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A stressful experience can lead to a strong fear memory where a negative consequence has been associ-
ated with a certain stimulus or event. This can trigger fear whenever the same or similar event occurs.
Extinction of such a maladaptive memory through extinction learning can thus be of high therapeutic value.
Here, we present novel theoretical work on the formation and extinction of memories in the fruit fly that sug-
gests an underlying neural circuit mechanism for reward prediction based on recently reported anatomic,
physiological and behavioral data. Our findings propose how the theoretical concept of prediction error
coding can be realized in a biologically realistic neuronal circuit motif to enable associative learning, satura-
\tion of learning, single-trial memory, and memory extinction. /
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Extinction learning, the ability to update previously learned information by integrating novel contradictory infor-
mation, is of high clinical relevance for therapeutic approaches to the modulation of maladaptive memories.
Insect models have been instrumental in uncovering fundamental processes of memory formation and memory
update. Recent experimental results in Drosophila melanogaster suggest that, after the behavioral extinction of
a memory, two parallel but opposing memory traces coexist, residing at different sites within the mushroom
body (MB). Here, we propose a minimalistic circuit model of the Drosophila MB that supports classical appeti-
tive and aversive conditioning and memory extinction. The model is tailored to the existing anatomic data and
involves two circuit motives of central functional importance. It employs plastic synaptic connections between
Kenyon cells (KCs) and MB output neurons (MBONSs) in separate and mutually inhibiting appetitive and aver-
sive learning pathways. Recurrent modulation of plasticity through projections from MBONs to reinforcement-
mediating dopaminergic neurons (DAN) implements a simple reward prediction mechanism. A distinct set of
four MBONs encodes odor valence and predicts behavioral model output. Subjecting our model to learning
and extinction protocols reproduced experimental results from recent behavioral and imaging studies.
Simulating the experimental blocking of synaptic output of individual neurons or neuron groups in the model
circuit confirmed experimental results and allowed formulation of testable predictions. In the temporal domain,
our model achieves rapid learning with a step-like increase in the encoded odor value after a single pairing of
the conditioned stimulus (CS) with a reward or punishment, facilitating single-trial learning.

Key words: Drosophila melanogaster; memory extinction; reinforcement learning; reward prediction; single-trial

learning

Introduction

Fruit flies can learn to associate an odor stimulus with a
positive or negative consequence, e.g., food reward or
electric shock punishment. In the training phase flies are
typically exposed to two odors (differential conditioning)
where one odor [conditioned stimulus minus (CS-)] is per-
ceived alone whereas a second odor [CS plus (CS+)] is
presented together with either reward or punishment [un-
conditioned stimulus (US)]. Once an association has
formed between the CS+ and the respective US, the
learned anticipation of the US can be observed in a mem-
ory test that enforces a binary choice behavior between
the CS+ and the CS- (Tempel et al., 1983; Tully and
Quinn, 1985). A single learning trial can be sufficient to
form a stable memory in the fruit fly (Beck et al., 2000;
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Krashes and Waddell, 2008; Zhao et al., 2019) and other
insect species (see Discussion).

The prediction error theory (Rescorla and Wagner,
1972) describes a basic theoretical concept of classical
conditioning. It assumes that the efficacy of learning is de-
termined by the momentary discrepancy (or error) be-
tween the expected and the received reinforcement (i.e.,
reward or punishment). In vertebrates, it has been shown
that prediction error coding dopaminergic neurons
(DANSs) are involved in learning (Schultz et al., 1997;
Schultz, 2016). Recent studies give rise to the assumption
that DANs could play a similar role in Drosophila mela-
nogaster (Hammer, 1997; Riemensperger et al., 2005;
Ichinose et al., 2015; Eichler et al., 2017; Felsenberg et al.,
2017, 2018; Zhao et al., 2021; Eschbach et al., 2020) and
other insects (Terao and Mizunami, 2017), rejuvenating an
earlier hypothesis based on experimental observations in
the honeybee (Hammer, 1997).

Re-exposing the flies to the CS+ after successful train-
ing and in the absence of the US leads to a reduction of
the previously learned behavior (Tempel et al., 1983;
Schwaerzel et al., 2002; Felsenberg et al., 2017, 2018).
This new learning is called extinction learning and has
been observed across invertebrate (Eisenhardt and
Menzel, 2007; Eisenhardt, 2014) and vertebrate species
(Pavlov, 1927; Tully and Quinn, 1985; Myers and Davis,
2002; Bouton, 2004, 2017; Dudai, 2004). Following pre-
diction error theory, extinction learning is caused by the
mismatch between the expected outcome (predicted US)
based on the initial learning and the actual outcome (no
US). In humans, extinction learning is of high clinical rele-
vance and is applied in the treatment of humans suffering
from maladaptive memories (Quirk and Mueller, 2008;
Chiamulera et al., 2014; Delamater and Westbrook, 2014;
Bouton, 2017; Walsh et al., 2018). The majority of behav-
ioral experiments in invertebrates and vertebrates sug-
gest that extinction protocols, including the applied
exposure therapy in humans, does not erase a memory
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but rather leads to the formation of a parallel but oppos-
ing memory, the extinction memory (Bouton, 2004;
Eisenhardt and Menzel, 2007). Despite the relevance for
clinical therapy, our understanding of the neural circuit
mechanisms underlying extinction learning is still in its
infancy.

We study a computational neural circuit model of the
fruit fly mushroom body (MB) that captures the most re-
cent anatomic and physiological facts. The model pro-
poses detailed mechanisms for associative learning,
extinction learning, prediction error coding, and single-
trial learning. We compare the model outcomes quantita-
tively to the results of recent behavioral and physiological
studies and we derive novel experimental predictions by
mimicking neurogenetic manipulations of relevant neuron
groups.

Materials and Methods

Circuit architecture

Our circuit model for olfactory coding and olfactory
memory formation (Fig. 1) consists of three neuron layers
[projection neurons (PNs), Kenyon cells (KCs), MB output
neurons (MBONS)] representing the three major stages of
the olfactory pathway in Drosophila and two reinforce-
ment mediating DANs representing the PAM and PPL1
cluster. Each neuron in the circuit can assume an activa-
tion rate in the range of 0-1.

