its cleavage site for RV
protease trans-activity. This region overlaps with the starting site of the essential
cis-protease activity of RV P200 polyprotein. This is a novel observation for a
viral protease of the family Togaviridae.

Introduction

A number of positive-stranded RNA viruses employ viral nonstructural polypro-
tein processing as a strategy for genome expression by encoding their own (viral)
proteases [5, 7, 14]. Thus, in order to achieve the expression of multiple proteins
from a single message that are essential for regulation of viral replication and
biogenesis, proteolysis of the viral polyprotein precursor is an essential event
in most of the positive-strand RNA viruses [14, 16]. This is in contrast to the
mRNAs of their eukaryotic host cells, which mostly code for single proteins
[16]. In alphaviruses and rubella virus, members of the family Togaviridae, two
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polyproteins are expressed: the nonstructural polyprotein, directly expressed from
the genomic RNA, and another polyprotein, expressed from a sub-genomic mRNA
synthesized during the viral infection [16].

Rubella virus is an enveloped virus of the genus Rubivirus in the family
Togaviridae [2]. The virion has a 40S (9762 nucleotide long) single-stranded,
positive-sense, polyadenylated RNA genome, which serves as the mRNA fol-
lowing a series of events that lead to the uncoating of the viral particle upon
entry into cells [1, 2, 4]. In an infected cell, RV mRNA first translates into a
P200 nonstructural polypeptide [2]. Newly synthesized P200 often undergoes cis-
cleavage at NH2-SRGG1301/1302G-COOH into two mature nonstructural proteins,
P150 and P90, by a protease domain contained within the C-terminal region
of P150 [3, 9, 11, 18]. The viral P200 nonstructural polyprotein contains four
conserved functional domains that are involved in viral RNA synthesis and repli-
cation. They are sequentially located from the N terminus to the C terminus,
as methyltransferase, protease, helicase, and RNA-dependent RNA polymerase
domains based on bioinformatic analysis [4, 6]. The first two motifs are located
on the N and C termini of P150, and the latter two are on the N and C termini of
P90 [5, 13].

Rubella virus P150-protease was identified to be a papain-like-cysteine
protease [5]. It utilizes divalent cations and also demonstrates trans-cleavage
activity on homologous substrates in vitro [9] as well as in vivo [17]. Further
characterization of RV protease revealed that it exhibits zinc-binding activity as in-
tegral to its protease activity, thus suggesting that it is a novel viral metalloprotease
[9, 10]. Within the C-terminal half of P150, Cys-1152 and His-1273 are the cat-
alytic sites for this protease [3, 11]. Domains of RV protease required for cis- and
trans- activity are mapped [8, 11]. These studies have thus far focused on defining
the catalytic sites, active domains, and cis- and trans-activity requirements of RV
protease [8–11, 17].

Experimental evidence suggests that P200 is actively involved in the synthesis
of viral negative-strand RNA, and its cleavage into P150 and P90 has been
suggested to switch the complex to initiate positive RNA synthesis [8]. This leads
to the logical hypothesis that, in the replication complex, those P200 molecules
engaged in negative-strand RNA synthesis must remain as P200 (i.e., lose their
cis-protease activity) as long as they are required to participate in negative-
strand RNA synthesis. Subsequently, the P150-protease trans-activity cleaves
these P200 molecules to signal the replication complex to switch to positive-
strand RNA synthesis mode. However, besides the presence of the cleavage site,
what the internal sequence requirements of the P200 and its intermediaries for RV
protease trans-cleavage activity are, and how the cis-activity of P200 is regulated
to maintain optimal negative RNA synthesis have not been identified.

In this report, we analyzed the substrate features that are required of the RV
protease trans-activity by using a truncated version of RV P200 (amino acid
residues 827–1548) that was previously shown to function as protease but had
lost its cis-activity due to a substitution, G1301S, in the cleavage site, and a
series of P200-derived substrates that lack protease activity due to an amino acid
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substitution, C1152S, in the catalytic dyad [8]. Our analysis identified a region
in the substrate corresponding to residues 994–1102 of the P200 polyprotein
that is required for the protease trans-activity, and this region overlaps with the
starting site of the essential cis-protease activity of RV P200 polyprotein. Potential
implications of the requirement of the cis-activity region of P200 substrates for
the RV protease trans-activity are discussed.

