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Breast cancer is characterized by considerable metabolic diversity. A relatively high
percentage of patients diagnosed with breast carcinoma do not respond to standard-
of-care treatment, and alteration in metabolic pathways nowadays is considered one of
the major mechanisms responsible for therapeutic resistance. Consequently, there is an
emerging need to understand how metabolism shapes therapy response, therapy
resistance and not ultimately to analyze the metabolic changes occurring after different
treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in
breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or
sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts,
drug resistance is still frequent in many types of breast cancer, decreasing patients’
survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist
after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex
system to enable scientists to design novel treatment strategies that target different
aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing
environmental context, differences in nutrient use among different cell types, the
cooperative or competitive relationships between cells pose additional challenges in
profound analyzes of metabolic changes in different breast carcinoma subtypes and
treatment protocols. Delineating the contribution of metabolic pathways to tumor
differentiation, progression, and resistance to different drugs is also the focus of
research. The present review discusses the changes in glucose and fatty acid
pathways associated with the most frequently applied chemotherapeutic drugs in
breast cancer, as well the underlying molecular mechanisms and corresponding novel
therapeutic strategies.

Keywords: breast carcinoma, neoadjuvant and adjuvant chemotherapy, anthracycline, taxane, glucose and
lipid metabolism
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INTRODUCTION

Neoadjuvant systemic therapy (NeST) is routinely used to treat
breast cancer, with significant geographical variation in its use
across different countries (1, 2). When introduced, NeST was
used mostly for the treatment of patients with locally advanced
or inoperable breast cancer aiming to reduce the tumor size,
enabling post-therapy breast-conservation surgery. Currently,
the role of NeST has expanded and includes different patient
groups with early-stage, operable breast cancer with the
following benefits: checking the sensitivity of a tumor to
therapy in vivo, reduction of postoperative complications such
as lymphoedema, prolonged disease-free survival, and improved
cosmetic outcomes (1, 2).

Since the first clinical trial (The National Surgical Adjuvant
Breast and Bowel Project B-18 trial) from 1997 that compared
the prognostic value of neoadjuvant and adjuvant use of the same
chemotherapy regimen, results of several other clinical trials have
been published reporting no significant differences in the long-
term outcomes for early-stage and locally advanced breast cancer
with either approach (1, 3, 4). Meanwhile, several studies
confirmed and validated pathological complete response (pCR)
to NeST as a strong predictive factor of favourable long-term
outcomes. In contrast, patients with a significant residual cancer
burden have a higher risk of distant metastases (5, 6). In
unselected breast cancer patient groups treated with NeST
approximately 20-26% of the cases can achieve pCR but this
rate is significantly higher in HER2-positive and triple-negative
breast cancer (TNBC) subtypes achieving pCR rates of up to 50-
60% (7–9). Based on these data it is clear that a fraction of TNBC
and HER2-positive breast carcinomas does not achieve pCR and
some hormone receptor (HR)-positive/HER2-negative patients
respond to NeST. It is also clear that new factors like tumor
heterogeneity, tumor metabolic diversity have to be considered
for future oncological strategies in breast cancer treatment (10).

Personalized therapeutical approaches in both the
neoadjuvant and adjuvant setting play more and more
important role in breast cancer management. Adding
immunotherapies [anti-PD-L1 (durvalumab) or anti-PD-1
(pembrolizumab)] or PARP-inhibitor (talazoparib) to standard
chemotherapy may improve the rate of pCR in TNBC and
women with germline BRCA mutations (11, 12).

The classification of most frequently used chemotherapeutic
drugs in neoadjuvant and adjuvant settings - mostly DNA
alkylating, antimicrotubule, immunologic and hormonal
agents, and antimetabolites - are presented in Table 1. The
applied neoadjuvant chemotherapy regimens in breast
carcinoma cases may differ across countries. Most commonly,
anthracycline (AC) (doxorubicin or epirubicin) is administrated
in combination or sequentially with taxanes (paclitaxel or
docetaxel). To enhance cytotoxicity AC is frequently used in
combination with cyclophosphamide with or without
fluoropyrimidines (13).