Olfactory model input was simulated through the acti-
vation of 50 out of the total 100 PNs. This matches experi-
mental observations of ~40—60% of PNs being activated
by a single odor stimulus (Krofczik et al., 2009; Brill et al.,
2013; Wilson, 2013) and follows the model of Peng and
Chittka (2017). Each PN is activated with a random rate
drawn from a uniform distribution in the range between
0.2 and 0.8. To enhance variability between the networks
that were set up, PN input patterns were further multiplied
by a factor that was randomly distributed between 0.8
and 1. PNs are connected to 2000 KCs via the weight ma-
trix W1 where each PN is connected to 5-15 KCs, each
connection has a fixed synaptic weight of 0.2. Activation
of the KC vector in the next layer resulted from the matrix
product of the PN population vector and the respective
weight matrix W1 according to

KC = PN x WA1. )

Out of the total 2000 KCs only the subpopulation of 100
KCs (5%) with the highest activation rate kept its activa-
tion. All other KCs are set to zero to enforce population
sparseness (Peng and Chittka, 2017). In a next step, KCs
are fully connected to the four MBONSs via the weight ma-
trix W2, with all synaptic weights initially set to 0.01. The
excitatory input to each MBON was calculated as the ma-
trix products

M6" ., MV2 = KC x W2,, (2a)

MVP2,V2* = KC x W2,,. (2b)

We further included lateral connectivity between the
MBONs. The M6 MBON receives inhibitory input from
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Figure 1. Circuit model. The olfactory pathway comprises three
feedforward layers. Olfactory input activates an odor-specific
combination of PNs. The connectivity matrix from PNs to the
large population of KCs is divergent-convergent and sparse.
The inhibitory feedback mechanism ensures population sparse-
ness of 5% active cells in the KC layer. KCs are fully connected
with four MBONSs in the output layer. A positive or negative rein-
forcement stimulus directly excites the dopaminergic PAM or
PPL1 neuron, respectively. Lateral inhibition between the
MBONSs and excitatory feedback from MBONSs to DANSs is cru-
cial for the reward prediction and extinction mechanisms.
Activation of the MVP2 output neuron mediates approach be-
havior, activation of MV2 mediates avoidance behavior.
Behavioral preference toward an odor is calculated as the im-
balance between the activations of MVP2 and MV2.

MVP2, whereas V2 gets inhibited by MV2. The respective
inhibitory inputs are formalized according to

-0.6

ME = 47200 x e Py (3a)

-0.6

V2 = {7200 x ez

(3b)

The activation rate of M6 and MV2 results from a sum-
mation of inhibitory and excitatory input as

M6 = M6* + M6~ (4a)

V2 =Vve'+Vve, (4b)

whereas for MVP2 and MV2, the activation rate is solely
determined by the excitatory input.

The PAM and PPL1 DAN receive excitatory input by
the M6 and V2 neurons, respectively. Additionally, re-
inforcing stimuli have an effect on both DANs. A re-
warding US (US = +1, positive reinforcer) leads to an
excitatory input to the PAM (Eq. 5a). At the same time,
excitatory input from the V2 to the PPL1 is partially
suppressed (represented by the factor p = 0.8 in Eq.
5b). Conversely, a punishing US (US = —1, negative re-
inforcer) results in excitation of the PPL1 (Eg. 5b) and
in the suppression of excitatory input from M6 to the
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PAM (Eq. 5a). The total DAN input was thus computed
as

R + M6,if US = + 1(reward)

PAM,, = ¢ p x M6,if US = —1(punishment) (5a)
M6, otherwise
R+ V2,if US = —1(punishment)
PPLA, = p x V2ifUS = + 1(reward) (5b)

V2, otherwise

We fixed the US induced excitation to R = 0.3 for all our ex-
periments. However, generally the parameter R allows for a
modeling of variable reward magnitudes linked to the US
such as, e.g., different levels of sugar concentration con-
tained in a rewarding US.

The output activation rate of each DAN encoding the
prediction error is calculated with a sigmoid transfer
function

1

PAM = (1410000 x e PAMinputx19) (6a)

1

PPLT = (1+ 10000 x e PPLinu19) -

(6b)

Plasticity rule at KC::MBON synapses

We implemented synaptic plasticity at the KC::MBON syn-
apses. In the initial state of the model, the weights of all KC::
MBON synapses are set to the same fixed value of 0.01.
Each of the synaptic weights in W2 is subject to synaptic
plasticity. At the end of a given trial t and for any synapse
KCi::MBON; a change of the synaptic weight w; occurs if
both, the presynaptic KC and the respective DAN were active
in trial t. If both conditions are met, the synaptic weight is re-
duced according to the two-factor learning rule

Wapp — (PPL1 x 8),if PPL1>0,KC>0

Wapp = 0, if Wapp<O (7a)
Wapp, Otherwise
Wa, — (PAM x 8),if PAM>0,KC>0
Wy = 0, if w,, <0 (7b)

W, Otherwise

where wp, refers to the weight of a synapse onto M6 or
MV2 and w,, refers to the weight of a synapse onto MVP2
or V2. Note that the weight changes are proportional to
the activation rate of the respective DAN. We fixed the
learning rate as 6 = 0.0045 for all our experiments.

Experimental protocols

We subjected our model to a set of conditioning and ex-
tinction protocols. Further, it was operated and evaluated
in a trial-resolved fashion where, in each trial, the excita-
tory and inhibitory synaptic input to each of the neurons
and its output activation rate was computed. Within-trial
neuronal dynamics were neglected.
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Classical conditioning

The training procedure derives from a group assay
developed by Tully and Quinn (1985) that is often used
to study olfactory learning in flies. A group of flies are
trained in a Tully-machine with a training arm and two
testing arms. In the training arm, the animals are typi-
cally exposed to the CS+ in combination with either
sugar (reward) or a train of electric shocks (punish-
ment). In Felsenberg et al. (2018) the CS+ is presented
for 1min and combined with 12 electric shocks.
Subsequently, animals are exposed to the CS- without
reinforcer. After the training, the flies are transferred to
the testing chamber in which they can choose between
a CS+ and a CS- perfused arm.

Our classical conditioning protocol also consisted of a
training phase and a subsequent memory retention test (Fig.
2A). An odor pattern (CS+) was paired with a positive or neg-
ative reinforcement (US) during each training trial.
Subsequently, a second odor pattern (CS-) was presented
without reinforcement. For our initial model analysis, we var-
ied the number of training trials in the range of n =1, ..., 24 to
quantify the associative strength as a function of n (Fig. 2).
Then, we fixed the number of training trials to n=12 in our
standard training procedure. The trial-based classical condi-
tioning protocol is a standard procedure in other insect mod-
els for learning and memory, notably the honeybee
(Bitterman et al., 1983; Pamir et al., 2011). Unlike in the exper-
imental conditioning paradigm, paired and unpaired odors
were presented alternately when the number of trials was
>1. However, we expect no difference between continuous
and alternating odor presentation, since CS- presentation
does not induce synaptic plasticity. During retention, we pre-
sented the CS+ and CS- stimulus once. In contrast to the
experimental paradigm, simultaneous presentation of both
odors was not possible. However, effects on the behavioral
outcome could be excluded by switching off learning during
the retention test.

