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Many Flavors of Model-Based Meta-Analysis: Part II –
Modeling Summary Level Longitudinal Responses

Martin Boucher*and Meg Bennetts

Meta-analyses typically assess comparative treatment response for an end point at specific timepoints across studies.
However, during drug development, it is often of interest to understand the response time-course of competitor compounds
for a variety of purposes. Examples of such application include informing study design and characterizing the onset,
maintenance, and offset of action. This tutorial acts as a ‘‘points for consideration’’ document, reviews relevant literature, and
fits a longitudinal model to an example dataset.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 288–297; doi:10.1002/psp4.12299; published online 20 April 2018.

Part I of the model-based meta-analysis (MBMA) tutorial

highlighted the critical importance for companies developing

drugs to understand the key safety and efficacy attributes

of other compounds, either on the market or in the pipe-

line.1 The focus of many articles is to present study results

based on primary and secondary end points in which more

often than not, these end points will be landmark, for

instance at a specific timepoint or an event, such as “end

of study.” However, it is common for published study results

to also include time-course information, usually in a graph

or a table, thus providing a much more informative view of

the data than a landmark end point.
Fitting models to the time-course of response can have

many benefits especially in the learning phase of develop-

ment (typically phase II) but it can also impact the confir-

matory stage (typically phase III). Having clear research

questions for a drug’s development will help decide whether

longitudinal modeling will add value for a project team.
A benefit of modeling time-course data is to understand

the full response profile for different compounds and/or pla-

cebo. This includes the onset of action, maintenance of

effect, and any offset of response. Two competing drugs

may have similar efficacy at week 6 but, with all other

things being equal, a compound with a quicker onset of

action is likely to be preferred by patients. A response that

is maintained over a significant time-frame should be more

meaningful than a response at a single point in time.
A second example is when previous proof of concept

(POC) trials in a specific indication were typically 6 weeks

in length but longitudinal data from historical trials of

another mechanistically similar drug, to the one in develop-

ment, demonstrate that a strong response can be shown

as early as week 2. This could result in designing shorter

POC trials in the future for this indication.
In addition, following the readout of a short-term POC

study, it is useful to predict a response in a study of longer

duration. Wang et al.2 looked at how predictive a short-term

result (3 months) was of a longer-term response (6 months)

using a longitudinal model for responder rates. By using

existing time-course information from similar types of

compounds reported in the literature, a scalar between two
timepoints could be estimated and applied to the POC
study result to generate the predictions for a future longer
study design.

Depending on the types of models used, interpolation
can be used to get estimates at timepoints that have been
little studied (or not at all). This will be discussed further,
later in the tutorial.

First, the aim of this tutorial is to review previous publica-
tions on longitudinal meta-analyses. Second, we wish to
highlight important considerations in modeling time-course
data. Finally, an maximum effect (Emax) model is fitted to
an example osteoarthritis (OA) pain dataset using a selec-
tion of commonly used software in the pharmaceutical
industry within (but not exclusively) Clinical Pharmacology.
Landmark meta-analyses at selected timepoints will also be
compared with the longitudinal model estimates. The data-
set, model code, and outputs from the modeling will be pro-
vided in the Supplementary Materials. The primary focus
here is on modeling aggregate data and, hence, MBMA of
individual patient data (IPD) or combined aggregate data/
IPD data will not be covered.

REVIEW OF LITERATURE COVERING LONGITUDINAL

MBMA

The number of published articles on longitudinal meta-
analyses, particularly for methodology development, is rela-
tively small, as is the case for MBMA methodology in
general. However, there has been a fairly consistent rate of
such publications during the last 10 years, particularly with
regard to the application of MBMA methods.