Considering the breast carcinoma subtypes in the UK the
most commonly prescribed neoadjuvant chemotherapy regimes
in breast cancers are: AC-containing combinations of
Frontiers in Oncology | www.frontiersin.org 2
fluorouracil, epirubicin and cyclophosphamide (FEC) with
docetaxel/trastuzumab/pertuzumab for HER2-positive disease
and FEC-docetaxel for HER2-negative disease (2).

Anthracylines are broadly used as anticancer agents. The first
AC described was daunorubicin from which several derivatives
were developed for clinical use, including doxorubicin (DOX)
and epirubicin (Figure 1) (14).

Despite their efficacy treatment resistance (as a multifactorial
clinical issue) and toxicity (especially cardiotoxicity) have to be
considered in each patient before prescription (16, 17).

Several trials were and are designed to compare the
effectiveness between ACs and/or taxane as neoadjuvant
chemotherapy (1, 18) and repeatedly concluded that pCR is a
prognostic marker of significantly higher disease-free survival
and overall survival (4, 18). The rate of pCR highly depends on
patients and drug selection but generally is lowest for hormone
receptor (HR)-positive, HER2-negative tumors and increases
approximately additively for HER2-positive/HR-negative
tumors with considerable differences between different studies.

The Collaborative Trials in Neoadjuvant Breast Cancer group
analyzing the pCR association with long-term outcome have
found that the highest pCR was achieved in HER2-positive/HR-
negative breast cancer (50.3%) after administration of
trastuzumab followed by TNBC (33.6%) and by grade 3 HR-
positive/HER2-negative breast cancer with a pCR rate of (16.2%)
(1, 19).

To understand how the metabolic signature of a tumor is
associated with drug resistance, first we have to understand the
mode of action of that drug. ACs intercalate with DNA bases and
stop the activity of polymerases blocking in this way the DNA
and RNA synthesis (20). Recent studies demonstrated that after
diffusion of AC through the plasma membrane, cytosolic AC
forms a complex with proteasome that is later transferred into
the nucleus, a process requiring ATP (21). ACs were also found
to induce cytotoxicity through topoisomerase II (TOPOII)
inhibition (block the catalytic activity of TOPOII, contributing
to inhibition of DNA replication) (20). Free radicals damaging
cell membranes as well as DNA and proteins are described under
DOX treatment. The potential involvement of free radical
generation in the cytotoxicity of AC is complex and not
completely understood (16). ACs can also induce cell death
mediated by ceramide. In 2012 Denard B et al. described that
treatment of cancer cells with DOX-induced ceramide synthesis
(a bioactive sphingolipid, N-acylsphingosine resulting from four
consecutive reactions from the precursors palmitoyl-CoA and
serine) (22). The schematic mechanism of actions of ACs is
presented in Figure 1.

As detailed above ACs act on different pathways to induce
tumor cell death. Accordingly, tumor resistance to ACs is also a
multifactorial problem that involves several and diverse
mechanisms. The main resistance mechanisms are (16): 1.
PGp-dependent and PGp-independent multidrug resistance,
often associated with upregulation or amplification of the
MDR1 gene that encodes PGp. 2. DNA repair mechanisms.
Spencer DM et al. demonstrated that nucleotide excision repair
and homologous recombination are the most important
March 2022 | Volume 12 | Article 850401
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FIGURE 1 | Chemical structures of the clinically used anthracyclines in breast cancer treatment and their mechanism of action [doxorubicin: CHEBI:28748,
epirubicin CHEBI:47898 (14), adriamycin-DNA interaction: PDB ID 6KN4 (15)]. Created with BioRender.com. Agreement number: UB23MRCQE9.
TABLE 1 | Classification of most frequently used drugs in patients diagnosed with breast carcinomas based on the mode of action.

Category of
chemotherapeutic
drugs

Mechanism of action Chemotherapeutic agents

Antimetabolite Inhibit enzymes involved in DNA synthesis and DNA replication,
cell cycle regulation

Antifolate (dihydrofolate
reductase inhibitor)

Methotrexate

Nucleoside analog Gemcitabine, Capecitabine, 5-flurouracil
Topoisomerase II inhibitor Doxorubicin, Metoxantrone
Kinase inhibitor Palbociclib, Ribociclib,

Antimitotic Inhibit mitosis by binding to micotubules Synthetic Ixabepilone
Alter microtubule function/
Natural

