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The stability of mutualism
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Positive interactions are observed at high frequencies in nearly all living systems, ranging
from human and animal societies down to the scale of microbial organisms. However, his-
torically, detailed ecological studies of mutualism have been relatively unrepresented.
Moreover, while ecologists have long portrayed competition as a stabilizing process, mutu-
alism is often deemed destabilizing. Recently, several key modelling studies have applied
random matrix methods, and have further corroborated the instability of mutualism. Here, |
reassess these findings by factoring in species densities into the “community matrix,” a
practice which has almost always been ignored in random matrix analyses. With this mod-
ification, mutualistic interactions are found to boost equilibrium population densities and
stabilize communities by increasing their resilience. By taking into account transient
dynamics after a strong population perturbation, it is found that mutualists have the ability to
pull up communities by their bootstraps when species are dangerously depressed in

numbers.
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utualism, or cooperative interactions between different

species, is an important organizing ecological force that

is observed in nearly all living systems, ranging from
human and animal societies down to the scale of microbial
organisms!~7. A general assessment suggests that every species on
earth is involved in at least one or more mutualistic interactions®.
As an example, more than 80% of all flowering plants are in a
mutualistic relationship with Mycorrhizal fungi, which live on
root systems and enhance the availability of soil®. Descriptions of
mutualism and cooperation can be traced back to the first
recorded historical documents®-10, but of note in the twentieth
century is the pioneering work of a number of truly colourful
characters, including the Russian anarchist Prince Peter Kro-
potkin®, pacifist ecologist Walter Alleel!1, and the mathematician
Vladimir Kostitzin!2. Apart from their work, however, there was
only relatively minor interest in the study of mutualism over most
of last century!3. Obviously, it did not help that the mathematical
models of theoretical ecologists invariably associated unstable
positive feedback with mutualistic interactions, often describing
exponentially growing populations proliferating in “orgies” of
“mutual benefaction”'4, as coined by May!>. Such negative
associations are often brought in to promote the “Great God of
Competition” concept®16, in which competition is viewed as the
key source of stability in ecological communities. Although over
the last two decades there have been attempts to redress the
situation (as in the many ecological studies of Judith
Bronstein®17), there is still continued and intense debate on the
simple basic question as to whether cooperative interactions
between species tend to stabilize, or whether they tend to desta-
bilize the systems they form part of.

Originally May!8 used “random matrix theory” to explore
questions pertaining to the complexity-stability debate!®, but only
in the last years have these sophisticated techniques been adapted
to study the role of mutualism in communities20-2°, Recent key
studies in the pages of Nature and Science also concluded that
“mutualistic [interactions] are destabilizing”> and that
increasing the proportion of mutualistic interactions “nearly
always decreases the overall return rate” and thus decreases the
likelihood of stability?0, as similarly echoed in the literature
elsewhere. In this paper we explore the use of random matrix
theory for studying these issues. The analysis shows how mutu-
alism allows species to build up large biomasses or population
numbers, and therefore endows the community with strong sta-
bilizing properties. This is particularly noticeable in the short
term recovery dynamics, after subsets of species are depressed in
population numbers from a strong perturbation. It also corro-
borates and gives deeper insight into a number of otherwise
difficult to explain simulation results and empirical findings of
extensive mutualistic interactions sporadically reported in the
literature. The results presented here differ from the well-known
work of Allesina and Tang?®, and other similar approaches?0-22,
because here population equilibria are accounted for faithfully in
the community matrix, while the latter authors questionably
avoid this practice. Moreover, consideration of transient
dynamics, gives us a useful framework to help understand the
resilience mechanism of ecological communities?%-27,

Results

The random matrix model. The present work is built around a
variation of Robert May’s!8 analysis introduced in the 1970’s to
study the controversial question: “Will a large complex system be
stable?” Instead of May’s linear dynamics, the classical nonlinear
Lotka-Volterra equations of multi-species systems are taken
advantage of. For a community of n-species, the Lotka-Volterra
equations posit that the rate of change of the 7’th species can be

modelled by the nonlinear differential equations:

dN, <
dt‘:Ni ri—i—Zaiij i=1,2,...,n (1)
=

Here Nj is taken to be the population density of species-i. The
interaction coefficients are described in the matrix A = (ay),
where the element aj;; represents the effect species-j has on the
growth of species-i. A is treated as a random matrix with
interactions a; assigned randomly having zero mean and
standard deviation o, unless otherwise stated. A cooperative or
mutualistic (+/4) interaction implies both a;>0 and a;>0,
while a competitive (—/—) interaction is just the opposite.
Exploitative interactions are of the form (4/—).