In terms of methodology, several articles have focused
on the issue of accounting for residual correlations between
timepoints, comparing the different approaches used to
account for them, and the consequences of not doing so.
Ishak et al.3 fitted a variety of models to deep-brain stimula-
tion data from patients with Parkinson’s disease, all of
which accounted for the correlations between timepoints
within a study treatment arm. The article concluded that
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accounting for these correlations could result in a better
model fit and more precise parameter estimates. Similarly,
Musekiwa et al.4 discussed and compared different covari-
ance structures when fitting linear mixed effect models to
an example dataset of 17 trials, which compared the combi-
nation of radiotherapy and chemotherapy with radiotherapy
alone. With more of an MBMA focus, Ahn & French5

expanded on the work by Ishak et al.3 to nonlinear time-
course and dose-response models with an emphasis on
how compound symmetry correlations can be accounted
for using the NONMEM software package and then, quanti-
fying the resulting bias of not accounting for this correlation
appropriately through an extensive simulation exercise.

Although Emax and exponential models are common for

fitting time-course in the Clinical Pharmacology arena, there

are plenty of alternatives. Jansen et al.6 presented a net-

work meta-analysis in which the time-course for OA pain

was incorporated using fractional polynomials. These are

flexible nonlinear models and are an extension of polyno-

mial models.7 Whereas their flexibility is certainly an advan-

tage, the parameter estimates themselves may not be so

useful or intuitive in the same way that Emax or ED50/ET50

parameters tell us about relative maximal effects or

potency/onset of action. Luu et al.8 used a cosine model to

reflect circadian intraocular pressure of patients with glau-

coma or ocular hypertension. There are also examples of

authors transforming discrete measurements, such as

responder rates or bounded mean pain scores, into logit

space and then applying nonlinear models.9,10

There are several other examples of applications of longi-

tudinal MBMA that we do not discuss here but a table of

these is provided in the Supplementary Materials

Table S1, which includes the disease area, end points, and

types of longitudinal models fitted. Additionally, further exam-

ples are referenced separately in the discussion section.

IMPORTANT CONSIDERATIONS WITH LONGITUDINAL

MBMA
Time: Continuous variable or factor
Clinical pharmacologists conventionally consider “time” and

“dose” to be continuous variables, as demonstrated by the

routine use of Emax or exponential models. These models

readily support interpolation and, less commonly, extrapola-

tion for future study prediction. Repeated measures analy-

sis, in which time is treated as a factor, is more commonly

used by statisticians to be used with good effect to describe

the data at each timepoint with fewer assumptions. In sum-

mary, treating time as continuous is advisable when the

goal of the analysis is broader than purely description,

such as prediction, clinical trial simulation, or to reflect

underlying pharmacology.

Different imputation methods
One of the major challenges with MBMA longitudinal data

is that published summary level data are analyzed and

reported in disparate ways across articles. Different articles

may summaries different timepoints: some with a rich time-

course of many results and others with just a baseline and

end of study result. Access to original reports, from

company or regulatory websites, may be used to fill in

unpublished timepoints, if available.
Identifying the method used by each publication to han-

dle missing data at each timepoint and then determining

how to account for any differences can be a major under-

taking.11 The end point time-course data in plots or tables

may not be based on the same imputation method as the

final end point analysis. For example, observed case (OC;

no imputation) time-course data for the measure of interest

can be plotted alongside the end of study statistical analy-

sis result for which an imputation method has been applied,

such as: last observation carried forward (LOCF), worst

observation carried forward, baseline observation carried

forward (BOCF), and multiple imputation, among others.12

End-point relationships are likely to vary over time

depending on the imputation method used. However, this

may not be important if we are only looking at early time-

points in which dropout is likely to be minimal. However, as

the length of the study increases, differences in imputation

method will become more of an issue. Access to IPD can

reduce these differences by re-imputing summary level

data using the most relevant method. However, for pub-

lished data this is rarely possible and other methods

accounting for these differences will need to be considered.
One straightforward approach would be to only include

articles with an imputation method that matches the one

planned for use in the specific drug development program

the MBMA is aimed to inform. Alternatively, multiple inde-

pendent MBMAs could be performed, one for each of the

different imputation methods. However, this would be both

time-consuming and not an efficient way to use the full

dataset. A further approach might be to combine all the

data from different imputation methods and then fit a

covariate to estimate the effect for each method (e.g.,

LOCF vs. OC vs. BOCF). In this covariate approach, some

studies may report summary data for more than one impu-

tation method; in this case, correlation between endpoints/

imputation methods, within trials, would also need to be

considered.