Extinction learning

The extinction protocol included an additional reacti-
vation phase after training and before memory extinc-
tion (Figure 3A). During reactivation, the CS+ odor was
presented alone, i.e., without reinforcement, during 12
reactivation trials. This procedure again mimics the ex-
perimental protocol used by Felsenberg et al. (2018),
in which the authors presented the CS+ without
shocks for the same duration (1 min) as in the training.

Neurogenetic manipulation experiments

To investigate the role of individual neurons in the mem-
ory extinction process we selectively suppressed their ac-
tivation by setting their activation rate to zero during the
reactivation phase. Thereby, we mimic neurogenetic ma-
nipulation experiments that suppress the activation of
specific neurons. We specifically compare our model re-
sults to the experimental results performed in Felsenberg
et al. (2018) based on the neurogenetic tool shibire's' and
we generate experimentally testable hypotheses in novel
model experiments.
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Figure 2. Differential conditioning leads to CS+-specific odor preference. A, Experimental protocols for simulation of associative condition-
ing experiments. The model was trained in a classical conditioning paradigm, in which a conditioned odor stimulus (CS+) was paired with a
reward (green) or punishment (red). Subsequently, a second unconditioned odor stimulus (CS-) was presented without reinforcement. The
standard protocol comprises 12 training trials. During the retention test, both odor stimuli were presented alone without reinforcement.
Preference index and performance index in the model were computed after each trial and during the retention test. B, Dynamics of the odor
preference index across 24 appetitive (top) and aversive (bottom) learning trials, respectively averaged across 10 networks. C, left,
Combinatorial response patterns in the PN population. Each odor stimulus activates 50% of all PNs. Similarities between the CS+ reference
odor and five novel odors are defined by their overlap in the PN activation pattern (x-axis). Right, Activation patterns across the subpopula-
tion of 100 KCs (5%) activated by the CS+ odor. Pattern overlap in the KC population reduces rapidly with decreasing odor similarity as ex-
pressed in the percentage of PN pattern overlap (x-axis). D, Generalization to different odors after associative conditioning to the CS+ odor.
The model shows a significant CS+ approach (green) or avoidance (red) after 12 training trials as expressed in the preference index (n=15),
which diminishes rapidly with decreasing odor similarity. Boxplots show the median and the lower and upper quartiles, whiskers indicate
1.5 times interquartile range, outliers are marked with + symbol.

odor was then subtracted from the number of animals that
chose the CS+, and the result was normalized by the total
group size to compute the performance index (Tully and

Evaluation of model performance and quantitative
model predictions
We evaluated model outcome by different measures

that allow for a quantitative comparison with the out-
come of animal experiments, both at the behavioral
and at the physiological level. Applying these meas-
ures in untested experiments allowed us to formulate
experimental predictions for novel experiments.

Behavioral output

To this end, we computed two quantities that can be in-
terpreted as measures of approach or avoidance behav-
ior. We used the activation rates of these MVP2 and MV2
to calculate the preference index as

(MBONwypz-MBONy2)
(MBONyyps + MBONy2)

preference index = (8)
The innate preference index of our model is zero by
construction.
In behavioral extinction learning experiments (Felsenberg
etal., 2017, 2018), the number of animals that chose the CS-

May/June 2021, 8(3) ENEURO.0549-20.2021

Quinn, 1985). In analogy, we calculated a model performance
index computing the difference between the preference indi-
ces for CS+ and CS-as

performance index = preference indexcs.

— preference indexcs._ . 9)

Dendritic input

We quantified activation rates of single neurons.
Activation rates were measured in both DANs and
MBONSs. DAN activation rates were obtained during train-
ing trials, whereas the MBON activation rates were meas-
ured during the test trials (Fig. 4). Further, we compared
the model to a recent study in which dendritic MBON ac-
tivity was measured (Fig. 5; Felsenberg et al., 2018). KC::
MBON synapses in M6 populate the dendritic tree while
the MVP2::M6 are located proximal to the dendritic root
(Felsenberg et al., 2018). Measuring the calcium activation
across the dendritic field can thus be interpreted as the
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overall excitatory KC input to the MBON. In analogy to the
experimental approaches, not only the total synaptic
input, but also the sum of excitatory synaptic input from
KCs was measured.

Performance at the group level

Each new initialization of a network involved the random
generation of the odor induced PN activation rates (rang-
ing between 0.8 and 1, evenly distributed) and a random
number of PN::KC connections (in the range 5-15, evenly
distributed) for each KC to establish variability across
individuals.

To test statistical significance of group differences in
the performance index, the Wilcoxon rank-sum test was
used. To test for differences of MBON activation rates in
the same group before and after extinction learning, the
Wilcoxon signed-rank test was used. Model results were
compared with the experimental results obtained by
Felsenberg et al. (2017, 2018). To extract single data
points from the experimental studies, the GRABIT tool by
MathWorks was applied. Model simulation and statistical
analyses were performed with MATLAB_R2018b
(MathWorks Inc). The full code for the (MB model is avail-
able on the GitHub account of the lab: https://github.com/
nawrotlab.

Results

Circuit model of the Drosophila MB

We implemented a neural network model of the olfac-
tory memory circuit of D. melanogaster (Fig. 1) where indi-
vidual neurons exhibit trial-resolved activation dynamics
(see Materials and Methods). Our network model integra-
tes experimentally confirmed connections in the adult fruit
fly. It involves three feed-forward layers of the antennal
lobe PNs, the MB KCs, and four individual MBONs with
specific lateral inhibitory connections. Reinforcing stimuli
(US) of rewarding or punishing nature are mediated by
two DANs. Each DAN receives specific feedback input
from a single excitatory MBON and exerts a recurrent
neuromodulatory effect on the plastic KC::MBON
synapses.

Stimulation with a particular odor is modeled as one
specific input pattern activating 50 out of total 100 PNs,
each with a random activation rate (see Materials and
Methods). Similarity between different odors was defined
as the percentage of overlap between the PN activation
patterns (Fig. 2C). This establishes a dense combinatorial
odor code in the PN layer as reported experimentally for
fruit flies (Wilson et al., 2004; Olsen et al., 2010) and other
species, notably the honeybee (Joerges et al., 1997;
Krofczik et al.,, 2009), the locust (Mazor and Laurent,
2005; Broome et al., 2006), and the moth (Namiki and
Kanzaki, 2008).