Intraspecific interactions a;; are scaled to unity such that a; =
—1. Following many other studies?1-28-34, to help gain analytical
insights into the model’s properties, the growth rates are all given
the scaling r; =41, an assumption that is also relaxed in what
follows (see Supplementary Notes 3). But in the context of
mutualistic communities, a positive growth rate reflects a
property of facultative mutualism for species that have the
capability of surviving on other resources in the absence of their
mutualist partners!’»3233. The advantages and disadvantages of
this approach are discussed in the “Methods” section.

Before proceeding to the theoretical analysis, it is an
appropriate point to introduce directly one of the key phenomena
to be investigated. Figure 1 plots trajectories of a perturbed n =
10 species Lotka-Volterra model (Eq. (1)) as it returns to
equilibrium. The perturbation mimics a species that has been
considerably depressed in population numbers over a short time
period (sometimes referred to in the ecological literature as a
“pulse perturbation”?7-3%). The pulse pushes the system out of
equilibrium. One set of simulations (blue lines) has random
interaction coefficients with mean strength m = E(a;) = 0.0
and o = 0.05 indicating each interaction is equally positive
or negative. The second set of simulations (red lines) are of
purely mutualistic systems having random interactions with

Perturbation

Time

Fig. 1 Resilience of Mutualism. Trajectories of a perturbed n =10 species
Lotka-Volterra model Eq. (1) as it returns to equilibrium. Blue lines are
systems with random positive and negative interaction coefficients having
m = £(a;) = 0.0 and ¢ = 0.05. Red lines are simulations mutualistic
systems having random interactions with m = E(aij) =0.1, ¢ =0.05 and
all interactions positive. For all simulations, the population is depressed by
0.4 units initially, and the perturbation dies in time to zero. It is easy to see
that the return time is much faster for the mutualistic systems. Note that
five independent simulations are plotted for each value of m with identical
initial conditions. Supplementary Fig. 1 in Supplementary Notes 2 similarly
explores the effects of perturbing some 20 species when there are n=
100 species in total.
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mean m = E(a;) = 0.1 and ¢ = 0.05, so that all interspecific
interactions are positive (aij >0) and mutualistic.

An established and well recognized method for assessing the
“degree of stability” of an ecological community requires
measuring and comparing the recovery times from such a
perturbation!>27:3¢, [The method was employed by May!?
specifically for mutualist models since at least the 80’s.] From
Fig. 1, it is immediately clear that for the perturbed species of the
purely mutualistic community (red lines), the return time to
equilibrium, is far more rapid indicating far higher resilience. (To
assist comparisons, species equilibrium levels have all been
translated to appear as zero on the y-axis i.e., representing a
perturbation of zero.) This much faster recovery time for
mutualistic communities stands in contrast to the consensus
view which characterizes mutualism as destabilizing, and is
counterintuitive to much of what may be encountered in the
theoretical ecology literature. But interestingly, a search through
the literature reveals that Addicott3? had noted the possibility that
mutualists have faster recovery time in simulations runs, but this
was never explained or explored further by theoretical means. In
short then, how can we make sense of this unusual resilience
property of mutualistic communities, and is it a characteristic or a
pathological occurrence?