Outcome reporting bias
The issue of outcome reporting bias needs careful consid-

eration and arises when some or all of the included publica-

tions do not present the full time-course results of their

underlying studies.13 It is important to understand which

studies are contributing to the information at each timepoint

and creating a table to show how this would be instructive.
Published plots will not always present the corresponding

SEs of the means and, when they do, it may be difficult to

digitize these accurately if the plots are of poor quality or

the points/bars overlap. Digitization of these plots also intro-

duces another source of transcription error. When OC data

are presented on a plot without precision estimates and/or

sample size information (which change over time when

there is dropout), the analyst is left with the dilemma of

how to weigh the residuals.

Correlations between timepoints within treatment arms
For time-course models, it is important to acknowledge that

mean responses for a study arm will be correlated between
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timepoints because these responses include the same indi-

viduals, subject to dropout and imputation method. Ignoring

such correlation could lead to over precise estimates, bias,

and more weight assigned to studies with many timepoints

over those with few timepoints. It should be noted that cor-

relations at the summary level may be different to those at

the IPD level.
If correlation is accounted for using study-level and arm-

level random effects (one of the approaches outlined in

Ahn & French5), then arm-level effects should be nested

within the corresponding study-level effects. The NONMEM

version 7.3 software package has the option to include

more levels of random effects with such nesting compared

with previous versions so that setting up compound sym-

metry is now much easier.14

To implement in R, the nonlinear mixed effect (NLME)

function for fitting NLME models has options for defining

different correlation structures (e.g., compound symmetry,

autoregressive (AR(1) etc)). The NONMEM version 7.3

also allows the use of AR residuals. In BUGS, compound

symmetry can be set up either using the approach outlined

in Ahn & French,5 which is discussed in the previous sec-

tion, or by constructing the residuals in matrix form. The lat-

ter method is not straightforward when there are trials with

different “dimensions” of timepoints.
As a recommendation, we suggest that, once the best

available structural model has been chosen and fitted, the

time-course of residuals are plotted by study and treatment.

If runs of positive or negative values are observed within a

study treatment arm, then this would suggest that there is

still some residual correlation that needs to be accounted

for. Compound symmetry would be a good starting point,

only proceeding to other methods, such as AR, if necessary.

Residual weighting
Ideally for mean data, residuals should be weighted by the

precision of the mean (the reciprocal of SE2 5 1/(SE2) 5 1/

(SD2/N)). We recommend that available SDs over time are

routinely plotted, as part of the exploratory analysis, to

assess potential models for SD imputation, if required. This

can also be a useful way of identifying unusual values

(such as a SE being reported as an SD or vice-versa).

There are many approaches to deal with missing SDs but

Boucher used an NLME model to impute missing SDs over

time for this type of data.15 Wiebe et al.16 provided a nice

review of methods that have been used to impute missing

variance data.
If, however, the number of missing SDs is high then it

may be more appropriate to weight using the sample size.

This makes an assumption that the within study SDs are

the same across all studies and timepoints, which may not

be a realistic assumption depending on the design and

population characteristics of the included trials.

Covariate effects
In traditional meta-analyses, the term “meta-regression” is

often used to describe the fitting of covariates, although

“covariate analysis” is a more commonly used phrase in

Clinical Pharmacology. Compared with landmark meta-

analyses, there are potentially more parameters to which

covariates could be fitted when modeling longitudinal data.
However, the limitations of covariates at the summary level
remain the same, namely: small ranges of observed values
at the mean level; inability to use the summary level covari-
ate to make inferences at the patient level, due to ecologi-
cal bias; and the often small numbers of studies involved in
an MBMA.17 Plotting the relationship between endpoint and
potential covariates is the first step to identifying those to
take forward into a covariate analysis.