The connectivity between the PNs and KCs is diver-
gent-convergent and random (Caron et al., 2013) where
each of the 2.000 KCs (Aso et al., 2009) connects to aver-
age 10 PNs (uniformly distributed, range of 5-15), match-
ing the experimentally estimated numbers for Drosophila
(Leiss et al., 2009; Turner et al., 2008) and establishing a
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sparse connectivity for each of the postsynaptic KCs. In a
second step, a threshold criterion was implemented such
that only the 5% of KCs with the highest activation rates
retain their activation (Fig. 2C) while the activation rates of
all other KCs was set to zero (Peng and Chittka, 2017).
This enforces population sparse coding in the KC layer
(Kloppenburg and Nawrot, 2014) as reported in physio-
logical experiments in the fruit fly where, on average,
~5% of all KCs were activated by a single odor stimulus
(Turner et al., 2008; Honegger et al., 2011; Lin et al,
2014).

In the MB output layer, we implemented four out of the 34
anatomically identified MBONSs (lto et al., 1998; Tanaka et al.,
2008; Séjourné et al., 2011; Aso et al., 2014a). These are MV2
(MBON-B 1>a/MBON-06), M6 (MBON-y53'2a/MBON-01),
MVP2 (MBON-y1pedc > «/B/MBON-11) and V2 (MBON-
a’1, MBON-«'3ap, MBON-«'3m, MBON-a2sc and MBON-
a2p3p/MBON-15 — MBON-19). The neuron cluster V2, con-
sisting of five neurons, was modeled as a single neuron for
simplicity. M6, MV2, MVP2, and V2 have been previously
shown to be involved in odor valence coding with M6 and
MV2 mediating odor driven avoidance behavior, and MVP2
and V2 promoting approach behavior toward an olfactory
stimulus (Séjourné et al., 2011; Aso et al., 2014b; Bouzaiane
et al., 2015; Owald et al., 2015; Perisse et al., 2016; Ueoka et
al., 2017). All KCs connect to each of the four MBONSs (full
connectivity; Fig. 1). Our model includes two inhibitory lateral
connections among MBONSs. The inhibitory synapses be-
tween MVP2 and M6 (Perisse et al., 2016; Felsenberg et al.,
2018) have been suggested to be functionally relevant for
aversive memory extinction (Felsenberg et al., 2018). We ad-
ditionally assume a symmetric lateral inhibitory connection
from MV2 to the V2 neuron. It has been shown that the MV2
neuron projects onto MBON-a2sc and MBON-a2p3p, which
are part of the V2 cluster and it was hypothesized that the glu-
tamatergic MV2 acts inhibitory on both neurons (Aso et al.,
2014a,b), as has been shown for glutamatergic neurons in
the AL (Liu and Wilson, 2013).

Reinforcing pathways and synaptic plasticity

In our circuit model, the presence of the appetitive or
the aversive US are signaled by two distinct neuromodu-
latory DANs, the PPL1 and PAM neuron, respectively (Fig.
1). The single PPL1 neuron is representative of the PPL1
neuron cluster activated by aversive sensory stimuli such
as electric shock (Claridge-Chang et al., 2009; Mao and
Davis, 2009; Aso et al., 2010, 2012), the PAM neuron rep-
resents the PAM cluster that is activated by appetitive
sensory stimuli such as sucrose (Burke et al., 2012; Liu et
al.,, 2012; Waddell, 2013; Yamagata et al., 2015). Both
neurons receive additional excitatory input from either the
M6 or the V2 MBON (Ichinose et al., 2015; Eichler et al.,
2017; Felsenberg et al.,, 2017, 2018; Eschbach et al.,
2020).

The presence of a reinforcing signal (US) has differential
effects on the DAN activation. A rewarding US leads to an
excitation of PAM and can reduce excitation of PPL1
input (Eqg. 5a). Vice versa, a punishing reinforcer excites
PPL1 and at the same time can modulate excitation of
PAM input (Eq. 5b). This modulatory effect in our model is
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based on an experimental study revealing that a negative
reinforcement inhibits PAM-y4 and PAM-y5 neurons,
whereas sugar feeding inhibits PPL1-y2 and PAM-v3
(Cohn et al., 2015).

Plasticity in our model exclusively resides in the KC::
MBON synapses, reflecting the prevalent data-based hy-
pothesis (see Discussion). These synapses are subject to
plasticity according to the learning rule in Equations 7a,
7b. In the initial state of the model, the weights of all KC::
MBON synapses are set to the same fixed value. In a
given experimental trial, and for any synapse KC::MV2 or
KC::M6, plasticity occurs when activation of the presyn-
aptic KC coincides with activation of the reward-media-
ting PAM neuron. Likewise, any KC::V2 or KC:MVP2
synapse undergoes changes when the presynaptic KC
and the punishment-mediating PPL1 neuron are active at
the same time. The reduction of a synaptic weight is pro-
portional to the DAN activation rate (for details, see
Materials and Methods). This establishes two distinct par-
allel but interconnected neuromodulatory pathways, each
involving feedback from MBONSs to the DANSs that, in turn,
can modulate KC::MBON synapses (Fig. 1).

Appetitive and aversive conditioning establish a
behavioral odor preference

In a first set of experiments, we subjected our model to
a classical conditioning protocol. This protocol (Fig. 2A)
mimics standard training procedures in the fruit fly (see
Materials and Methods). In each trial the trained odor,
CS+, was paired with either reward or punishment (US).
Subsequently a second odor stimulus was presented
without reinforcement (CS-).

After a predefined number of training trials, we per-
formed a memory retention test by presenting the model
with the CS+ alone (no reinforcement) and subsequently
with the unpaired odor (CS). We computed a preference
index (Eg. 8) based on the activation rates of approach
and avoidance mediating MBONSs for both odors, the
CS+ and the CS- (see Materials and Methods). The
model performance index (Eq. 9) mimics comparison with
the behavioral performance index computed from experi-
ments in the fruit fly.

Olfactory memories are established as a skew in the
MBON network: aversive learning reduces CS+ driven re-
sponses in approach MBONs (MVP2-MBON and V2 clus-
ter MBONSs) resulting in a skew toward avoidance. In
contrast, appetitive learning skews the network toward
approach by reducing CS+ mediated input to avoidance
coding M4 and M6 MBONSs (Aso et al., 2014b; Owald et
al., 2015; Owald and Waddell, 2015; Perisse et al., 2016;
Zhang et al., 2019).