Degree of stability and resilience. Let us analyse model system
(1) in further depth. By setting all time derivatives to zero, it is
possible to solve for the equilibrium populations N, = N, The
equilibrium is deemed “feasible” if all equilibrium populations are
positive (N; >0), which is an essential criterion for a viable eco-
system. As noted by Roberts?®, an unusual feature of this model is
that feasible equilibria are nearly always locally stable and will
return to equilibrium after a small perturbation, at least for the
reasonable scaling of parameters chosen (see also Stone3?). A full
stability analysis requires studying the n eigenvalues A; of the
community matrix S = DA, where D = diag(N;,N;, ... ., N,) is
a diagonal matrix. This is the major difference of the work pre-
sented here and the mainstream random matrix methods of
Allesina and Tang?>, who study the eigenvalues of A rather than
the community matrix S.

Following convention, we refer to A as the largest eigenvalue of
the community matrix S=DA ie, A=max;{}}. (If the
eigenvalues are complex we set A = max; Re{A,}). When A<0
the system is locally stable and will return to equilibrium after a
small perturbation. However, if A > 0, the system is unstable. The
degree of the system’s stability or resilience may be quantified by
the magnitude |A|, which is an index of the system’s return time
to equilibrium after a small perturbation3®. This is based on the
knowledge that the eigenvalue associated with A is characteristic
to the trajectory’s slowest eigendirection on its return to
equilibrium. It is therefore considered the bottleneck. The more
negative is A (the larger is |Al), the faster the trajectory can return
to equilibrium, and the “more stable” and the more resilient is the
system. In summary, when the system is perturbed from a feasible
equilibrium by a small perturbation, the “slow dynamics” as
the trajectory converges back to equilibrium is controlled by
the largest (least negative) eigenvalue A and its associated
eigenvector.

We will be making use of the Chen and Cohen scheme (see
“Methods” section) which generates specially designed interaction
matrices A in which the proportion of each interaction type is
specified in advance. (For example, P=75% mutualists, 15%
exploitative and 10% competitive; see also ref. 20). Several studies
have examined the critical eigenvalue stability index A as the
proportion P of mutualistic interactions is increased. In practice,
for each P, this requires randomly choosing a proportion P of the
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&
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Fig. 2 The critical stability eigenvalue A. The eigenvalue A is plotted as a
function of P, the proportion of mutualistic interaction pairs, as an average
of 50 runs. The more negative is A, the more stable is the (feasible) system
in the sense that it has faster return time to equilibrium3¢ and thus higher
resilience. Parameters: n =100 species; interaction variability ¢ =0.02;
connectance C =0.7; growth rates r, = 1.

n(n —1) off-diagonal interactions elements (a;) and assigning
them to be of type (+/+), while the remainder (1 — P) are set to
be exploitative (4/—), as explained in the “Methods” section. It
was also possible to allow for the network’s connectivity C which
simply ensures there is a fixed proportion C of non-zero
interactions.

Figure 2 shows that resilience increases, with A becoming more
negative as the proportion P of mutualistic interactions increases,
until a saturation point at A= —1 is reached. In these
simulations, all community interactions were taken to be random
with an exploitative structure, while mutualistic interactions were
externally introduced to the proportion P required. But the results
were qualitatively unchanged if the background interactions were
competitive or purely random.

The relationship is not difficult to explain. As will be shown, in
large complex systems as Eq. (1), an increase in the proportion of
mutualistic interactions P helps build up the equilibrium densities
of individual species. For these feasible systems, higher equili-
brium numbers translate into stronger stability, similar to a
“stability in numbers” effect This link between high equilibrium
numbers and strong stability has been demonstrated
previously?%37. In the context, of feasible competition commu-
nities where interactions strengths can reach relatively high levels
it has been shown3” that A, = —(1 + E(czij))N;k . This appears to
be different to the result in ref. 22 and a derivation is given in
Supplementary Notes 1 together with assumptions (e.g., that
growth rates r,=1, and perturbations of interactions are
relatively small as discussed extensively in ref. 37).

Feasible mutualist systems have relatively weak interactions,
and thus in practice the critical eigenvalue component A can be
well approximated by the minimum equilibrium population N,
through the relationship:

min®

A~ max{ ~N..., —1}. (2)

(The latter formula takes into account that the stability matrix
S always has an outlier eigenvalue A; = —1 as explained in the
“Methods” section.)