Between-study variability
The ability to get a good estimate of between-study variabil-
ity will largely depend on the number of trials that are avail-
able for the analysis. If there are insufficient studies to get
a good estimate, then one option would be to take the
Bayesian approach and use a prior based on a similar anal-
ysis of different data. As will be seen in the example, longi-
tudinal models provide scope for more than one random
effect.

In the first tutorial, Q and I2 were discussed as
approaches to assess between-study variability along with
reasons why they may not be particularly useful. They have
not been adapted for MBMA, as far as we know, and we
would not recommend their use for these longitudinal
models.

Model diagnostics
There are a much greater number of potential diagnostics
that can be carried out on a longitudinal model than for a
landmark model. Broadly speaking there is residual-based
and simulation-based diagnostics. Examples of residual-
based diagnostics are weighted residuals over time,
weighted residuals vs. predictions, and a histogram of
residuals (or other plots that assess the distributional
assumption for the residuals).

A common simulation-based diagnostic is the visual pre-
dictive check, which assesses how well the model
describes the observed data. The mean and quartiles of
the simulated data are compared with the mean and quar-
tiles of the observed data. These can be produced using
PsN.18 Normalized prediction distribution errors (NPDEs)
are one of the newer simulation-based metrics used to
evaluate NLME models and when the model is a good fit of
the data, the NPDEs would be expected to be distributed
N(0.1).19 NPDEs can be produced in NONMEM version 7.3
by inserting “NPDE” in the table line of the command file.
There is also a library in R (npde) that can produce these.

EXAMPLE DATASET: WESTERN ONTARIO AND
MCMASTER UNIVERSITIES PAIN IN OSTEOARTHRITIS

In order to understand the time-course characteristics of
naproxen in OA, internal clinical study reports and publically
available literature were searched to find relevant double-
blind, randomized, placebo-controlled parallel-group studies.
All trials included both naproxen and placebo treatment
arms. The endpoint of interest was the Western Ontario and
McMaster Universities (WOMAC) pain score, which is the
same as the example used in part I of this tutorial, except
that now, time-course information has been included. Study
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characteristics are presented in Supplementary Table S2.

For “flare” trials, subjects were washed out of their pain med-

ications and were required to have a predefined increase in

pain (a flare-up) to be eligible for randomization. Of the 18

trials included in this MBMA, 12 were flare designs and 6

were not.

Research questions
As emphasized in the first tutorial, formulating clearly

defined research questions will lead to a more focused and

efficient piece of work and avoid time-consuming “fishing”

exercises. In addition to comparing the longitudinal method-

ology with landmark estimates, the research questions for

this WOMAC pain example are: How does the onset of

action and maximal effect compare between naproxen and

placebo? Note: a quick onset of action could result in the

possibility of running a shorter “first-in-patient” trial. 1) Does

a flare design have any impact on treatment effect? Is there

an advantage/disadvantage to using such a design in terms

of the resulting treatment difference estimate? Note: flare

designs are more selective and recruitment could take lon-

ger, therefore, if there is no advantage in this design then

there is potential to complete the study sooner. Both of

these questions speak to specific model parameters that
will be described in the next section.

METHODS

Figure 1 presents the mean WOMAC pain scores across
time stratified by treatment (naproxen or placebo) and
design (flare or nonflare). This plot shows a quick onset of
action (<2 weeks) before reaching and maintaining a maxi-
mal effect over time.

There seems to be two key differences between the flare
and nonflare trials. The baseline WOMAC score seems to
be higher in flare designs, as does the maximal effect rela-
tive to baseline, for both the naproxen and placebo treat-
ment groups.