We explored the preference index during the retention
test for a varying number of training trials (Fig. 2B). In the
naive state, i.e., before the first training trial, the model did
not reveal a preference. This is because of the balanced
synaptic weight initialization of the model. A single appeti-
tive training trial yielded a strong preference toward the
rewarded odor, the CS+. With each additional training
trial, the preference index further incremented by a small
amount and thus additional training led to only a gradual
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increase of the preference index saturating after ~10-15
trials. Aversive conditioning revealed a negative prefer-
ence index reaching a similar absolute level after a single
training trial (Fig. 2B, lower panel). Both, single-trial learn-
ing and saturation of behavioral performance within few
trials matches the experimental observations during asso-
ciative learning in insects (see Discussion).

For all subsequent experiments, we chose 12 training
trials, both for the training and the reactivation phase. This
number mimics the standard experimental protocol for
aversive conditioning in fruit flies, in which a group of ani-
mals is exposed to 12 subsequent electric shocks while
constantly being exposed to the CS+ (Tully and Quinn,
1985; Scheunemann et al., 2013; Felsenberg et al., 2018).

Generalization to novel odors

We next analyzed how the learned preference to the
CS+ odor generalizes to novel odors of varying similarity
with the CS+ odor by comparing the preference indices to-
ward CS+ and toward a novel odor during the retention test
(Fig. 2D). We designed the pattern of activated PNs for each
novel odor such that it has a defined overlap with the CS+
pattern, ranging from zero to 80% overlap (see Materials and
Methods). Our results in Figure 2D predict that generalization
to a novel odor is rather low even for the highest odor similar-
ity and decays with decreasing odor similarity, effectively
reaching zero generalization for odors that share 40% or less
activated PNs with the CS+ odor. For the subsequent extinc-
tion learning experiments, we used CS- odors that had 60%
pattern overlap with the CS+ odor.

Extinction learning significantly reduces the
conditioned odor response

We analyzed extinction learning after appetitive and
aversive conditioning according to the stimulation proto-
col in Figure 3A. The initial training phase was followed by
a reactivation phase during which the model is repeatedly
presented with the CS+ odor alone (no reinforcement).
This matches the experimental protocols for appetitive
(Felsenberg et al., 2017) and aversive (Felsenberg et al.,
2018) conditioning and subsequent extinction learning
and allows for a direct comparison of our simulation results
with the experimental results, both at the behavioral and the
physiological level (compare Extended Data Fig. 3-1).

Repeated reactivation of the CS+ odor alone after ei-
ther appetitive or aversive conditioning resulted in memo-
ry extinction (Fig. 3B,C), i.e., in a significant reduction of
the learned CS+ approach or avoidance. In addition, gen-
eralization to the CS- odor was abolished (Fig. 3B,C). The
observation that learning is induced when the expected
reward or punishment is omitted is in line with the idea of
prediction error dependent learning (see Discussion). For
a quantitative comparison with the behavioral results of
the binary memory test in Felsenberg et al. (2017), we
computed the performance index of the model by sub-
tracting the preference index for CS- from the preference
index for CS+ (see Materials and Methods). The appeti-
tive conditioning protocol in the model and in vivo yielded
similar performance indices (model: 0.30 = 0.03 mean =+
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tuned toward asymmetric appetitive and aversive learning pathways, see Extended Data Figure 3-2.

SD, experiment: 0.29 + 0.05 mean = SEM). Memory extinc-
tion led to a significantly reduced approach performance
(0.20 = 0.02; Fig. 2B). However, the effect of memory extinc-
tion in the behavioral experiment was considerably stronger,
effectively erasing the initial behavioral memory expression
(0.01 = 0.083; Felsenberg et al., 2017). The aversive condition-
ing protocol led to a negative performance index of
—0.29 = 0.04 (mean = SD) for the model, which in absolute
terms was smaller than the experimental value of
—0.39 = 0.04 (mean = SEM,; Felsenberg et al., 2018). The re-
activation of the CS+ odor after the aversive conditioning led
to a significantly reduced avoidance behavior (—0.20 =+ 0.02),
very similar to the experimental results (—0.20 = 0.03). A de-
tailed quantitative comparison of experimental and model re-
sults is provided in Extended Data Extended Data Fig. 3-1.

Memory is rapidly established within a single trial
As a next step, we investigated the dynamics of plasticity
during the course of learning and extinction. To this end, we

May/June 2021, 8(3) ENEURO.0549-20.2021

monitored the activation rates of DANs and MBONSs and the
gross synaptic input to the MBONSs across trials during sin-
gle network simulations for appetitive (Fig. 4A,B) and aver-
sive (Fig. 4C,D) conditioning and extinction.

In both, appetitive and aversive conditioning, the first
pairing of CS+ and US induced a strong response in ei-
ther the PAM or PPL1, respectively. This strong neuromo-
dulatory signal resulted in a significant reduction of the
respective KC::MBON synapses and led to a strongly re-
duced KC::MBON input to either MV2/M6 or MVP2/V2
during the second training trial. As a consequence, feed-
back excitation from M6 to PAM (V2 to PPL1) in appetitive
(aversive) learning is abolished from the second trial on-
ward, leading to further synaptic weight modulations that
are weak compared with those in the very first training
trial. The evolution of plasticity is reflected in the model
performance index, indicating a switch-like increase after
the first training trial and moderate but steady increase
after subsequent trials. Saturation of the learning effect
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becomes visible only after ~10-12 trials (compare Fig.
2B). In conclusion, the model learns within a single trial
and more training leads to a stronger valence signal as
encoded in the imbalance of MV2 and MVP2 activation.

Extinction learning follows a different and slower dy-
namics in our network model. While already a single pre-
sentation of the CS+ odor without reinforcer leads to the
induction of the extinction memory and a significant re-
duction of the performance index (Fig. 4), we observe an
only gradual extinction that saturates across the 12 ex-
tinction trials used here. No complete extinction is ob-
served in our model.

Associative learning and extinction learning establish
two separate memory traces

We tested the hypothesis that associative learning and
subsequent extinction learning form two parallel and distinct
memories at the physiological level. To this end, we mim-
icked experiments in Felsenberg et al. (2018), in which the
authors measured KC input to individual MBONs by means
of in vivo calcium-imaging from the dendritic field.

We first consider the case of aversive conditioning and
subsequent extinction learning. After initial conditioning,
the CS+-induced synaptic input to the MVP2 and V2 neu-
rons is significantly lower than the CS—-induced input
(Fig. 5C). The synaptic input to the M6 and MV2 neurons,
however, is similar for both odors (Fig. 5D). The extinction
protocol, i.e., the subsequent reactivation with CS+ alone
(Fig. 3A), did not alter KC synaptic input to MVP2 and V2
(Fig. 5C). In contrast, CS+-induced synaptic input to M6
and MV2 was significantly reduced after extinction and in
comparison to the CS—induced input (Fig. 5D). These re-
sults are fully consistent with the in vivo calcium-imaging
results by Felsenberg and colleagues (Felsenberg et al.,
2018; compare Extended Data Fig. 3-1) who observed a
significantly reduced dendritic calcium activation in MVP2
in response to the CS+ stimulus after aversive condition-
ing, while there was no significant change in M6 activation
(Felsenberg et al., 2018; see their Fig. 3). After memory
extinction, the decreased CS+ response in MVP2 re-
mained while additional plasticity was observed as CS+-
specific reduction in calcium levels in M6.