To explore this further, in Fig. 3 the eigenvalues of the
community matrix S=DA are plotted for systems of n=
100 species and for P =0, 0.2, 0.5, and 0.8. Each subplot gives an
elliptical distribution for its 100 eigenvalues A; in the complex
plane (red dots), as predicted by random matrix theory?>. Adding
cooperative interactions (i.e., increasing P), pushes the ellipse to
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Fig. 3 Eigenvalue distributions. Eigenvalues A, of the Jacobian or
community matrix in the complex plane, for four different values of P.
Imaginary parts Im(4;) versus real parts Re(4;) are plotted. The “bulk”
eigenvalues (red dots) are contained in an ellipse which centers close to the
mean equilibrium level, i.e., 7Nf plotted as blue circles. Stability becomes
stronger (ellipse shifts to the left) as the proportion P of mutualistic
interactions increases in otherwise exploitative communities. When P> 0.4,
the largest outlier eigenvalue is A = —1 (see Eq. (2)). For P=10.8, it was
necessary to stretch the scale for the x-axis and it is different to the other
panels. Parameters: n =100 species; interaction variability ¢ = 0.02;
connectance C=0.7; growth rates r; =1, as in Fig. 2.
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Fig. 4 Equilibrium populations. The critical eigenvalue A (black line) is
plotted as a function of P, the proportion of mutualists. The minimum
equilibrium value —N = of the populations (blue line) is a good
approximation to the critical eigenvalue A in the regime Ny, <1. Outside of
this regime A = —1. Plotted in green is <Nf) which should be a proxy for the
magnitude of the bulk eigenvalues (Eq. (3)). The magenta circles plot the
approximation N; =~ 1/[1 — (n — 1)mCP]. Parameters, as in Figs. 2 and 3:

n =100 species, ¢ = 0.02, C=0.7; growth rates r, = 1.

the left. The center of the ellipse can be well approximated by the
mean equilibrium population level —N; plotted as a blue filled
circle, indicating how the equilibrium populations increase in
tandem with the eigenvalue distribution (see “Methods” section,
Eq. (3)).

A closer examination of the eigenvalue distribution reveals a
well known formation in random matrix theory, namely that a
multitude of “bulk” eigenvalues are located in the ellipse, while
there is an additional “outlier” eigenvalue A = —1, most easily
noticeable for P>0.4.

Figure 4 demonstrates that Eq. (2) does indeed hold. For each
value of P, the equilibrium value of the species with the minimum
population is plotted in red. As predicted, the minimum
equilibrium value N, of the populations (red line) is a good
approximation to the critical eigenvalue —A (black line) in the
regime N.. <1 (where P<0.42). Outside of this regime, for
higher values of P, the critical eigenvalue is then A= —1.

Bulk eigenvalues and short-term recovery. Until now we have
examined the system’s return time, and thus resilience, but based
on the assumption that the initial perturbation from equilibrium
is very small. For larger perturbations, the short term recovery of
disturbed populations is controlled by the “bulk eigenvalues” of
the stability matrix. To see this, consider Fig. 3 where it is clear
that as the proportion P of mutualistic interactions increases, the
cluster of (n — 1) “bulk eigenvalues” associated with the random
matrix “moves to the left” and separates out more and more from
the “outlier” eigenvalue A = —1. It is interesting to examine how
this affects the dynamics of the ecological system. To do so, we
will assume that the population of a single species is depressed to
a low abundance level by a pulse perturbation?”-3%, as in Fig. 1.
The resulting transient dynamics of the population trajectory
then roughly passes through two distinct recovery phases.

Phase 1: The rapid first phase response is controlled by the
large magnitude “bulk” eigenvalues (rather than the outlier
A = —1) which ensure rapid population growth and recovery.
These eigenvalues generate the “fast dynamics” and ensure the
model’s trajectory rapidly reorients itself towards the direction of
the single positive equilibrium vector N* (itself an eigenvector).
As this swiftly takes place, the trajectory in any case ends up very
close to equilibrium, as seen in Fig. 1. This first phase describes,
what was referred to by Arnoldi et al, as the “short term
recovery” phase?’.