Materials and methods

Plasmid construction

Plasmids capable of expressing functional RV protease and P200-derived substrates in mam-
malian cells were constructed as follows: Appropriate cDNA segments representing vari-
ous RV genomic regions were PCR-amplified and inserted into a mammalian expression
plasmid, pcDNA4-His/Max-C, driven by a CMV promoter. This plasmid also contains an
in-frame Xpress epitope tag for easy identification of the expressed protein by anti-Xpress
monoclonal antibody in immunobloting analysis (Invitrogen Inc, CA). Two independent DNA
preparations for each plasmid were sequenced to ensure authenticity of the plasmids used in
the study. RV trans-cleavage active protease-encoding cDNA was amplified by PCR with a
pair of primers (Table 1), using a previously well-established infectious RV cDNA template,
pBRM33-G1301S, which contains an active protease domain (catalytic site, C1152) but lacks
the cis-cleavage capability due to a substitution at residue G1301 within the cleavage site
(NH2-SRGG/G-COOH) to S1301 (NH2-SRGS/G-COOH) [8]. The amplified DNA product
was cloned at the BamHI and EcoRI sites in the expression plasmid described above. In
this construct, in-frame with the protease sequence C-terminus, a green fluorescent protein
(GFP) ORF was also inserted, so that the expressed protease would have a higher molecular
weight to distinguish it from its substrate in immunoblot analysis. This expression plasmid
was designated as pRVP (Fig. 1A).

To evaluate the trans-cleavage activity of RV protease on P200-derived substrates, a
series of RV P200-related polypeptide expression plasmids that express protein with dif-
ferent N-terminal lengths from the cleavage site (72, 199, 309, and 475 residues) were
constructed. This was achieved by using a previously well-established RV cDNA template,
pBRM33-C1152S. The template contains RV cDNA with the cleavage site (N′-SRGG/
G-C′) unmodified but lacks the protease activity due to a substitution at the catalytic activity
residue (C1152S) of the enzyme [8]. Desired DNA segments of pBRM33-C1152S template
with the same C-terminus (amino acid position 1548) but varying in length at the N-terminal
end were amplified using appropriate sets of primers (Table 1) and cloned at the BamHI and
EcoRI sites of the plasmid vector described above. The plasmids were designated, pRVS-
827–1548, pRVS-994–1548, pRVS-1102–1548, and pRVS-1228–1548, producing proteins
with 475-, 309-, 199-, and 72-residue N-terminal lengths from the cleavage site, respectively
(Fig. 1B).