This part of the tutorial will focus on the commonly used
Emax model, which will be applied using three different soft-
ware platforms.20 The results will be compared with the
landmark equivalent for specified timepoints (weeks 2, 6,
and 12). The Emax models are normally applied to dose-
response relationships (due to their pharmacological plausi-
bility) but can also be used to characterize time-course
response.

Figure 1 Mean Western Ontario and McMaster Universities (WOMAC) pain over time for naproxen and placebo split by study design.
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Missing SDs were imputed with the approach used in

Boucher.15

The three-parameter Emax model below was used to fit

the WOMAC pain data (Yijk) for study i, and treatment arm j

at time k.

Yijk 5E01g1i 1
Emax1g2ið Þ � tijk

ET501tijk
1Eijk ; (1)

where E0 is the effect at baseline (time 5 0), Emax is the maxi-

mal effect over time, and ET50 is the time to get to 50% of

Emax. Due to the observed differences between flare and non-

flare designs, as discussed above, “flare” was fitted as a

structural covariate to both E0 and Emax such that:

E05 E0:nf1 If � E0:f (2)

and

Emax5 Emaxp:nf1 If � Emaxp:f1 In � Emaxn; (3)

where parameters with an additional suffix of “nf” related to

non-flare designs and “f” to flare designs. If was an indica-

tor variable for design (0 for “nonflare” and 1 for “flare”) and

In was an indicator variable for treatment (1 for naproxen

and 0 for placebo) ET50 was parameterized as follows:

ET505 ET50p1 In � ET50n (4)

The ET50p was the ET50 parameter for placebo with ET50n

being the additional ET50 for naproxen compared to pla-

cebo. ET50 was fitted in log space to ensure it was positive.
Research question 1 was addressed by comparing ET50p

with (ET50p 1 In*ET50n).
For research question 2, a covariate for “flare” design

was added to Emaxn such that:

Emaxn5 Emaxn:nf1 If � Emaxn:f (5)

Correlation was accounted for by fitting random effects to

both E0 and Emax, as shown in Eq. 1. These random effects

g1 (E0) and g2 (Emax) were assumed to be normally distrib-

uted both with mean 0 and variances s1
2 and s2

2,

respectively.
The residuals were assumed to be normally distributed

with mean 0 and variance SDijk
2/nijk. As the weights were

based on the observed SEs, r was fixed to 1 in the model-

ing. However, in R, using the NLME function, it was not

possible to fix r to 1.

Linear models for landmark comparison
A random effects linear model was used, as described in

part I of the tutorial, to compare landmark estimates and

precision with the corresponding longitudinal model esti-

mates for selected timepoints.

ĥ i 5hi 1Ei (6)

where hi �N(d, s2).

Bayesian considerations
The priors used for the Bayesian Emax model are summa-

rized in Table 1. They were all set to be noninformative so

that the resulting estimates should be in line with frequent-

ist estimates. Generally, it is recommended that sensitivity

analyses with different priors be considered. As this is an

illustrative example, just a single set of priors has been

used.
Three chains were used with a burn-in of 60,000 samples

and then posterior distributions were summarized based on

a further 20,000 samples.

Software
The models described above were fitted in NONMEM,

BUGS (using R2OpenBUGS), and R (using function

NLME).21,22 Landmark analyses were carried out in R using

metafor.23 Model diagnostics were produced in R. The

results were compared but the main aim was to demon-

strate the “how to” for each of these packages. The relative

merits of each package will also be discussed in terms of

their ease of use and limitations.

Model diagnostics
The following plots were produced, which are designed to

be illustrative:

1. Observed versus individual predictions.
2. Weighted residuals (WRES in NONMEM) by time, strati-

fied by treatment and flare design.
3. NPDEs by time, stratified by treatment and flare design.
4. Observed vs. predicted over time for each study and

arm.