Phase 2: Once in the vicinity of the equilibrium, the trajectory
is then mostly controlled by the the smallest magnitude outlier
eigenvalue, usually A = —1. It then “crawls” at a less rapid pace
(along the associated eigenvector) as it converges to the
equilibrium N = N" at a rate determined by the eigenvalue
A = —1, again seen in Fig. 1. This phase describes the longer term
recovery time.

Interestingly Phase 2 is traditionally used to measure the return
time to equilibrium and the resilience, because, as mentioned, it is
perceived as the bottleneck. However, in many cases, as in the
context here, it is Phase 1 which is the more relevant measure of
recovery and resilience. This is because at the end of Phase 1, the
trajectory has almost reached equilibrium, and any remaining
discrepancy is in practice negligible.

Thus, with regard to resilience, the critical eigenvalue A is only
the part of the story and represents the speed at which the system
returns to equilibrium in the single slow direction of a single key
eigenvector. Figure 3 allows us to see that when the proportion P of
mutualists increases, all the other “bulk” eigenvalues become
substantially more negative. The elliptical distribution of the bulk
eigenvalues is centered on the average equilibrium population level
—N; marked as a blue circle, whose magnitude increases greatly
with P. Thus the speed to equilibrium from all other (n— 1)
eigenvector directions increases substantially with higher levels of
inter-species cooperation P. The short term recovery is thereby
controlled by the high magnitude bulk eigenvalues, and is more
rapid for larger P values.
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An easy argument makes it possible to explain why mutualistic
interactions tend to increase species equilibrium values N; in this
model. As discussed in Stone3”-38, the underlying “uniform
model” (in which all interspecies interaction coefficients a; = m

and o* = Var(a;) = 0.0) acts as a skeleton framework and

should be viewed as a good zero’th order approximation when
perturbations are small. For the uniform model (¢ = 0), the mean
equilibrium value is N, = 1/[1 — (n — 1)mCP], where P is the
proportion of mutualistic interactions and C is the connectance
(see Supplementary Notes 1). The RHS of the equation is plotted
in Fig. 4 (magenta circles) and provides a close fit to the mean
value of the random matrix populations when ¢ >0. This shows
us directly why mutualism (in terms of P) builds up the
equilibrium populations in the Lotka—Volterra model.

It is also important to note that going beyond a threshold of
too many mutualistic interactions can lead to population blowup
and loss of feasibility. To see this in simple terms, suppose all

interactions are mutualistic of strength a; = +m>0. The

assumption leads us to the “regular” model in which all species
are identical. The model Eq. (1) at equilibrium yield: N* =
1/[1 — (n — 1)m] for the case where C=P=1 (see Supplemen-
tary Notes 1). Clearly, we must have the limitation m<1/(n — 1)
to prevent blow-up, and feasibility is lost if there is equality (see
refs. 37-38), These are important factors that constrain the
feasibility of mutualistic systems.

Discussion

In summary, for the parameters discussed here, feasible systems
based on the Lotka—Volterra Eq. (1) are generally locally stable,
and the strength of stability increases with P the proportion of
mutualists. The unusual results presented are based on studying
the eigenvalues of the complete community matrix S=DA,
rather than just the interaction matrix A, as has been recent
practice?:2>. The latter approach fails to consistently take into
account species heterogeneous equilibrium levels, which has a
number of consequences, including overlooking the startling
resilience properties of mutualists systems found here.

Given that the models studied in this paper have the interesting
property that A, ~ —N;’, one can expect in practice that rarer
species will take more time to recover that abundant species, a
feature predicted heuristically in ref. 2. While the latter authors
“emphasize that there is no mathematically inevitable link
between species rarity and long-term return rates,” in contrast we
see here that there is a formal mathematical link. Namely, the
eigenvalues of the community matrix S = DA control the return
rates and these are in turn proportional to population abundance
A ~ —N;. This leads to the interesting observation of Arnoldi
et al2’ that abundant species tend to govern the short-term
recovery, while rare species often dominate the long-term
recovery.