To test whether replacement of P200-related sequences C-terminal to the cleavage site
by non-rubella sequences affect RV protease trans-activity, the plasmid pRVS-GFP, which
contains PCR-amplified RV protease substrate sequences representing polypeptide residues
827–1306 (residues 1302–1306 represent the C-terminal side of the cleavage site), fused
at its C-terminus to GFP ORF in-frame, was created (Fig. 1B). Similarly, to test whether a
heterologous sequence on the N-terminal side of the cleavage site affects substrate recognition
by the protease trans-activity, GFP ORF was fused in-frame at the N-terminus of the rubella
sequence in the plasmid pRVS-1102–1548 to create pRVS-GFP-1102–1548 (Fig. 1B). The
template for the PCR in both cases was pBRM33-C1152S.
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Fig. 1. Schematics of trans-active protease and substrate encoding expression plasmid
constructs. (A) Shows pBRM33-G1301S-derived P200 that was used as a PCR-template to
clone the trans-active protease region. The P150 and P90 domains of P200 are indicated. The
protease catalytic residue, Cys at amino acid 1152 (C1152) and a cleavage site substitution
mutation (Gly to Ser) at P150 C-terminal residue, 1301 (G1301S, represented by ‘X’ in
the P150 box and by a black circle on the top) are as shown. The mutation eliminates
the cis-activity of the protease, leaving its trans-activity intact [8]. Numbers (1–2115)
on the side represent amino acid residues of P200. The trans-active protease domain
spans from amino acid position 827 to 1301 [8]. Expression plasmid, pRVP contains this
protease domain in-frame flanked by an N-terminal Xpress epitope tag (hatched box) and a
C-terminal GFP ORF. (B) Shows pBRM33-C1152S-derived P200 used as a PCR-template
to produce a series of deletion substrates. The P150 and P90 domains on P200 were as
shown. To serve as homologous substrates, the protease activity was eliminated due to a
substitution at the catalytic residue, Cys-1152 to a Ser [8] (C1152S, represented by ‘X’
and by an open circle on the top) but with an intact cleavage site at the P150 C-terminal
residue, 1301 (G1301) as shown. Expression plasmids containing RV P200-related cDNA
pRVS-827–1548, pRVS-994–1548, pRVS-1102–1548, and pRVS-1228–1548 (numbers
denote position of amino acid residues within the P200 polyprotein representing the N and
C termini of the substrate) used in the study were as illustrated. These plasmids express
proteins with varying N-terminal lengths from the cleavage site (475, 309, 199 and 72 aa
respectively as shown in parentheses under each construct box). Cleavage in the substrate
occurs at amino acid residue G1301. In pRVS-GFP, the RV cDNA insert was amplified from
position 827–1306 (5 residues upstream of the cleavage site) and a GFP-ORF was fused at its
C-terminus, whereas in pRVS-GFP-1102–1548, the GFP-ORF was fused at the N-terminus of
the 199 amino acid residue-substrate.All plasmids shown here contain an in-frame N-terminal

Xpress epitope tag (hatched box) for immunoblot identification of the proteins
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Table 1. Primers used in this study

Primer Nucleotide Sequence*
designation position in

RV genome

5′-827 2519–2538 5′-AATGGATCCATGGACCACCGCCCGGCTGC-3′
5′-994 3023–3040 5′-CTGGATCCCCTCCGACCGAGCCCCTC-3′
5′-1102 3347–3364 5′-CTGGATCCATGTGCGGGAGTGACATG-3′
5′-1228 3728–3749 5′-ATAGGATCCGTGTGGGTCGGCTCCGAG-3′
3′-1306 3976–3959 5′-AGAGAATTCGGCGGCACAAGTGCCACC-3′
3′-1548 4701–4684 5′-TATGAATTCGCCTACATGGATGCAGGC-3′

*Nucleotide sequence representing BamHI in 5′-primers and EcoRI in 3′-primers were
underlined

Cell transfections and immunoblot analysis

RV-protease, and substrate plasmids were expressed in human embryonic kidney (HEK)
293T cells (ATCC, VA) by transient transfection using Lipofectamine-2000 reagent as per
supplier’s protocol (Invitrogen, CA). Following a 24 h incubation of cells at 37 ◦C in a
CO2 (5%) incubator, cell lysates were prepared and subjected to polyacrylamide gel elec-
trophoresis (either 10% or, 4–20% gradient) with 0.1% sodium dodecyl sulphate, followed
by immunoblot analysis as described [12]. Substrates as well as the protease all had an
Xpress epitope tag at their N-terminus to detect the N-terminal side of the cleavage
products.

Results

RV protease trans-activity recognizes substrate N-terminal length
from the cleavage site