Paclitaxel, Docetaxel, Vinblastine

DNA alkylation Intercalate with DNA, form crosslink Platinum-based Cisplatin, Carboplatin
Nitrogen mustard Cyclophosphamide

Hormonal Blocking the hormone-receptor binding on cancer cells GnRH Goserelin
Antiestrogen Receptor

inhibitor
Fulvestrant, Tamoxifen

Aromatase
inhibitor

Examestane, Letrozole,
Anastrozole

Progesterone Megestrol acetate
ERBB2+ targeting
agents

By attaching itself to the HER2 receptors block cells from
receiving growth signals

Monoclonal antibodies Trastuzumab, Pertuzumab
Antibody-Drug Conjugate Ado-Trastuzumab

Immunotherapies Immune Checkpoint Inhibitors Atezolizumab, Pembrolizumab
Frontiers in Oncology |
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mechanisms involved in DNA repair after ACs treatments (23).
3. Altered TOPOII activity. Mutation, abnormal expression of
TOPOIIa subunit, suppression of TOPOII-mediated apoptotic
signaling are associated with clinical resistance to ACs (24). 4.
Cancer stemness. Several studies described a direct link between
resistance to ACs and cancer stemness (25). 5. Metabolic changes
associated with resistance.

Taxanes as microtubule-stabilizing cancer drugs were
introduced in the treatment of breast carcinomas in the 1990s.
Taxanes (paclitaxel (PTX) and docetaxel (DTX)) suppress
microtubules involved in a variety of cellular processes like cell
division, signaling, migration by binding to the b-subunit of the
tubulin heterodimer (26). PTX was the first discovered member
of the taxane family. DTX differs structurally (see Figure 2) and
functionally from PTX (14, 27).

Due to drug resistance observed after PTX and DTX
treatment, cabazitaxel (CBZ) as a novel taxane drug

was developed and approved by the FDA in 2010 and used as
a second-line treatment for metastatic castration-resistant
prostate cancer patients (28).
Frontiers in Oncology | www.frontiersin.org 4
Though the initial response to taxanes is impressive, the
resistance to these drugs is frequently observed and is
supposed to be coordinated by: 1. alterations in tubulin, 2.
proteins that interact with microtubules, 3. efflux pumps, 4.
apoptotic proteins, 5. signal transduction pathways, 6. tumor
metabolism. Accordingly, strategies to overcome resistance to
PTX and DTX include inhibition of the efflux pumps, the use of
novel taxane not interacting with drug efflux pumps, regulation
of apoptotic and signal transduction pathways, and inhibition of
metabolic pathways involved in drug resistance (28, 29). Tubulin
is associated with taxane resistance in different ways: 1. mutation
in tubulin (high number of point mutations in tubulin have been
found in different cell lines selected for paclitaxel resistance
analyzes), 2. changes in the expression of tubulin isomers, 3.
several proteins that bind to tubulin like: microtubule associated
protein 4. posttranslational modifications of tubulin like
phosphorylation, acetylation, tyrosination etc. (30–32).

How the sequence order of ACs and taxanes used in
neoadjuvant settings influence the pCR rate is under
considerable debate. A recent study showed that sequence
FIGURE 2 | Chemical structures of paclitaxel, docetaxel and their mechanism of action (paclitaxel: CHEBI:45863, docetaxel: CHEBI:4672) Created with BioRender.
com. Agreement number: UY23MRDFCE.
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order did not influence the primary endpoint of pCR rate (19%
for AC-Taxane vs. 21% for Taxane-AC) and pCR rate was higher
in patients with TNBC (32% vs. 13% in hormone-positive
cancers) (33).

Our knowledge about the impact of different AC-derived
therapeutic drugs on the metabolic pathways in different cancers
is mostly unknown. Achkar IW et al. in a very impressive study
have analyzed the metabolic pathways affected by DOX
treatment in chicken embryo tumor models (in ovo). By using
two mass-spectrometry based platforms (broad metabolic
profiling HD4 platform, and the Lipdyzer complex lipid
platform) they finally have found that after DOX treatment
statistically significant alteration in 127 metabolites (affecting
the metabolism of amino acids, carbohydrates, cofactors and
vitamins as well as nucleotides and lipids) can be documented on
HD4 platform. Whereas on lipid platform they observed
statistically significant decrease in 96 lipid molecules. Their
results clearly indicate that DOX treatment generates metabolic
rewiring (34).

