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Yellow mealworm (Tenebrio molitor) is a highly beneficial beetle that serves as an excellent
source of edible protein as well as a practical study model. Therefore, studying its immune
system is important. Like in other insects, the innate immune response effected through
antimicrobial peptides production provides the most critical defense armory in T. molitor.
Immune deficiency (Imd) signaling is one of the major pathways involved in the humoral
innate immune response in this beetle. However, the nature of the molecules involved in
the signaling cascade of the Imd pathway, from recognition to the production of final
effectors, and their mechanism of action are yet to be elucidated in T. molitormodel. In this
review, we present a general overview of the current literature available on the Imd
signaling pathway and its identified interaction partners in T. molitor.
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INTRODUCTION

Insects are the most diverse group among all living organisms. They are considered to be ahead in the
“evolutionary marathon” since the Devonian period owing to their ability to survive in diverse
ecological habitats (1). The signature of distinct pathogenic infections from Gram-positive/-negative
bacteria, viruses, fungi, and parasites along insect life cycle exert extreme evolutionary pressure that
has resulted in the development of an enhanced immune system (2, 3). Unlike the mammalian hosts,
insects do not have adaptive immune system to aid them in production of antibodies and various
memory cells (4). In fact, the diversity and specificity of immune priming and most specifically
transgenerational immune priming (TGIP) advocated to provide clues to the immunologic memory in
few insects (4). Hence, they rely on innate immune responses to protect themselves against infections
and maintain homeostasis, thereby adapting to their ecological niches (5, 6).

Innate immunity is highly conserved among all living organisms. Despite the fundamental
differences between insects and mammals, their battle with common pathogens for millions of years
has resulted in the development of similar immunity-relatedmolecularmachinery (4). This immunity is
classified into cellular immunity, including phagocytosis, encapsulation, and nodulation (7, 8), and
humoral immunity, which mediates clotting (9), melanin synthesis (10), and antimicrobial peptides
(AMPs) production (11, 12). In insects, AMP production, the hallmark of innate immunity (13), is
mainly mediated by two intracellular signaling pathways via nuclear factor-kappa B (NF-kB)
transcription factors: (i) Toll pathway, whose primary role was identified in dorso-ventral axis
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formation in Drosophila embryo (14), and in Gram-positive
bacterial and fungal infection-related immune responses as
identified by Hoffman et al. (15), and (ii) immune deficiency
(Imd) pathway, which plays a role against Gram-negative
bacterial infections (16).

IMDprotein in insects shares similarity with receptor-interacting
protein (RIP) of mammalian tumor necrosis factor receptor (TNFR)
(6, 17). The insect body is able to distinguish meso-diaminopimelic
acid (DAP)-type peptidoglycans (PGNs) in the Gram-negative
bacterial cell wall as non-self by the peptidoglycan-recognition
proteins (PGRP), PGRP-LC and PGRP-LE (18, 19). The
recognition of bacterial infection by PGRPs in Drosophila leads to
the subsequent activation of the Imd pathway by recruiting the death
domain-containing intracellular protein, Fas-associated protein with
death domain (FADD), and caspase-8 homolog death-related ced-3/
Nedd2-like (Dredd) protein. The downstream intracellular cascade
transcription factor Relish is phosphorylated and translocated into
the nucleus, where it binds to the transcription response elements of
AMP genes (18, 20).

Among all the insects used to study immune responses and
host-pathogen interactions, yellow mealworm, Tenebrio molitor,
has become an attractive model owing to (i) its convenience and
cost-effective breeding, (ii) relatively large body size benefiting
researchers to collect sufficient hemolymph samples, (iii)
identification of molecular nature of its immune response, and
(iv) suitability for the development of potential strategies of pest
control and management (4).

The Imd pathway in T. molitor is relatively well-established
and extensively studied in the past decade, including some
studies from our research group. In this review, we have
highlighted the findings related to Imd signaling, mode of
action of all the receptors, death domains, positive and
negative regulators, and relative effectors in T. molitor. We also
discuss numerous open-ended questions regarding PGRP-driven
bacterial recognition, intracellular domain interaction with T.
molitor inhibitor of NF-kB (IkB) kinase (IKK) complex, putative
cross-talk of this signaling pathway with other immune pathways
such as Toll and c-Jun N-terminal kinase (JNK), and
antimicrobial specificity of final effectors, which can only be
addressed by further experiments.
A BRIEF HISTORY OF IMD SIGNALING
IN INSECTS