We evaluated the protease trans-cleavage activity on a series of RV P200-derived
polypeptides in which the protease catalytic site at amino acid position 1152
was mutated (C1152S) to serve as substrate (i.e. to lack protease activity, but
retain the cleavage site). HEK 293T cells were co-transfected with pRVP (Pro-
tease, Fig. 1A), and each of the substrate expression plasmids, pRVS-827–1548,
pRVS-994–1548, pRVS-1102–1548, and pRVS-1228–1548. Each substrate plas-
mid expressed RV P200-derived polypeptides of different N-terminal lengths
(72–475 residues) from the cleavage site (Fig. 1B). Following transfection, cell
lysates were prepared, and the proteins were subjected to immunoblot analysis.
The substrates as well as the protease all had an Xpress epitope tag at their
N-terminus. Our analysis of RV protease substrates revealed that homologous
polypeptides of N-terminal 475- and 309-residue length from the cleavage site,
expressed from pRVS-827–1548 and pRVS-994–1548 (Fig. 2, lanes 2 and 4,
80 and 67 kDa, respectively), were able to undergo cleavage when co-expressed
along with RV protease (Fig. 2, lanes 1, 3, and 5, 110 kDa) with an expected
size of the N-terminal cleaved products of 55- and 37-kDa size (with additional
Xpress epitope residues), respectively (Fig. 2, lanes 3 and 5). However, sub-
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Fig. 2. Immunoblot analysis of RV protease trans-cleavage activity on various substrates.
HEK 293T cells were transfected with either individual plasmids representing the protease
(pRVP) and various substrates (pRVS-827–1548, pRVS-994–1548, pRVS-1102–1548,
pRVS-1228–1548, and pRVS-GFP) or, co-transfected each substrate plasmid in combination
with the protease plasmid. Cell lysates were prepared and subjected to immunoblot
analysis following separation of the proteins on a 4–20% PAGE. Anti-Xpress epitope
antibodies were used to probe the membrane. Symbols (+) or (−) above each lane
indicate the presence or absence of the protease and the substrate in that lane.
Numbers on left indicate molecular weight markers represented in kDa and on top,
represent lanes of the immunoblot performed on the transfected-cell lysates. 1 represents
protease alone, 2 indicates 475-substrate alone, and 3 represents protease and 475-
substrate cotransfection. 4 shows 309-substrate and 5 represents protease and 309-
substrate cotransfection. 6, 199-substrate and 7, protease and 199-substrate cotransfection.
8 represents 72-substrate and 9, protease and 72-substrate cotransfection. 10 represents
protease alone and 11, protease and RVS-GFP-substrate together. 7 and 11 shown
are longer exposures of the same blot to film. Note that substrates generated from
pRVS-827–1548 and pRVS-994–1548 were cleaved by the protease (“>” identifies
the cleaved products of 475 and 309 residues respectively in 3 and 5), whereas,
199- and 72-residue (from the cleavage site) representing substrates expressed from
pRVS-1102–1548 and pRVS-1228–1548 were not cleaved by the protease (7 and 9). Also
note that the protease was able to cleave the RVS-GFP substrate with a GFP on the C-terminal
side of the cleavage site to a lesser extent (<50%), as a significant portion of the substrate

remained uncleaved

strates of N-terminal 199- and 72-residue length from the cleavage site (plus
the Xpress epitope residues), expressed from pRVS-1102–1548 and pRVS-1228–
1548, respectively (Fig. 2, lanes, 6 and 8, 55- and 37-kDa), did not undergo
cleavage when co-expressed along with the protease (Fig. 2, lanes 7 and 9) as
evidenced by the lack of Xpress-tagged N-terminal cleavage products detected in
the immunoblot analysis. (If the substrates were cleaved, the expected sizes of the
N-terminal products would be 25 kDa and 14 kDa, respectively.) This clearly sug-
gests that amino acid residues residing between residues 200–308 in the substrate
are required in order for the substrate to be targeted by the trans-activity of the
protease.
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RV protease trans-activity tolerates heterologous amino acid sequence
C-terminal to the cleavage site in the substrate

We extended our analysis to identify any homologous sequence requirement of the
substrate on the C-terminal side of the cleavage site. To address this, we utilized
the plasmid pRVS-GFP, which expresses an RV protease homologous substrate
representing amino acids 827–1306 (residues 1302–1306 represent the C-terminal
side of the cleavage site), fused at its C-terminus to a GFP ORF in-frame (Fig. 1B).
When this plasmid was co-transfected along with RV protease plasmid (pRVP)
into HEK 293T cells, we observed that the substrate (Fig. 2, lane 10, 80-kDa
protein) was cleaved by the protease at the cleavage site, based on the expected
molecular weight of the cleaved N-terminal product of 55 kDa (Fig. 2, lane 11).
This clearly suggests that the protease was able to cleave the RVS-GFP substrate
with a GFP on the C-terminal side of the cleavage site, but to a lesser extent
(<50%), as a significant portion of the substrate was reproducibly observed to be