Related to paclitaxel a study performed on human breast
carcinoma cell lines demonstrated significant differences in 31
metabolites such as fructose-6-phosphate, citric acid,
glycerophosphoinositol and glycerol 3-phosphate when
compared metabolic alterations in paclitaxel treated MCF-7
cell lines to untreated ones (35).

Dysregulated cancer metabolism has been increasingly
associated with acquired resistance to chemotherapeutic
treatment, but no clear data are presented about how
metabolic pathways are activated following oncological
treatment. In addition to glycolysis that remains favored in
resistant cancers undergoing AC treatment, experimental
evidences also involve pentose phosphate pathway, fatty acid
metabolism, nucleotide synthesis etc. However, there is an urgent
need to analyze the complex system of tumor metabolism as the
most pieces of evidence are often based on a single pathway
without alternative explanation (34, 36).

Beside dysregulated metabolism observed in several cancer
types, metabolic reprogramming and metabolic heterogeneity
play critical role in carcinogenesis and in acquired resistance to
different chemotherapeutic agents. As cancer cells with different
metabolic profiles may not respond similarly to anticancer
treatment current studies suggest that metabolic heterogeneity
needs to be integrated in routine practice to precisely predict
breast cancer response to different treatments (37). It is a further
challenge in cancer therapy to consider the complex system of
inter- and intra-tumour metabolic heterogeneity. Considering
just the increased glycolysis as a hallmark of dysregulated
metabolism it is well documented that differences in glucose
utilization are not only seen between cancer cells, but also within
other cells comprising the tumors (38).

Of the relatively few studies demonstrating that chemotherapy
agents used in the current treatment regimens in breast
carcinomas cause metabolic reprogramming in cancer cells
Desbats MA et al. presented that ACs induce increased
glycolysis, GLUT1 and glutaminase level whereas taxanes induce
elevation in glycolysis, in lactate dehydrogenase A (LDHA),
Frontiers in Oncology | www.frontiersin.org 5
pyruvate kinase M (PKM2), pyruvate dehydrogenase kinase 2
(PDK2) (inhibitor of pyruvate dehydrogenase complex), glutamine
uptake, fatty acid synthase (FASN), mitophagy, mitochondrial
mass and oxidative phosphorylation (OXPHOS) (39).
GLUCOSE METABOLISM

Glycolysis is the major pathway of glucose metabolism occurring
in the cytosol of the cells by which glucose is metabolized to
pyruvate. Considering the aerobic and anaerobic conditions
occurring in tumors and different organisms pyruvate
transportation may follow two different pathways (36, 40).

Under aerobic conditions, pyruvate is transported into
mitochondria, where it is converted to acetyl-CoA. Acetyl-CoA
reacts with oxaloacetate to form citrate that later enters into the
tricarboxylic acid cycle (TCA) and generates NADH and FADH2

(reducing equivalents) (41). These reducing equivalents later
enter the electron transport chain leading to the production of
36-38 ATP per molecule of glucose.

Under anaerobic conditions, pyruvate instead of entering
mitochondria follows a different pathway. In cytosol, the
cytosolic enzyme lactate dehydrogenase (LDH) converts
pyruvate to lactate. This reaction also allows for the
regeneration of NAD+ (the primary oxidizing agent of
glycolysis) from NADH (42).

Of the other pathways of carbohydrate metabolism
(gluconeogenesis, glyoxylate cycle - typical for plants -,
biosynthesis of oligosaccharides and glycoproteins, pentose
phosphate pathway-PPP) the PPP pathway was described as
highly affected in different tumor types (43).