Our circuit model predicts a symmetric network behav-
ior for the extinction of an appetitive memory. After appe-
titive conditioning, the CS+-induced excitatory input was
lower than the CS—-mediated input to the avoidance-me-
diating M6 and MV2 (Fig. 5B). However, the input to the
approach mediating MVP2 and MV2 remained unchanged
(Fig. 5A). Reactivation of the memory by stimulation with
the CS+ odor alone led to a reduction of the excitatory
dendritic input into MVP2 and V2 (Fig. 5A). As a result, the
CS+ preference and performance indices acquired dur-
ing initial conditioning were significantly reduced after
memory extinction (Fig. 3B,D).

Distinct pathways are crucial for appetitive and
aversive memory extinction

To validate the idea of recurrent feedback as a teaching
signal in our model we tested which neurons are
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necessary for extinction learning. To this end, we mim-
icked shibire's! experiments performed by Felsenberg et
al. (2017, 2018), who selectively suppressed the activity
of individual neurons or neuron clusters during CS+ odor
reactivation (see Materials and Methods; Fig. 6).

We first tested extinction of appetitive memory. Selective
blocking of PPL1-cluster or V2-cluster during the reactiva-
tion phase abolished the extinction of an appetitive memory.
In contrast, blocking of PAM had no effect on extinction
(Fig. BA). These findings agree with the experimental results
(Extended Data Fig. 3-1) in Felsenberg et al. (2017).
Conversely, in the extinction of aversive memory,
Felsenberg et al. (2018) showed that the behavioral effect of
extinguishing the aversive memory was significantly dimin-
ished by either blocking the PAM cluster or the M6 neurons.
However, blocking the vesicle release machinery of the
PPL1 cluster had no effect on aversive memory extinction
(Extended Data Fig. 3-1). Our model showed the same qual-
itative result where blocking of either the M6 or the PAM but
not of the PPL1 neuron abolished the extinction of an aver-
sive memory (Fig. 6B).

To formulate novel predictions for future experiments we
further analyzed our model by silencing other MBONSs during
the reactivation phase (Fig. 6; Extended Data Fig. 3-1).
Deactivating V2 during the reactivation phase did not signifi-
cantly alter the aversive extinction memory. Conversely, a
blockage of M6 during the extinction process had no effect
on the appetitive extinction memory performance either.
Blocking MVP2 or MV2 during odor reactivation had no effect
on both, appetitive and aversive memory extinction. Thus,
our model predicts that a single MBON, V2, or M6, is exclu-
sively involved in the formation of the appetitive or aversive
extinction memory, respectively.

KC activity is partly required for extinction learning

We additionally investigated the role of KCs in extinc-
tion learning in our model. To this end, we applied the shi-
bire'" protocol to KCs. When we blocked all KCs during
the training phase, neither appetitive nor extinction mem-
ory could be established. However, when we randomly
chose and blocked 50% of all KCs during appetitive and
aversive extinction training, we did not observe an effect
on extinction memory acquisition (Fig. 6). Thus, partially
blocking KC activity during odor reactivation might not or
only mildly interfere with extinction learning while an al-
most complete block of all KCs should prevent extinction
learning in the fly (Extended Data Fig. 6-1; see also
Discussion).

Discussion

In the present study, we established a circuit model of
the fruit fly based on confirmed anatomy and physiology.
It can explain formation and extinction of an olfactory
memory, and single-trial learning. We discuss the implica-
tions, limitations and predictions of our model.

Prediction error coding
The prediction error theory hypothesizes that learning
takes place if there is an unexpected change in the
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Figure 4. Neuron activation rates and behavioral performance across trials. A, Reward value (US, top) and DAN activation rates
(bottom) across 12 initial conditioning trials (left) and 12 extinction trials (right). Trial zero indicates neuron activation rates in the
naive model before learning. Reward presentation resulted in a prominent peak activation of the PAM during the very first training
trial, i.e., when the actual reward strongly deviates from the predicted reward. Omission of the reward during the first extinction trial
(right) resulted in a step-like reduction of PAM activation the simultaneous increase in PPL1 activation, which is crucial for extinction
learning. B, Summed synaptic KC input to MBONSs (top), MBON activation rates (middle), and model preference index (bottom) for
each simulated test trial that followed the respective training trial (see Materials and Methods). The strong PAM activation during the
first conditioning trial resulted in a strong change of the synaptic weights between KCs and MV2 and M6, and consequently in a
step-like reduction of the synaptic input and the output activation rates. Consequently, the model preference index represents the
imbalance between M6 and MV2 activation rates showed a step-like increase predicting a switch-like expression of a CR behavior
after only a single conditioning trial. Additional training led to a further gradual reduction of gross synaptic input to and activation of
MV2 and M6, paralleled by the gradual increase of the preference index. Extinction learning led to a gradual reduction of synaptic
weights in the KC::MVP2 and KC::V2 pathway. This reduces the difference between M6 and MV2 activation and leads to a gradual
extinction of the preference index. C, D, Same as A, B for aversive conditioning (left) and subsequent extinction (right). Simulation
results are shown for a single network. This was initiated identically before appetitive (A, B) and aversive (C, D) conditioning to en-
force identical initial conditions stressing the symmetric mechanism of reward prediction.