Fig. 3. Immunoblot analysis of RV protease trans-cleavage activity on a shorter homologous
substrate extended at its N-terminus with a GFP. HEK 293T cells were transfected with either
individual plasmids representing the protease (pRVP), a positive control substrate (pRVS-
827–1548, generates 475 amino acid residue-substrate) and the shorter homologous substrate
(pRVS-GFP-1102–1548) or, co-transfected with each substrate plasmid in combination with
the protease plasmid. Cell lysates were prepared and subjected to immunoblot analysis
following separating the proteins on a 4–20% PAGE. Anti-Xpress epitope antibodies were
used to probe the membrane. Numbers on top represent lanes of the immunoblot and numbers
on left indicate molecular weight markers represented in kDa. Symbols (+) or (−) above
each lane indicate the presence or absence of the protease and the substrate in that lane. 1 is
pRVP-transfected cell lysate expressing the protease alone, 2 is pRVS-transfected cell lysate
expressing the positive control substrate only, and 3 represents pRVP and pRVS cotransfection,
wherein the substrate was cleaved by protease trans-activity (cleaved product was shown by
“>”). 4 represents the N-terminal extended (by GFP) 199-substrate expressed following
pRVS-GFP-199 transfection, and 5 represents the protease and substrate together expressed
in cells cotransfected with pRVP and pRVS-GFP-199. Note that protease did not cleave the

N-terminal extended 199-substrate
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left uncleaved in three independent experiments (as illustrated in Fig. 2, lane 11,
middle band).

RV protease trans-activity requires an internal sequence located upstream
of the cleavage site in the substrate

The fact that 309-substrate was cleaved and 199-substrate was not suggested that
trans-protease processing of the substrate either requires a minimum N-terminal
length from the cleavage site in the substrate, or it recognizes an internal amino acid
sequence within the 309-substrate that is lacking in the 199-substrate. If indeed
an internal domain within the 309-substrate is being recognized by the protease,
then this sequence should be present in the N-terminal region of 309-substrate. To
verify the above hypothesis, we utilized plasmid pRVS-GFP-1102–1548 (Fig. 1),
which expresses a chimeric substrate in which the 199-substrate was extended
at its N-terminus by GFP to compensate for the length (increased from 199 to
479 amino acids) along with the protease plasmid, pRVP. Immunoblot analysis
(Fig. 3) demonstrated that when the protease (Lane 1) and a positive control 475-
substrate (Lane 2) were coexpressed, the substrate did undergo cleavage (Lane 3).
Although the N-terminal length was increased in the chimeric GFP-199-substrate
(Lane 4), it still failed to undergo cleavage when coexpressed with the protease
(Lane 5), suggesting that it is not the N-terminal length from the cleavage site
that is required of the substrate, but in fact it is the internal sequence present
within the substrate that is recognized by the protease for trans-processing. The
internal recognition domain identified in this report corresponds to amino acid

Fig. 4. Schematic illustration of RV protease recognition domain on P200 substrate. Numbers
indicate amino acid positions on the RV P200 polyprotein. RV protease trans- and cis-activity
starting sites, the catalytic residues, and the X domain (proline-rich, conserved in M-group
PCPs) important for the protease trans-cleavage activity as shown on the top are adapted
from Liang et al. [8]. In the bottom panel, the protease substrate P200 is depicted with the
location of the newly identified domain required for protease trans-activity (this report),

which overlaps with the protease cis-activity starting site of P200
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position 994–1102 of RV P200. This region overlaps with the N-terminal site of
the essential cis-protease activity region on the P200 described by Liang et al.
[8]. The location of the substrate recognition region (this report) relative to the
essential cis-activity domain is illustrated in Fig. 4. At this time we could not
refine the recognition region further, as plasmids with deletions in this region of
RV cDNA could not be rescued in bacteria.