Glycolysis is controlled by the following ten enzymes and
enzymatic reactions (44) (Figure 3): 1. Hexokinase-HK (transfers
a phosphoryl group from ATP to glucose to form glucose-6-
phosphate-G6P), 2. phosphoglucose isomerase-PGI (converts
G6P to fructose-6-phosphate-F6P), 3. phosphofructokinase-1-
PFK-1 (phosphorylates F6P to fructose-1,6-bisphosphate-FBP), 4.
aldolase (cleaves FBP to form the two trioses, glyceraldehyde-3-
phosphate-GAP and dihydroxyacetone phosphate-DHAP), 5.
triose phosphate isomerase-TPI (converts DHAP to GAP), 6.
glyceraldehyde-3-phosphate dehydrogenase-GAPDH (catalyzes
the reversible oxidative phosphorylation of GAP, and forms the
first high-energy intermediate, 1,3 bisphosphoglycerate -1,3 BPG)
7. phosphoglycerate kinase-PGK (generates 3-phosphoglycerate-
3PG and the first ATP) 8. phosphoglycerate mutase-PGM
(converts 3PG to 2-phosphoglycerate -2PG), 9. enolase
(dehydrates 2PG to phosphoenolpyruvate-PEP, 10. pyruvate
kinase-PK (couple the free energy of PEP hydrolysis to the
synthesis of ATP to form pyruvate).

Glycolysis depends on a constant supply of glucose that enters
by two different types of membrane- associated carrier proteins.
Na+-glucose cotransporters (SGLTs) are present in the small
intestine and the kidney, while passive transport occurs via
ubiquitous glucose transporters, the GLUT family (45, 46).

The GLUT family consisting of 14 members facilitates the
uptake of glucose through the cell membrane and plays crucial role
March 2022 | Volume 12 | Article 850401
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in glycolysis (36, 46, 47). An increase in GLUT1–6 and 12 was
reported in breast cancer (46, 48) and glucose uptake by GLUT1 is
considered an important mechanism in breast carcinogenesis and
plays an important role in the early phase of breast cancer
development (49). Upregulation of GLUT1, 3, and 4 is
associated with cancer resistance and inhibition of GLUT may
sensitize the anticancer effect of chemotherapeutic drugs (50, 51).
Several inhibitors of GLUT1 are reported in the literature and a
non-exhaustive list is presented in Figure 3. Phloretin, a GLUT1
inhibitor re-sensitized colon and breast cancer cells to
daunorubicin’s anticancer activity and apoptosis-inducing effects
Frontiers in Oncology | www.frontiersin.org 6
(51). GLUT1 inhibitors -WZB117 and SFT-31- inhibit cell
proliferation and promote apoptosis in breast cancer cell lines
and moreover it was shown that WZB117 increases the
effectiveness of radiation (52). Another study presented that the
combination of MK-2206 and WZB117 exerts a synergistic
cytotoxic effect against breast cancer cells (53). BAY-876, a
selective GLUT1 inhibitor analyzed on TNBC cell lines
decreased glucose uptake (54). 2-deoxy-D-glucose (2-DG)
(phosphorylated by hexokinase but not metabolized further)
competes with glucose for binding GLUT reducing in this way
glucose uptake in the MDA-MB-231 TNBC cell line (55).
FIGURE 3 | Degradation of glucose via the glycolytic pathway with the most representative enzymes playing a role in the process of glycolysis and with the main
drugs described to inhibit different steps of the glucose metabolism. Created with BioRender.com. Agreement number: QP23MRDLKQ.
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As it is presented in Figure 3 each reaction in glycolysis is
catalyzed by its own enzyme. Many of these key glycolytic
enzymes are highly expressed in different cancers and
correlated with chemoresistance.

A non-exhaustive list of drugs targeting glucose metabolism
are presented in Table 2.

Hexokinase II (HKII)
HKII is considered as the first rate-limiting enzyme in the
glycolytic pathway (73). HKII was shown to be upregulated in
breast cancer tissues and found to contribute to PTX resistance
(74, 75). Even if the major role of GLUT-1 and HKII in cellular
metabolism is highly documented their expression after DOX or
taxane treatment has not been systematically evaluated. Based on
the studies of Zhou R et al. several chemotherapeutic agents may
have a significant and direct effect on GLUT-1 and HKII
expression (76). Of the HKII inhibitors 3-bromopyruvate (3-
BrPA), and lonidamine (LND) have been used in preclinical
experiments (36). 3-BrPA enhances drug accumulation by
inactivating ABC transporters restoring the cytotoxic effects of
DOX. It was shown that 3-BrPA used in combination with DOX
significantly inhibited the growth of subcutaneous tumors in
multiple myeloma mice (36, 63). The anticancer effect of 3-BrPA
was also demonstrated on hepatocellular carcinoma both in in
vitro and in in vivo studies and consequently, this drug has been
approved by the FDA (63). Inhibition of HKII by LND enhanced
Frontiers in Oncology | www.frontiersin.org 7
the effects of DOX in rituximab-resistant lymphoma cell lines
(RRCL) and used in combination with platinum and paclitaxel
presented a good tolerability (77, 78).