Table 1 Priors for longitudinal model parameters

Parameter Prior Comments

E0nf (nonflare) Uniform (0, 10) Covers the range of the bounded scale

DE0f (flare) Uniform (-10, 10)

Emaxpnf (placebo nonflare) Normal (0, 10,000)

DEmaxpf (placebo flare) Normal (0, 10,000)

DEmaxn (naproxen) Normal (0, 10,000)

Ln (ET50p) Uniform (-10, 10)

Ln (DET50n) Normal (0, 10,000)

s1 Half normal (0, 1,000,000) Can only take positive values

s2 Half normal (0, 1,000,000) Can only take positive values

Emax, maximum effect.
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5. Treatment difference (naproxen – placebo): observed vs.

predicted over time for each study and arm.

All presented diagnostics were produced using NONMEM

version 7.3 model output.

Publication bias
The authors are not aware of standard techniques to

assess publication bias for longitudinal models but the fol-

lowing approach was taken for this example: a standard

publication bias funnel plot for each timepoint (weeks 1, 2,

6, and 12 when there is more than one study).

RESULTS

Table 2 presents the parameter estimates for the Emax

model across the three packages.
The parameter estimates suggest that naproxen has a

quicker onset of action than placebo but it should also be

noted that the estimates are both below 1 week, which is

earlier than any of the postdose observations across the

studies.
The flare by treatment covariate was not found to be sig-

nificant and the estimates in Table 2 and Table 3 are

based on a model without it.

Table 3 presents longitudinal model estimates for time-
points 2, 6, and 12 weeks and compares them to the land-
mark estimates from a random effects model (all split by
flare and nonflare). Note that the number of trials with 2, 6,
and 12-week data reported were 13, 9, and 7, respectively,
of 18 in total. The week 12 estimates are less comparable
between the landmark and longitudinal models than the
earlier timepoints. Both approaches demonstrate that treat-
ment differences between naproxen and placebo decrease
over time. This can also be seen in Figure 2, which shows
the observed difference in means between naproxen and
placebo over time, split by “flare.”

The publication bias plots shown in Figure 3 for weeks 1,
2, 6, and 12, did not show any obvious evidence of publica-
tion bias.

Figure 4 presents the selected diagnostic plots that
seem to demonstrate a good model fit for both naproxen
and placebo, although there seems to be more positive

Table 2 Comparison of parameter estimates for BUGS, NONMEM, and R

Estimate (SE)

Parameter BUGSa NONMEM R (NLME)

E0 (nonflare) 5.22 (0.28) 5.20 (0.13) 5.20 (0.27)

DE0 (flare) 0.93 (0.33) 0.96 (0.25) 0.96 (0.32)

Emaxp (nonflare) 21.14 (0.41) 21.16 (0.24) 21.15 (0.32)

DEmaxp (flare) 20.86 (0.47) 20.82 (0.09) 20.82 (0.39)

DEmaxn 20.79 (0.06) 20.79 (0.09) 20.79 (0.07)

Ln(ET50p) 20.40 (0.17) 20.37 (0.20) 20.40 (0.17)

ET50p (weeks) 0.67 0.69 0.67

Ln(DET50n) 21.24 (0.31) 21.17 (0.20) 21.20 (0.29)

ET50n (weeks) 0.19 0.21 0.20

s1 0.86 0.62 0.62

s2 0.71 0.74 0.74

Emax, maximum effect; NLME, nonlinear mixed effect; NONMEM, nonlinear

mixed-effect modeling.
aPosterior mean and SE.