Discussion

In this report, we defined the minimal substrate (template) for proteolytic pro-
cessing in trans by the rubella virus nonstructural protease using an epitope-
tagged protein expression system. Results presented with RV protease (which has
been functionally demonstrated to be similar to P150 activity [8]) demonstrated
that the protease trans-activity recognizes a region N-terminal to the cleavage
site in the P200-derived substrates. Thus, the trans-protease activity requires not
only specific amino acids present at or proximal to the cleavage site, but also
sequences upstream at a distance from the cleavage site. We also demonstrated
that, on the C-terminal side of the cleavage site, heterologous residues unrelated
to RV are somewhat tolerated by the protease, but we routinely observed (in three
separate experiments) that the efficiency of the protease trans-activity on this
type of substrate was less than 50% (illustrated in Fig. 2, lane 11). This clearly
suggests that the P90 domain residing on the C-terminal side of the cleavage
site in P200 does influence the trans-activity of the protease. In another positive-
stranded RNA virus, mouse hepatitis virus (MHV), one of the two virus-encoded
proteases, PLP-1 (PCP), demonstrates a homologous substrate length requirement
on the C-terminal side of the cleavage site and the cleavage efficiency increases
with increasing substrate and enzyme polypeptide length, although in this case,
the protease recognition sequence on the substrate was not identified [15]. The
RV protease trans-activity-associated P200 internal sequence requirement, as
identified here, is unique, and this is the first such report for the viruses that
belong to the family Togaviridae.

In this study, we mapped the regions of the protease substrate required for
trans-activity, which is reciprocal to the Liang et al. study wherein they mapped the
essential cis- and trans-activity regions of the protease itself and also demonstrated
that the X domain (proline-rich, conserved in all M-group PCPs) present in the RV
protease is important for the protease trans-activity [8]. They further speculated
that this proline-rich X domain could serve as a protein-protein interaction domain
that enhances the opportunity to meet its trans-cleavage substrate [8]. However,
in this report, we clearly demonstrate by deletion analysis that the X domain in
the substrate is dispensable for recognition by RV protease trans-activity and the
actual recognition region is located downstream of the X domain, overlapping
with the N-terminal starting-site (a term coined by Liang et al. [8]) of the essential
cis-activity domain of the substrate. Our results show that RV P150-associated
protease trans-activity requires a specific region within the P200 that represents
P150 itself (illustrated in Fig. 4). Taken together, our studies and those of Liang
et al. [8] advance the field in enhancing our understanding of the molecular



1850 H. H. Chen et al.

determinants that define the rubivirus protease trans-activity requirements that
are essential for RV replication.

In this report, we have shown that RV protease trans-activity demonstrates
substrate specificity by requiring an internal sequence within the region that is
N-terminal to the cleavage site. Identification of a region in the P200-related
sequence-containing substrate (we utilized polypeptides from amino acid posi-
tions 827 to1548 of P200 or shorter) that is important for RV protease trans-
activity suggests that this region may offer a specific fold or a conformation to the
P200 substrate to facilitate cleavage by the protease. Since most protease-substrate
interactions involve transient binding of the protease to its cognate substrate,
it is conceivable that RV protease trans-activity on homologous substrates also
involves transient binding of protease to the substrate, and such binding perhaps
could occur within the sequence that is required on the substrate for protease trans-
activity. We attempted to perform coimmunoprecipitation experiments to establish
the protease-substrate binding following cotransfection of cells with both plasmid
constructs, but failed to obtain reproducible results, perhaps due to the transient
nature of the interaction. However, if this binding truly occurs in the viral infection
cycle, then, as RV protease is recognizing itself as substrate in the essential
cis-activity region for the trans-activity (illustrated in Fig. 4), it is tempting to
speculate that the trans-activity may be regulating the cis-activity of P200. This
process could explain how P200 remains as P200 in the replication complex
to initiate viral negative-strand RNA synthesis. As discussed in the introduction,
previous experimental evidence suggested that P200 initiates the synthesis of viral
negative-strand RNA, and its cleavage into P150 and P90 plays a critical role in
switching the replication complex to the positive RNA synthesis mode [8]. In this
context, our results leads us to speculate that perhaps the P150-protease trans-
activity requirement of the P200 sequence within its essential cis-activity region
(illustrated in Fig. 4) could transiently stall the P200 cis-protease activity, provided
that P150 binds to P200 in this region, to allow the negative-strand RNA synthesis
to occur. This certainly is a verifiable future experimental direction to capture viral
events that further enhance our understanding of the rubivirus proteases.
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