The discovery of adaptor protein IMD in 1995 has opened new
avenues related to innate immunity in invertebrates (21). Initially,
this pathway was assumed to be solely involved in sensing Gram-
negative bacteria. The regulation of Imd signaling pathway can be
attributed to components that are conserved across the invertebrate
species. These components include the pathogen-associated
molecular patterns (PAMPs) recognized by pattern recognition
receptors (PRRs) such as PGRP-LC and PGRP-LE, the IMD,
transforming growth factor-activated Kinase 1 (TAK1), FADD,
the caspase-8 homolog, Death-related ced-3/Nedd-2-like protein
(DREDD), the inhibitor of kB kinase (IKK) complex, and the NF-
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kB transcription factor Relish (22). In insects such as flies,
mosquitoes and beetles, the PRRs such as PGRP-LC and PGRP-
LE, form complexes with DAP-type PGN of Gram-negative
bacteria. Alternative splicing of PGRP-LC results in three PGRP-
LC protein isoforms (-LCa, -LCx, and -LCy) (23, 24).While PGRP-
LCx is required for polymeric DAP-type PGN recognition, both
PGRP-LCa and PGRP-LCx are essential to detect monomeric
DAP-type PGN. PGRP-LCa, a co-receptor for PGRP-LCx, binds
to the monomeric PGN fragment called tracheal cytotoxin (TCT)
(25–28). PGRP-LE elicits both extra- and intracellular functions. A
short form of PGRP-LE, mediates its expression on the cell surface,
binds to PGN and modulates Imd signaling. In contrast, the full-
length PGRP-LE is expressed in the cytoplasm, where it recognizes
TCT fragments independently from PGRP-LC by directly
interacting with IMD protein (29). Following recognition, the
PGRPs form homo- and heterodimers, resulting in the
recruitment of IMD (16). The intracellular cascade is then
activated by the interaction of IMD with FADD and sequential
activation ofDREDD, TAK1, TAKbinding protein 2 and 3 (TAB2/
3), and the IKK complex (11). Subsequently, Relish is
phosphorylated at multiple N-terminal sites by the IKK complex
and thereafter cleaved by DREDD (30, 31). While the N-terminal
transcription factor domain is released by endoproteolytic cleavage,
the C-terminal part (Rel-49) remains in the cytoplasm and the
active N-terminal part (Rel-68) is translocated into the nucleus,
leading to the activation of antimicrobial response, elicited by the
production of AMPs (32, 33). Further, IMD signaling is
supplemented by TAB2, E3 ligase inhibitor of apoptosis 2 (IAP2),
which associates with the E2-ubiquitin-conjugating enzymes
UEV1a, Bendless (Ubc13), and Effete (Ubc5) and the
transcription cofactor Akirin (22, 34).

Additional interactions of the Imd pathway with other
immune signaling pathways have been reported in different
insects. Evolutionary dynamics lead to various host-pathogen
interactions. Therefore, insects of different orders, for instance,
fruit flies, mosquitoes, and honey bees, express various immune-
related genes during their interaction with pathogens. Following
viral and parasitoid infections in Drosophila, unpaired (upd) 1,
upd2, and upd3 in hemocytes bind to the dimerized Domeless
receptor and activate Jak kinase (Hopscotch), resulting in
phosphorylation and dimerization of STATs (Start92E) (35).
Although honey bees lack upd orthologs, they can recognize viral
infections via the same pathway and regulate relevant
antimicrobial effectors such as Thioester-containing protein
(TEPs) (36). Imd signaling engages with transcriptional factors
after recognizing viral PAMPs. The viral patterns have been
shown to stimulate REL2-regulated genes. Moreover, an specific
binding sites for D. melanogaster NF-kB transcription factors
and REL1A of Aedes aegypti have been found in TEP22 protein
(37). Additionally, TAK1 and TAB2/3 activate the JNK pathway,
leading to either the expression of AMP genes or apoptosis (36).
Furthermore, phospholipase A2 (PLA2) has been identified and
characterized in a wide range of animals and has diverse
functions, including but not limited to host immune response.
The induction of PLA2 activity in Spodoptera exigua is controlled
by Imd signaling (38).
July 2022 | Volume 13 | Article 906192
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Imd signaling can be triggered by Gram-negative bacteria and
other pathogenic sources, including fungal infections (39).
Reduced survivability in Relish mutants of D. melanogaster and
induced NF-kB REL2 in fat bodies and midgut of mosquitoes with
fungal infection have been reported previously (40).