Table 3 Longitudinal and landmark model estimates of treatment difference at weeks 2, 6, and 12

Week Estimates for naproxen – placebo (95% confidence/credible interval)

Nonflare BUGSa NONMEM R (NLME) Landmark

2 20.90 (-1.04, 20.76) 20.90 (-1.04, 20.76) 20.90 (-1.02, 20.78) 21.08 (-1.52,-0.64) (4 trials)

6 20.84 (-0.94, 20.74) 20.84 (-0.98, 20.70) 20.84 (-0.94, 20.74) 20.95 (-1.51, 20.39) (3 trials)

12 20.82 (-0.93, 20.71) 20.82 (-0.98, 20.66) 20.82 (-0.94, 20.70) 20.62 (-1.00, 20.24) (2 trials)

Flare

2 21.04 (-1.18, 20.92) 21.03 (-1.19, 20.87) 21.03 (-1.15, 20.91) 21.06 (-1.26, 20.86) (9 trials)

6 20.90 (-0.99, 20.81) 20.90 (-1.06, 20.74) 20.89 (-0.97, 20.81) 20.99 (-1.35, 20.63) (3 trials)

12 20.85 (-0.95, 20.75) 20.85 (-1.01, 20.69) 20.84 (-0.94, 20.74) 20.67 (-0.87, 20.47) (5 trials)

NLME, nonlinear mixed effect; NONMEM, nonlinear mixed-effect modeling.
aPosterior mean and 95% credible interval.

Figure 2 Difference in mean Western Ontario and McMaster
Universities (WOMAC) pain over time between treatments
(naproxen-placebo).
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residuals and NPDEs for naproxen at weeks 12 and 13

with the exception of a single negative residual (week 13 of

study 18). This observation does not seem to be an obvi-

ous outlier from the raw plots, although, where pain res-

ponse has generally leveled off in most arms, here, it is still

decreasing at week 13. The observed vs. predicted plots

over time, split by study and arm, can be found in Supple-

mentary Figure S1.
There seems to be more of a discrepancy between the

predictions and observations for the treatment difference

(naproxen – placebo) over time, which can be seen in Sup-

plementary Figure S2 and this will be further discussed in

the next section. The treatment difference seems to be

underestimated or overestimated by the model in roughly

equal proportions across the 18 trials.

CLOSING REMARKS

This tutorial (part II) acts as both a “points for consider-

ation” article when conducting longitudinal MBMA and also

as an example of a common nonlinear model form being

applied to such data across multiple platforms. There are

many candidate models that could be used to fit such data,

exponential being a common alternative, and it is not the

intention of the authors to recommend a specific model or

to compare different models. Rather, this is intended as an
illustrative example with code and dataset provided to allow
readers to either reproduce results or try out alternative
model constructs. Model building is an integral aspect of
work carried out by clinical pharmacologists and, although
one would not expect as many model steps as routinely
seen for a patient level pharmacokinetic/pharmacodynamic
analysis with potential multiple parameters in a longitudinal
model, there is still scope for a variety.

One potential criticism of the models fitted in this tuto-
rial, particularly outside of Clinical Pharmacology, is that
baseline (E0) is modeled with a random effect rather than
fixed per study (when it is effectively treated as a nui-
sance parameter). Similar to modeling placebo response
in a dose-response model, it may be desirable to make
future predictions using certain criteria regarding baseline
(the effect of covariates on E0, for example). The extent
to which this might be a problem in terms of bias is unclear
and it would be a useful avenue of future research.

The first tutorial used approaches that modeled the treat-
ment difference in which the reference arm (e.g., placebo)
was treated as a “nuisance parameter.” The modeling
approach in this tutorial was taken at the arm level and, in
the example, the fit seemed to be very good when assess-
ing each arm within a study. However, diagnostic plots
based on the treatment difference were less convincing. An

Figure 3 Funnel plots for weeks 1, 2, 6, and 12.
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issue with this arm-based approach is that the randomiza-
tion is not being fully accounted for. This issue has been
discussed in relation to traditional meta-analyses and net-
work meta-analyses.24,25 An alternative would be to model
the treatment differences but it is often of interest to char-
acterize placebo response along-side active treatment
response and, hence, it would be useful to look further into
the consequences of the arm-based approach and the
impact of biases.