The results indicate underlying generic stability properties of
mutualism that have been observed in simulation studies in the
past, but have until now defied explanation from a theoretical
perspective?1:3%40, Note that there has been no need to introduce
nonlinear functional responses to explain the stability of mutu-
alism to capture this generic property. Additional nonlinearities
are likely to make these results even more robust, as has been
shown elsewhere?!. That mutualism might in a number of con-
texts be stabilizing is not out of line with Tu et al.2* conclusion
that there are increasing and even “widespread” reports of
mutualistic interactions (or other cooperative interactions) in
many natural and laboratory communities**2 and where bio-
diversity is very high.

A possible caveat with the present approach is the narrow
range of parameters that allow for a feasible mutualistic system.
This is seen in Supplementary Notes 5 where general calculations
are given for estimating the probability of feasibility, based on
refs. 1037, while Supplementary Fig. 5 verifies the accuracy of
these calculations. We see that for n <100, the feasibility con-
straint is not that dissimilar to May’s stability condition for the
stability of large random ecosystems (namely, ﬁ <1), and
neither is it dissimilar to the feasibility requirements of compe-
tition systems or other related random matrix analyses from the
literature. As discussed above, the other requirement that the
underlying “uniform model” is feasible sets the limitation on
mutualistic interaction strength as m < 1/(n — 1). In short, large
feasible systems require that species interact weakly and with low
variability. If these conditions are met, large populations can
build up and exhibit very high stability properties. In practice
these requirements are likely to be far looser. Sequential assembly
of communities should effectively select for feasible communities,
and thus mitigate the above-mentioned caveat. Thus even if
feasibility is rare amongst all community matrices, it may well be
easier to generate in nature. However, this is a small diversion
from the guiding questions in this study which concern the fea-
tures controlling the degree of stability of mutualistic systems.

While the model presented here, like all models, requires some
simplifying assumptions, it nevertheless has many commonalities
with those used in the past 40 years for studying the complexity-
stability debate!®2>38, As shown in Supplementary Notes 3, some
of the assumptions can be relaxed without damage to any of the
results presented. Although not necessarily a universal principle
(Supplementary Notes 4), the general examples here demonstrate
that cooperative interactions between species have the propensity to
boost the stability of feasible systems. In short, mutualists have the
ability to pull up communities by their bootstraps, should species
become depressed in number or pushed out of equilibrium.

Methods

Stability. Local stability of the Lotka—Volterra Eq. (1) at equilibrium is found from
studying the community matrix, or equivalently Jacobian, defined as S = DA,
where D = diag(N;,N;, ... .,N,) is the diagonal matrix of equilibrium popula-
tions N; . This requires calculating the eigenvalues A; of $ = DA . Following con-
vention, we refer to A as the largest eigenvalue of the community matrix S = DA
i.e, A = max; A;. If the eigenvalues are complex we set A = max; Re{A; }. As is well
known, the equilibrium of system (1) is locally stable if A <0.

The population eigenvector N". Another useful property of Eq. (1) under

the given scaling is the equilibrium condition SN = —N" (see ref. 38). To see
this, consider a feasible equilibrium N* > 0. Then according to Eq. (1), at equili-
brium AN" = —r = —e. Recall that the stability matrix is $ = DA. Thus

SN" =DAN" = —De = —N", and the vector N* must be a right eigenvector of S.
This assumes that the birth rate eigenvector is unity, ie., r =e.

The above property ensures there is always an eigenvalue A; = —1 associated
with the eigenvector N* (which is positive if the system is feasible), and it is often
the largest eigenvalue A, as seen in Fig. 2. For purely mutualistic systems (all
species interactions are positive), the Perron-Frobenius theorem ensures that
A = —1. [One sees this from studying the matrix S=—aI + P where a >— min{S;;}
—details given in Supplementary Notes 5].