valence of a stimulus (Rescorla and Wagner, 1972). The
model performance index in Figure 4 computed after
each training trial mimics behavioral performance across
trials and fits the prediction error theory and experimental
studies. The behavioral learning effect is reduced across
trials and the learning curve saturates with increased
training. The results match the well-known saturation in
the conditioned response (CR) behavior in the honeybee
(Pamir et al., 2011). This effect, typically observed across
a group of animals, has been formalized in the Rescorla-
Wagner model (Rescorla and Wagner, 1972). A recent
rate-based model of the fly MB (Bennett et al., 2021) as-
sumed that connections from MBONs to DANs are crucial
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for asymptotic learning based on reward prediction. Our
model proposes that prediction error coding in D. mela-
nogaster is achieved through a network mechanism sup-
ported by the specific circuit motif sketched in Figure 1. It
is suggested that DANs receive relevant information not
only from sensory neurons directly but also via odor ac-
tivated MBONSs (Felsenberg et al., 2017, 2018). It was
implemented in the model through excitatory connec-
tions from laterally connected MBONs to DANSs. Initial
conditioning of the model leads to activation of the
PAM (PPL1) DAN and therefore induces downregulation
of the aversive (appetitive) MBONSs. This learning
effect declines after the first learning trial, since MBON
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Figure 5. Two separate memories underlie initial and extinction
learning. CS+ odor-induced activation rates of MBONs were
measured before and after extinction training to locate associa-
tive and extinction memories. A, B, Appetitive learning led to a
relative depression of CS+ odor-induced activation rates of
MV2 and M6, but not MVP2 and V2 MBONs. The memory trace
in MV2/M6 stayed intact even after appetitive memory was ex-
tinguished. Extinction decreased the CS+ response of MVP2/
V2, establishing a parallel memory trace. C, D, Aversive condi-
tioning led to a reduced CS+ input into MVP2/V2, but not into
MV2/M6. After memory extinction, the memory trace in MVP2/
V2 remained, and we observed an additional decrease in CS+ re-
sponse in MV2/M6. Boxplots show the median and the lower and
upper quartiles, whiskers indicate 1.5 times interquartile range,
outliers are marked with + symbol; n.s. = not significant, *p <
0.01. Results across simulation of n=10 networks in all panels.

activity is not sufficient to activate DANs after being
downregulated.

Single-trial learning

Learning within a single trial is a fundamental ability of
vertebrates (Irwin et al., 1968; Cook and Fagot, 2009) and
invertebrates, and the underlying mechanisms are at least
partially conserved across phyla. In insects, single-trial
learning has been intensely studied in classical and operant
olfactory, tactile, and visual conditioning of the honeybee
Apis mellifera (Menzel et al., 1974; Smith, 1991; Sandoz et
al.,, 1995; Menzel, 1999; Pamir et al., 2014; Villar et al.,
2020). Appetitive olfactory conditioning of the proboscis ex-
tension response allows the observation of the all-or-none
CR behavior during successive training trials where the
onset of US presentation is delayed with respect to the
onset of the CS odor. Typically, 40-60% of bees show a CR
after a single pairing of odor with reward (Pamir et al., 2014)
and a single learning trial is sufficient to establish short-term
and long-term memory, which can be recalled up to 3d
after training (Smith, 1991; Menzel, 1999; Pamir et al., 2014;
Villar et al., 2020). Additional training trials lead to a satura-
tion after approximately three to four trials with respect to
the fraction of animals that express a CR.

In the fruit fly, single-trial learning has been established
more recently. Aversive conditioning of adult flies with
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electric shock punishment showed that pairing of a single
odor presentation (of 10-60 s in duration) with a single elec-
tric shock induces short term memory (Beck et al., 2000;
Scheunemann et al., 2013) and long-term memory, retrieva-
ble for up to 14d if the experimental context is kept strictly
constant for training and memory test (Zhao et al., 2019). In
appetitive conditioning, a single session of odor-reward
pairing could establish long-term memory (Krashes and
Waddell, 2008; Colomb et al., 2009). Weiglein et al. (2019)
could show that also in the fruit fly larva a single session of
appetitive conditioning of 5 min was sufficient to establish a
short-term memory where the performance index in the
memory test increased with increasing duration (in the order
of minutes) of the training session.

In our circuit model, the very first training trial induces a
switch-like change in the network response and in the behav-
ioral memory expression. This parallels the switch-like behav-
ioral dynamics observed in learner bees (Pamir et al., 2011)
and provides an explanation for the single-trial induction of
appetitive and aversive memories in the fruit fly (Krashes and
Waddell, 2008; Colomb et al., 2009; Zhao et al., 2019). In con-
trast, during extinction learning we propose that an extinction
memory builds up gradually in the opposing pathway.

Extinction learning

Experimental studies in the fruit fly have shown that ex-
tinction learning establishes distinct and opposing memory
traces. The extinction of reward memory requires punish-
ment coding dopamine neurons whereas extinction of aver-
sive memory is mediated by reward coding neurons
(Felsenberg et al., 2017, 2018). Recent findings in mice
(Salinas-Hernandez et al., 2018) and rats (Luo et al., 2018)
suggest that this principle for extinction learning is con-
served in mammals. The authors showed that DANs from
the ventral tegmental area associated with reward signaling
are required to extinguish fear memory.

The importance of MBON::DAN feedback to perform
complex learning tasks such as extinction has been for-
malized recently in a rate-based model of the Drosophila
larva (Eschbach et al., 2020). In our adult fly model, the
MBON::MBON and MBON::DAN connections for the ex-
tinction of aversive and appetitive memories are strictly
symmetrical. During extinction of an aversive memory the
dopaminergic reward signal of the PAM neuron in extinc-
tion ftrials is driven by excitation from the M6 MBON,
which receives reduced inhibition from the approach me-
diating MVP2 as a result of the initial aversive conditioning
that reduced KC drive of MVP2. Thus, extinction learning
establishes a reward-like extinction memory trace in par-
allel to the initial aversive memory trace. Intriguingly, the
initial memory trace is not altered by extinction (Fig. 5).
This matches the experimental results and the proposed
mechanism in Felsenberg et al. (2018) supporting the
long-standing hypothesis of two parallel memory traces
after extinction (Bouton, 2004; Dudai, 2004; Eisenhardt
and Menzel, 2007).

The strict symmetry of the recurrent pathways in our
model has the consequence of symmetrical quantitative
results for the performance index and neuron input activa-
tion rates (Extended Data Fig. 3-1). The experimental
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Figure 6. Blocking specific neuron groups can reverse memory extinction. The computational model was used to reproduce the
neurogenetic manipulations with temperature-sensitive shibire'' mutant flies. The activation of individual neurons was suppressed
during extinction training only. This allows to identify neurons that are crucial to the process of establishing the extinction memory
in our model. A, Knocking down PPL1 or V2 during extinction training led to a completely abolished the appetitive extinction memo-
ry. Blocking PAM, M6, MV2, or MVP2 neurons during odor re-exposure had no effect on the appetitive extinction memory.
Blockage of all KCs (100%) prevented the model from extinction learning. However, when only 50% of the KC population was
blocked during odor reactivation, extinction learning remained unaffected. Further effects of partial KC blocking on extinction learn-
ing are presented in Extended Data Figure 6-1. B, Suppressing the activity of PAM DANs, M6 neurons, or KCs (100%) during CS+
odor re-exposure after aversive conditioning prevents the model from forming the aversive extinction memory. However, blocking
PPL1 DANs, MV2, V2, MVP2, or KCs (50%) does not diminish the memory extinction. Data are presented as mean = SD; n.s. = not
significant, *p < 0.01, *™*p < 0.001; n=15.