Negative regulators of Imd signaling have also been studied
and identified. A membrane-bound non-catalytic PGRP-LF
functions as a negative regulator of the PGRP-LC-mediated
Imd pathway in D. melanogaster (41). Hence, some catalytic
PGRPs like PGRP-SC1 and PGRP-LB are reported as negative
regulator of Imd signaling via amidase activity against PGN (42).
Moreover, in mosquitoes and honey bees, poor Imd response
upon knock-in (Pirk), Rudra, and PGRP-LC-interacting
inhibitor of Imd signaling (PIMS) are the other negative
regulators of the pathway (35, 36). PIMS depletes the level of
PGRP-LC from the plasma membrane and abrogates Imd
signaling, maintaining a balanced Imd response subsequent to
bacterial infections (43). The negative regulation has also been
attributed to the enzyme transglutaminase that mediates cross-
linking of Relish and suppresses innate immunity to commensal
bacteria in the gut of Drosophila (44).
SUMMARY OF PREVIOUS REPORTS ON
IMD SIGNALING IN T. MOLITOR

Despite the application of Drosophila as a powerful study model,
using larger insects such as T. molitor has been benefiting
researchers with more accessible biochemical investigations. As
in other insects, the Imd pathway in T. molitor initiates an
immune response by sensing invaders through PRRs such as
PGRP-LC or PGRP-LE (45). Downstream of the intracellular
signaling cascade, Relish enhances the production of AMPs to
eliminate pathogens (46). Imd pathway components in T.
molitor such as PGRP-LE, IMD protein, FADD, Dredd, TAK1,
IKK gamma, IKK epsilon, and Relish have already been
identified by our research group. Functional roles of these
components have been examined using numerous pathogens,
including but not limited to Escherichia coli, Staphylococcus
aureus, Candida albicans, and Listeria monocytogenes, as
immune elicitors. Knocking down Imd pathway components
using RNA interference (RNAi) technology has shed light on
various aspects, such as post-infection mortality rates and
reduction in AMP levels (Table 1).

The expression of nine AMP genes (Tenecin1, Tenecin4,
Attacin1a, Attacin1b, Attacin2, ColeoptericinA, ColeoptericinC,
Defensin, and Defensin-like) in the insect gut reduced in
response to E. coli infection post-PGRP-LE knockdown (45).
Moreover, T. molitor larvae demonstrate an increased mortality
rate post L. monocytogenes infection following PGRP-LE silencing.
However, another study presented conflicting results under similar
experimental conditions in a different T. molitor larval stage (50).

SilencingofTmImd increasesmortalityafterE. coliandC.albicans
infections owing to the reduced expression of nine AMP genes
(Tenecin1, Tenecin2, Tenecin4, Defensin-like, ColeoptericinA,
ColeoptericinC, Attacin1a, Attacin1b, and Attacin2) and five AMP
Frontiers in Immunology | www.frontiersin.org 3
genes (Tenecin2, Defensin-like, ColeoptericinA, Attacin1a, and
Attacin2), respectively (47).

Likewise, IKK epsilon-silencedT.molitor larvae showed enhanced
susceptibility post-E. coli infection owing to reduced expression of 12
AMP genes (Tenecin1, Tenecin2, Tenecin4, Defensin, Defensin-like,
ColeoptericinA, ColeoptericinC, Attacin1a, Attacin1b, Attacin2,
Thaumatin-like protein1, and Thaumatin-like protein2) in fat
bodies, which are the major immune organ in insects. Reduced
expression of 10 AMP genes (Tenecin1, Tenecin4, Defensin,
ColeoptericinA, ColeoptericinC, Cecropin-2, Attacin1b, Attacin2,
Thaumatin-like protein1, and Thaumatin-like protein2) in the gut
and four AMP genes (Defensin, Defensin-like, ColeoptericinC, and
Attacin2) in the hemocytes following IKK-epsilon knockdown
elevated the risk of E. coli infection-mediated mortality (49). In
addition, silencing the IKK gamma gene enhanced the susceptibility
ofT.molitor larvae toE. coli, S. aureus, andC. albicans infections (48).
The understanding of the T. molitor Imd signaling cascade under
pathogenic stress is still under examination. Understanding the
complexity and intricate cross-talk mechanisms in response to
varied pathogens would provide interesting insights of the defense
mechanisms in the beetle innate immunity.