For correlation, random effects were used to account for
this in a simple way. This method is straightforward to
implement in all three packages featured. It is not clear,
generally, whether more complex forms of correlation, such
as AR(1), would provide much advantage over the simpler
forms when an appropriate structural model has been fitted.
The AR(1) models can easily be fitted in the R NLME func-
tion and for NONMEM version 7.3 onward can also be eas-
ily fitted using a small amount of code that can be found in
the user manual. To fit AR(1) models in BUGS would
require more work as there are no “settings” as such. A
comparison of different correlation structures for time-
course modeling would be another useful area of research,
together with worked examples in different software
packages.

The number of potential diagnostics for these types of
models, primarily developed for patient level data, can be
overwhelming and this tutorial focusses on only a few of
the most common ones. Other diagnostics commonly used
are visual predictive checks and histograms of random
effects (somewhat limited given the typical small number of
studies in meta-analyses). Keizer et al.26 provide a useful
tutorial on a modeling and simulation workbench for
NONMEM.

By including only trials with both naproxen and placebo
arms, we have only concerned ourselves with direct infor-
mation. An extension would be to look at all randomized
controlled trials in several nonsteroidal anti-inflammatory
drugs in OA (e.g., diclofenac and ibuprofen). There might
be a need to make comparisons between the active com-
pounds, which then may involve a combination of direct
and indirect information. This could be an issue if there is
inconsistency between direct and indirect information.27

A future challenge for this type of MBMA is the move
away from imputation methods, such as LOCF and BOCF
in many new clinical trials. If a substantial proportion of the
literature is of this form, it will be more of a challenge to
relate historical data to new study readouts or to assess
comparative effectiveness.

Figure 4 Diagnostic plots for the longitudinal model. IPRED, individual predicted; NPDE, normalized prediction distribution error.
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The model discussed here (Emax) assumes a monotoni-

cally increasing/decreasing response. There are examples

where an effect reaches a maximum and then starts to go

back in the opposite direction (a rebound). This could be

due to reasons such as resistance to drugs (e.g., human

immunodeficiency virus viral load) or behavioral (weight

loss in obesity trials).
This is evident in some published obesity trials, for exam-

ple, and the models discussed here would need to be

expanded to allow for this phenomenon.28,29 P�erez-Pitarch

et al.30 fitted a parameter to account for rebound of viro-

logic response in patients with hepatitis C.
Another potential avenue of research could be multivari-

ate time-course modeling. There are, for example, several

correlated key endpoints in OA (WOMAC pain, WOMAC

function, and weekly average pain scores). Published

articles tend to report a mixture of these endpoints, with

often only one of the three having a full time-course plot.

Could a combined multivariate model borrow strength

across the studies and endpoints to result in better esti-

mates of treatment effect? Similarly, could multivariate mod-

els help with the issues of different imputation methods

being reported across articles?
The first two parts of this tutorial have covered both time-

course and dose-response separately but it may be useful

to do a combined dose-response and time-course model.

Mandema et al.31 did this comparing eletriptan and suma-

triptan in the treatment of migraine pain. Similarly Checchio

et al.32 also fitted a joint time-course and dose-response

model to several endpoints related to the treatment of

psoriasis.
Similarly, there are examples of models that incorporate

a longitudinal MBMA as part of a wider pharmacokinetic/

pharmacodynamic approach in which joint pharmacokinetic/

MBMA models were fitted.8,33 Further examples are

highlighted in the list of application examples in the

Supplementary Materials.
The field of MBMA continues to expand and the number

of published examples is growing but there is still very little

published research around the methodology (Ahn &

French5 and Mawdsley et al.27 being two such examples)

and there are many issues that need a deeper investiga-

tion. It is this future research that will make MBMA more

acceptable to a wider audience, outside the Clinical Phar-

macology sphere, such as statisticians, payers, and

regulators.
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