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Is 68Ga-DOTA-FAPI a new arrow in the quiver of dose painting
in radiation dose planning in head and neck cancers?
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The majority of head and neck cancers is of epithelial origin
with squamous cell carcinoma being the most common one
[1]. Radiotherapy or combined radiochemotherapy is the main
therapeutic option implemented as adjuvant or neoadjuvant
approach. In recent years, sophisticated radiation dose plan-
ning using morphological and functional imaging modalities
and the combination has evolved and has been proposed as a
base for individualized radiotherapy planning [2]. However,
until now, the clinical standard diagnostic tools to calculate
the gross tumour volume (GTV) are computed tomography
(CT) and magnetic resonance tomography imaging (MRI) [3].
While the radiotherapy regimens have been developed over
the past decades from volumetric intensity-modulated arc
therapy (VMAT) over intensity-modulated radiotherapy
(IMRT) to possibly intensity-modulated proton therapy
(IMPT) [4], there is an urgent need to specify the planning
target volume of the tumour. The aim of improving the preci-
sion in tumour delineation of head and neck cancers is the
reduction of the tumour recurrence rate and the minimization
of side effects of the radiotherapy by sparing peritumoural
normal tissue. Biological dose adaptation radiotherapy based
on molecular and structural imaging has become an important
field of research in the recent years [5, 6].

The standard tracer in oncology fluorine labelled
fluordeoxyglucose ([18F]-FDG) has been evaluated with re-
spect to the potential to deliver a valid prognosis based on

the initial or interim PET/CT scans in a large number of stud-
ies [7]. These studies demonstrated a high predictive value of
post therapy FDG uptake [8]. Radiotherapy planning studies
using [18F]-FDG-PET/CT or [18F]-FDG-PET/MRI resulted in
an improved detection of the gross tumour volume (GTV) in
comparison with structural imaging (either CT or MRI) alone
[9–11]. On the other hand, the limitations of [18F]-FDG-PET
have to be considered when it comes to the specificity of the
uptake since several structures in the neck show physiological
or inflammation-related uptake of glucose influencing the cor-
rect contouring of the tumour significantly [9]. Another aspect
that has to be taken into account is the value of interim imag-
ing during treatment as an early treatment evaluation [12].
Also, in this setting, the lacking specificity of FDG with re-
spect to the correlation to viable tumour cells has been
reported.

Beyond metabolic imaging using FDG, also other molec-
ular imaging biomarkers have been evaluated. The most
promising ones being proliferation and hypoxia tracers.
These tracers have been studied with regard to their potential
to improve radiotherapy planning and evaluation of therapy
success [5, 6].

The proliferation has been evaluated using radiolabelled
thymidine analogue (FLT) [5, 6]. In general the studies point-
ed out a facilitation of therapy regimen selection and im-
proved prediction of outcome in comparison with FDG [13].
The concept of detecting the tumour and defining tumour cells
with radioresistance was evaluated implementing different
hypoxia-delineating radiotracers, namely [18F]-FMISO,
[18F]-FAZA and [18F]-HX4. For all three tracers, the tracer
uptake correlated with the grade of hypoxia in the viable tu-
mour cells [14]. Especially molecular imaging using the most
promising hypoxia-related radiotracer [18F]-HX4, it effective-
ly demonstrates changes in hypoxia by detecting the extent of
hypoxic cells in the tumour volume during radiotherapy [15].

Unfortunately, all hypoxia tracers have one thing in com-
mon, they show only low to moderate tumour to background
ratios and visualize only a small subpopulation of the tumour
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mass which disqualify the tracers for valuable radiotherapy
planning [9].

In epithelial tumours, cancer-associated fibroblasts (CAFs)
make up to 90% of the entire tumour volume, providing the
base of the tumour stroma. They have been shown to facilitate
cancer progression via supporting of the tumour cell growth
extracellular matrix remodelling, angiogenesis promoting and
mediation of tumour promoting inflammation [16]. One im-
portant protein CAFs express is the fibroblast activation pro-
tein (FAP). Recently gallium-68 labelled quinoline-based
PET tracers that act as FAP inhibitors have been introduced
([68Ga]Ga-DOTA-FAPI) [17, 18].

[68Ga]Ga-DOTA-FAPI has shown excellent tumour to
background ratios in oncologic imaging [17]. It is of note that
a large variety of solid and non-solid tumours can be delineat-
ed using this innovative radiotracer [19]. Especially in head
and neck cancers, 68Ga-DOTA-FAPI is very favourable be-
cause of its biodistribution with moderate to high tumour up-
take and a low background activity in the surrounding tissue
(especially normal lymphatic tissue like the tonsils) and the
brain [18].

In this issue, Syed et al. evaluated the usefulness of
implementing [68Ga]Ga-DOTA-FAPI PET data into the gross
tumour volume delineation for targeted radiotherapy in head
and neck cancers [20]. They compared conventional morpho-
logical radiation planning employing contrast enhanced CT
with the performance of [68Ga]Ga-DOTA-FAPI in a total of
14 patients. FAPI displayed a high uptake within the tumour
lesions (SUVmax 14.62 ± 4.44) and just a low background
uptake within the salivary glands (SUVmax 1.76 ± 0.31).
Using different SUV thresholds for automated contouring of
the tumour lesions resulted in significantly larger median po-
tentially to be irradiated volumes. Including all available clin-
ical and imaging information a thresholding of three times the
individual SUVmax of healthy tissue seemed to be reason-
able. A merging of the CT and FAPI-based GTVs resulted
in an approximately two times larger volume. The authors
present first evidence of the value of FAP inhibitors in the
biological based radiotherapy planning approach. However,
next to a direct histopathological correlation, it is of large
importance to also get information on the outcome of patients
treated based on FAPI PET/CT data and by that get a confir-
mation of the assumed large potential of this new tracer.

Compared with earlier [18F]-FDG studies the results of the
study using [68Ga]Ga-DOTA-FAPI seem to be very promis-
ing with respect to sensitivity and specificity. It is expected
that especially the differentiation between tumour, physiolog-
ical or inflammatory tracer uptake will be superior using
[68Ga]Ga-DOTA-FAPI compared with the previously briefly
discussed radiotracers [21].

As already shown by the recent ground-breaking studies
using [68Ga]Ga-DOTA-FAPI in different tumour entities as a
diagnostic tool, the current study gives an impressive insight

into the potential of FAPI as a block buster in image-guided
radiotherapy of head and neck cancers, where the well-
established [18F]-FDG radiotracer has to face its limitations.

It is of great importance now that the nuclear medicine
community will stand together and cooperate with radiation
oncologists to accelerate the scientific research for [68Ga]Ga-
DOTA-FAPI in radiotherapy planning, since this pioneering
work by Syed et al. showed the immense potential of this
radiotracer. Prospective trials are needed to outline a possible
indispensability of [68Ga]Ga-DOTA-FAPI in the future of
multimodal biological-guided head and neck cancer radiother-
apy planning.
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