Further investigations on the downstreammolecules in the Imd
pathway and transcription factorRelish haveproven the role of Imd
signaling in bacterial (Gram-negative and Gram-positive) and
fungal infections. For instance, in dsTmRelish-treated larvae,
mortality of almost 90% was attributed to the downregulation of
AMPs such as Tenecin3, Tenecin4, ColeoptericinA, and Attacin1a
in all tissues. Hence, direct interaction of Relish and production of
AMPs against E. coli infection in T. molitor support the role of Imd
signaling in thehost-mediated immuneresponse (46).Additionally,
Relish plays a critical role in inducing autophagy-related genes
against L. monocytogenes infection in the fat bodies and hemocytes
of T. molitor (51) (Figure 1).
CROSS-REGULATION OF IMD AND TOLL
PATHWAYS IN T. MOLITOR

Cross-regulation of Imd and Toll pathways have been previously
documented in various insects, such as Drosophila, Tribolium
castaneum, and Plautia stali (20). Studies on T. molitor also
provided evidence for the cross-regulation of Imd and Toll
pathways (Figure 1). Generally, insects elicit distinct immune
responses depending on the pathogen source. For instance, Toll
signaling in Drosophila can be activated solely after recognizing
lysine-type PGN of Gram-positive bacteria or fungal beta-1,3-
glucan (52). In contrast, the Imd pathway is activated simply by
recognizing DAP-type PGN of Gram-negative bacteria or certain
Gram-positive bacilli (53). However, in T. molitor, polymeric
DAP-type PGN of Gram-negative bacteria can trigger both Imd
and Toll pathways (54). The studies that have proposed the
intracellular cross-regulation between these two signaling
pathways are listed in Table 2.

Knockdown of IKK gamma causes decreased survivability
after E. coli, S. aureus, and C. albicans infections. IKK gamma
silencing resulted in the downregulation of Transcription factors
July 2022 | Volume 13 | Article 906192
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Relish and DorX2-encoding genes downstream of Imd and Toll
pathways, respectively. Consequently, the gene expression of ten
relevant AMPs was also suppressed. Concurrently, DorX1
expression was upregulated, suggesting that IKK gamma can
act as a positive and negative regulator of Toll and Imd signaling
pathways (48). Furthermore, IKK epsilon, another unit of the
IKK complex, was involved in the expression of three NF-kBs
(DorX1, DorX2, and Relish) and AMPs in fat body tissues. These
results suggest that IKK epsilon plays a pivotal role in regulating
Toll and Imd pathways in the fat body tissues of T. molitor.
Nevertheless, the survivability of larvae was not affected by the
invasion of S. aureus and C. albicans post-IKK epsilon
Frontiers in Immunology | www.frontiersin.org 4
knockdown, whereas they showed susceptibility after E. coli
infection (49).

Additionally, lysine-type PGN of Gram-positive bacteria in
Drosophila can be sensed by PGRP-SA and Gram-negative
binding protein 1 (GNBP-1) (15). In contrast, various studies
have clarified that PGRP-SA of Bombus ignitus, Apis mellifera,
and Megachile rotundata tended to bind to DAP-type PGN
rather than lysine-type PGN (55). In T. molitor, PGRP-SA
plays an important role in survivability against bacterial
(Gram-negative and Gram-positive) and fungal infections (56).
Furthermore, Toll receptor can be activated by its ligand,
Spaetzle (Spz). This protein is a zymogen and is cleaved to its
TABLE 1 | Summary of the Imd pathway compartments that regulate antimicrobial peptide production in T. molitor.

Genes Known Functions Pathogens Associated Organs Regulated AMPs References

TmPGRP-LE Recognition receptor E. coli Gut TmTene-1
TmTene-4
TmCole-A
TmCole-C
TmDef
TmCec-2
TmAtta-1b
TmAtt-2

(45)

TmIMD Adapter molecule in Imd pathway E. coli Whole body TmTene-1
TmTene-2
TmTene-4
TmDef-like
TmCole-A
TmCole-C
TmAtta-1a
TmAtta-1b
TmAtta-2

(47)

TmIKKg Regulatory molecule - inhibitor of nuclear factor-kB (IkB) kinase (IKK) complex E. coli
S. aureus
C. albicans

Fat bodies
Hemocytes
Gut

TmTene-1
TmTene-2
TmTene-4
TmDef
TmDef-like
TmCole-A
TmCole-C
TmAtta-1a
TmAtta-1b
TmAtta-2

(48)

TmIKKϵ Regulatory molecule - inhibitor of nuclear factor-kB (IkB) kinase (IKK) complex E. coli Fat bodies TmTene-1
TmTene-2
TmTene-4
TmDef
TmDef-like
TmCole-A
TmCole-C
TmCec-2
TmAtta-1a
TmAtta-1b
TmAtta-2

(49)

TmRel Transcription factor (NF-kB) E. coli Fat bodies
Hemocytes
Gut

TmTene-1
TmTene-2
TmTene-4
TmDef
TmDef-like
TmCole-A
TmCole-C
TmAtta-1a
TmAtta-1b
TmAtta-2