Resilience and transient dynamics. Based on the eigenvalues of S=DA, if

A = max; Re{};} <0, then the degree of the system’s stability or resilience is tra-
ditionally quantified by the magnitude |A|. The latter is an index of the system’s
return time to equilibrium, after a small disturbance. Note that A is characteristic
to the slowest eigendirection of the trajectory as it returns to equilibrium and is
often considered the bottleneck. Conversely, the more negative is A (the larger is
|A]), the “more stable” is the equilibrium of Eq. (1), and the more resilient is the
system. When the system is perturbed from equilibrium by a minute amount, the
“slow dynamics” are controlled by the largest eigenvalue associated with A and its
eigenvector. However, when perturbations are more substantial, there is an inter-
play between the fast and slow dynamics associated with Phase 1 and Phase 2,
respectively, as described in the main text.
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Note also that the trace properties of the community matrix imply

S =N =37, A, and thus
(-N) = ). (3)

This explains why the elliptical eigenvalue distributions in Fig. 3 appears
centered on (—N;).

Growth rate parameters r,. The approach advocated here monitors the model’s
stability while allowing the parameter P, the proportion of mutualists, to increase.
All other parameters are rigidly fixed to constants. Then we can be sure only
mutualism P is responsible for any changes observed in the model’s dynamics. Had
other parameters, for example the growth rates r, changed as well, it would be
extremely difficult to untangle whether it was the rates r, or whether it was the
proportion of mutualists P, or both, that were responsible for any change in
stability.

This should be contrasted with some other methods*3 that have instead advocated
keeping equilibrium numbers conveniently normalized to unity (N, = 1) and which
opens the door for allowing for a wider range of intrinsic growth rates, including r,
both positive and negative in value (rather than fixing them rigidly to r; = +1).
However, the latter method has the disadvantage of changing the growth rates ; every
time P is changed. As discussed above, changing other parameters as the proportion
of mutualism P is increased, makes it difficult to pinpoint exactly what is responsible
for changes in stability. (Is it P or changes in 7;?)

In contrast, when the growth rates are all fixed to 7, = +1, as implemented in
this paper, Figs. 3 and 4 show that the higher is the proportion of mutualism P, the
higher is the mean equilibrium density N = (N;") (the blue dots plot —N"). Since
the ellipse of the system’s eigenvalues is approximately centered on —N”, adding
cooperative interactions pushes the ellipse to the left, increasing stability. This now
can only be attributed to the increase in P.

Nevertheless, the method of forcing all equilibrium populations to unity (N; =
1) has the advantage of studying a different class of feasible systems for which
N; =1 and including both positive and negative birth rates. As many ecosystems
have species which critically depend on their interactions with other species for
survival, having negative growth rates is a realistic option. But choosing this option
in which all N} = 1, creates yet other difficulties. In the context of this paper, it
implies that all species have the same recovery time characteristics, making it
difficult to explore the properties of short and long-term recovery times.
Historically, many theoretical ecologists?!->8-34 have gone with the option of
setting 7, = 1. But the recent interest in freeing the growth rates and fixing the
equilibrium populations presents an interesting alternative picture that needs to be
explored further®? (see eg., Supplementary Notes 3).

Interaction parameters. In the simulation experiments shown in Figs. 2-4, we
make use of Chen and Cohen’s scheme*® for generating interaction matrices A.
Their scheme makes it possible to specify a predefined proportion P of mutualists,
by randomly choosing a proportion P of the n(n — 1) interactions (a;;) and
assigning them to be of type (+/+). Each of the proportion P interactions was
drawn from a half normal distribution [N(0, 1)|. The remainder (1 — P) “back-
ground interactions” were set to be exploitative (+/—) based on the half normal
distribution as well. Other interaction pairs types (e.g., competitive) were also

examined for background interactions?’.

Linearization. The analysis here largely relies on studying a linearization of Eq. (1)
about equilibrium, and will only be numerically accurate as long as the linearization
gives a reasonable representation of the dynamics. Although this may not be true for
very large perturbations, the potential limitation has not yet been observed in
numerical simulations. Figures 1 and 4 and Supplementary Figs. 1-4 for example, all
show the expected qualitative behavior despite the relatively large perturbations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data in all four figures was generated from Matlab code available in github repository
https://github.com/lewistone/Mutualism.

Code availability

Numerical computations were performed using Matlab. Complete code for generating all
four figures appearing in the article is given in the following publicly available github
repository: https://github.com/lewistone/Mutualism.
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