situation, however, does not provide fully symmetric be-  cluster, might add functional asymmetry between the ap-
havioral results. Our model matches well in the aversive  petitive and the aversive memory pathway (Perisse et al.,
memory pathway, i.e., for appetitive conditioning and ex-  2016; Pavlowsky et al., 2018).

tinction of aversive memory. In aversive conditioning ex-

periments, however, Felsenberg et al. (2017, 2018)

obtained stronger performance indices than our model Limitations of the model

and extinction of the appetitive memory was complete Our network model (Fig. 1) can be viewed as a minimal
(Extended Data Fig. 3-1). Independent tuning of model  circuit model of the MB sufficient to explain prediction
parameters for the two parallel pathways in our symmetric  error coding, single-trial conditioning and extinction learn-
model allows for an improved quantitative match with the  ing. We focused on only four out of 34 MBONs and re-
experimental results (Extended Data Fig. 3-2). However, a  stricted MB connectivity to feedforward from KCs to four
complete fit to the experimental data were not achievable.  MBONs and feedback from MBONs to DANs but did not
In particular, the complete extinction of the appetitive  explore other synaptic contacts among KCs and between
memory cannot be obtained. We thus conclude that the = KCs, MBONs and DANs within the MB lobes as uncov-
current model lacks at least on additional mechanism that  ered in the fly EM connectome (Takemura et al., 2017).
introduces asymmetry in circuit and behavior. Our mini-  Learning in our model is achieved through reinforcement-
mal model does not include all MBONs and DANs and  mediated plasticity at a single synaptic site, which has
their proven interconnections (Takemura et al., 2017), i.e., been shown to be involved in appetitive and aversive
the inhibitory connection between MVP2 and the PPL1 short-term olfactory memory (Zars et al., 2000; Pascual
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and Préat, 2001; Owald and Waddell, 2015). Increasing
experimental evidence indicates that olfactory learning
can involve plasticity at multiple sites within the insect MB
(Pascual and Préat, 2001; Kremer et al., 2010; Trannoy et
al., 2011; Bouzaiane et al., 2015; Haenicke et al., 2018;
Yamazaki et al., 2018). Also, it has been shown that mem-
ories can co-exist on different time scales representing
short-term, mid-term, and long-term memories (Pascual
and Preat, 2001; Davis, 2011; Trannoy et al., 2011;
Yamagata et al., 2015). Our trial-based model approach
does not accommodate explicit time scales that would
allow to differentiate between simultaneous, delay and
trace conditioning (Dylla et al., 2013), memory acquisition
and consolidation (Felsenberg et al., 2017) or decay
(Shuai et al., 2015). Future extensions may retain full tem-
poral dynamics, e.g., by using spiking neural network
models that have previously been used successfully to
study classical conditioning in fruit flies (Smith et al.,
2008; Wessnitzer et al., 2012; Faghihi et al., 2017; Gupta
et al., 2018; Rapp and Nawrot, 2020).

In the present study, we aimed at reproducing the be-
havioral performance index that is measured in a group
forced choice paradigm (Quinn et al., 1974) and thus rep-
resents a population measure across individuals, each
performing either the correct or the incorrect behavioral
choice. The long-held notion states that expression of the
CR behavior in individual flies is stochastic and follows
the group-averaged behavior (Quinn et al., 1974) has
been questioned by Chabaud et al. (2010) and by studies
in the honeybee (Pamir et al., 2011, 2014; Haenicke et al.,
2018) and in the cockroach (Arican et al., 2020). They
have shown that the average CR in a group of animals
does not accurately reflect memory expression in individ-
uals. Rather, it confounds two subgroups of learners and
non-learners where learners showed a switch-like and
stable expression of the CR behavior mostly after a single
trial (average 1.7 trials) with high memory retention rates
(>90%). Different parameters may account for individual
learning abilities such as internal state, e.g., of hunger and
satiety (Pamir et al., 2014; Sayin et al., 2018) that could in-
fluence perception or motivation. Establishing neural cir-
cuit models that take into account individuality of learning
and individual parameters that influence memory forma-
tion is a challenge we aim to address in future model
studies.

Model predictions

Our model makes several predictions that can be tested
experimentally. First, we hypothesize that DANs in the PAM
and PPL1 cluster compute a prediction error. Specifically, in
naive animals and for the example of appetitive learning the
PAM should show spontaneous baseline spiking activity
and no stimulus response during the presentation of a novel
odor. During a first pairing of the CS+ odor with a reward
(US) the PAM cluster should show a clear odor response,
which will be strongly reduced after the first learning trials
(Fig. 4A). When reward is omitted during extinction trials or
in the memory test, we predict a response in which the PAM
reduces its spiking output below spontaneous level. This
prediction matches the observation in DANs in the monkey
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(Schultz et al., 1997) and in the octopaminergic VUMmXx1
neuron in the honeybee (Montague et al., 1995; Hammer,
1997), although the circuit mechanisms hypothesized here
differs from that proposed by Schultz et al. (1997) and
Hammer (1997).

Second, we hypothesize a switch-like induction of a
memory trace during a single training trial, implying a step-
like change in the MBON activation rates (Fig. 4). A second
or third training trial should only induce gradual changes in
cellular physiology. Likewise, the behavioral memory ex-
pression should be observable after a single learning trial.

Third, our systematic analysis of blocking experiments
(Fig. 6) for all MBONSs indicate that MV2, M6, and MVP2
do not play a role during appetitive memory extinction,
whereas MVP2, MV2, and V2 are dispensable for aversive
extinction learning. This could be experimentally tested
by blocking these MBONs specifically during extinction
trials only. While the co-existence of two memory traces
after extinction of an aversive memory has been shown in
calcium-imaging from MVP2 and M6 (Felsenberg et al.,
2018; Fig. 5D) our model predicts parallel memory traces
also for extinction of an appetitive memory (Fig. 5A,B).

Finally, in a study by Schwaerzel et al. (2002), in which
KCs were blocked during aversive conditioning and odor
reactivation, the authors argued that KC activity is dispen-
sable for the acquisition of an extinction memory.
However, the two GAL4 lines used in this study include
<50% of all KCs (~700 and 850 cells). Our model analysis
predicts that a sizable fraction of the KC population is re-
quired and sufficient to form an extinction memory (Fig. 6;
Extended Data Fig. 6-1). A complete block of KCs how-
ever would interrupt the PN::KC::MBON::DAN signaling
pathway and extinction memory could not be acquired.
This could tested in a future blocking experiment using,
e.g., the OK107-GAL4 line that has been reported to label
practically all KCs (Aso et al., 2009).
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