(46)
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mature form by a chain of serine protease activation, following
pathogen recognition by PRRs (24, 57). The immunological roles
of Spz isoforms (Spz1b, Spz-like, Spz4, Spz5, and Spz6) in T.
molitor have been investigated using RNAi (58–62). Among
them, TmSpz1b, TmSpz-like, and TmSpz5 showed anti-Gram-
negative bacterial (E. coli) activity (58, 61, 62). Moreover,
silencing of TmSpz1b downregulated the expression of
TmDorX1 and TmRel in the immune organs (58). Similarly,
TmSpz-like knockdown suppressed the expression of all
NF-kB genes (61). The TmSpz5-silenced larvae, however,
showed a decreased expression of TmRel after Gram-negative
bacterial infection but an increased expression of the same
after a Gram-positive bacterial infection in the Malpighian
tubules (62). Collectively, the activation of either Toll or Imd
signaling pathways interferes with the other through unknown
interactions between their components (Table 3).

Another pathway that supposedly interacts with Imd signaling is
autophagy, a conserved cellular mechanism that maintains
Frontiers in Immunology | www.frontiersin.org 5
homeostasis by eliminating dysfunctional cellular components and
intracellular pathogens mediating its delivery to the lysosomes (63,
64). PGRP-LE recognizes the intracellular pathogen Listeria and
induces autophagy (64). Furthermore, the transcription factor Relish
can regulate the expression of autophagy-related genes in T. molitor
throughunknownmechanisms. Thiswas briefly addressed in a study
wherein silencing of TmRelish in T. molitor larvae decreased the
mRNA levels ofTmAtg1 in the fat bodies and hemocytes subsequent
to Listeria infection (47). This proposes a cross-talk between Listeria-
induced autophagy and Imd pathway in T. molitor (63).
FINAL REMARKS

We have provided a comprehensive overview of the Imd
signaling cascade in T. molitor and insights into future
research directions that would improve understanding of this
signaling cascade in beetles. The existing genome sequencing
TABLE 2 | Potential evidence for the interactions between Imd pathway and other immune signaling pathways in T. molitor.

Genes Signaling pathway Pathogens Associated Organs Effects on the other immune pathway References

TmPGRP-LE Autophagy L. monocytogenes Whole body decreased larval survivability (50)
TmIKKg Toll E. coli

S. aureus
C. albicans

Fat bodies
Hemocytes
Gut

Positive regulation of TmDorX2 (48)

TmIKKϵ Toll E. coli Fat bodies
Gut

Positive regulation of TmDorX2 (49)

TmRel Autophagy L. monocytogenes Fat bodies Positive regulation of TmAtg1 and TmVps34 (51)
Gut Positive regulation of TmVps34, TmAtg9, TmAtg5, and TmAtg8
July 2022 | Volume 13 | A
FIGURE 1 | Schematic illustration of the proposed Imd pathway in Tenebrio molitor and its possible cross-talks. Pattern recognition receptors (PRRs; PGRP-LC and
PGRP-LE) are triggered by DAP-type PGN of the bacterial cell wall. Recognition of Gram-negative bacteria further triggers the recruitment of intracellular proteins TmIMD,
TmFADD, and TmDREDD. TmTAK1/TmTAB2, activated by TmIMD, further activates TmIKK complex. TmRelish is subsequently phosphorylated by the TmIKK complex
and then cleaved by TmDredd. Eventually, it leads to the translocation of TmRelish into the nucleus, where it binds to the relevant transcription response elements and
triggers AMP production. Solid black arrows indicate the identified interactions between Imd signaling compartments. Blue dashed arrows indicate putative cross-talks
between Imd and other signaling pathways via TmIKKs complex, TmRelish, and ligand Spaetzle in T. molitor. Red dashed arrows indicate the putative cross-talks
identified in other insects. Abbreviations: PGRP; Peptidoglycan recognition protein, IMD; Immune deficiency, FADD; Fas-associated protein with death domain, DREDD;
death-related ced-3/Nedd2-like protein, TAK1; Transforming growth factor-activated kinase1, TAB2; TAK binding protein 2, IKK; Inhibitor of nuclear factor-kB (IkB) kinase,
AMP; Antimicrobial peptide, JNK; c-Jun N-terminal kinase.
rticle 906192
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information have identified players associated with the Imd
signaling cascade; however, several aspects remain unanswered.
These include (i) the precise mechanism of the Imd pathway
compartments such as FADD, Dredd, TAK1, and TAB2, (ii)
cross-talks with other signaling pathways, such as Toll, JNK, and
autophagy, and (iii) the putative functions of this signaling in
development and apoptosis, similar to its counterpart, TNFR
signaling, in mammals. Therefore, further studies are essential to
bridge these gaps in the literature.
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