However metformin, one of the most frequently used drugs in
the treatment of type II diabetes mellitus demonstrated
antitumor activity combined with or following other
therapeutic agents in vitro and in vivo. The detailed
mechanism of action of metformin in tumors is not fully
elucidated but based on recent studies is mediated through
regulation of AMP kinase (AMPK)/mammalian target of
rapamycin (mTOR) and insulin/IGF-1 signaling pathways (65).
Studies present several aspects of metformin activity in breast
carcinomas like metformin downregulation of protein and lipid
synthesis, modulation of mitochondrial respiration, induction of
stem cell death etc. have been presented and discussed. The
authors also outline that many of these anti-cancer effects are
molecular subtype-specific being most potent in triple-negative
breast carcinomas (79, 80). Nonetheless a study performed on
320,000 persons diagnosed with incident diabetes mellitus has
not found any association between metformin treatment and the
incidence of major cancers (81).

Glucose-6-Phosphate
Dehydrogenase (G6PD)
The first step of the pentose phosphate pathway (PPP) is
catalyzed by the G6PD enzyme. A relatively high number of
TABLE 2 | Non-exhaustive list of drugs targeting glucose metabolism.

Target Drug name Drug effect References/trial
number

GLUT Hesperentin Impairs glucose uptake and inhibits proliferation of breast cancer cells. (56)
Phloretin Not fully elucidated (55)
MK-2206 pan-Akt inhibitor (57)
2-deoxy-D-glucose (2-
DG)

2-DG competes with glucose for uptake into cells via the GLUT (58)

Quercetin Suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway (59)
BAY 876 Impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation

(OXPHOS) rates
(54)

SFT31 Inhibit cell proliferation and promote apoptosis in breast cancer cell lines (41)
WZB117 Inhibit cell proliferation and promote apoptosis in breast cancer cell lines (41)
Silybin Counteracts doxorubicin resistance by inhibiting GLUT1 expression. (75)
Resveratrol Suppresses cancer cell glucose uptake by targeting ROS-mediated hypoxia-inducible factor-1a activation.

Enhances chemosensitivity of doxorubicin
(60)

HK Methyl Jasmonate Detaches hexokinase from the voltage-dependent anion channel (61)
Lonidamine Affects DNA repair as well as cellular acidification (62)
3BrPA Enhances drug accumulation by inactivating ABC transporters.

Induce autophagy.
(63, 64)

Metformin Not fully elucidated its action in breast carcinomas
Regulates AMP kinase, target stem cells

(65)

Resveratrol Decreases the cell viability and glucose consumption (66)
PFK PFK15 Apoptosis;

cell cycle arrest in G0/G1 phase
(67)

PFK158 Apoptosis; and increased ROS (67)
6-amino-nicotinamide Decrease aldehyde dehydrogenase (ALDH) activity. (41)

G6PD Resveratrol Decreases the cell viability and glucose consumption (9, 41)
G6PDi-1 More effectively inhibits G6PD (68)

PK Shikonin Can inhibit the activities of DNA topoisomerases, inhibits the activity of pyruvate kinase M2 (PKM2) (69)
Cyclosporin A Regulate the expression and activity of PKM2 (70)

LDH Oxamate Induce apoptosis in vitro, and reduces tumor growth in vivo (71)
Gossypol Contradictory results (72)
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Tőkés et al. Breast Cancer Metabolism and Chemotherapy
studies have interrogated the role of G6PD in different cancer
types but how the overexpression of G6PD contributes to the
development of different tumors is largely unknown (82). Yang
HC et al. in a very recent study have demonstrated that
deregulated G6PD status and oxidative stress are highly related
and are involved in cancer progression (83). Another study
analyzing MDA-MB-231 cells implanted as orthotopic
xenografts has found that the loss of G6PD modestly decreased
primary site growth and the ability of breast cancer cells to
colonize the lung (84). A relatively high number of G6PD
inhibitors were documented in the last years but sometimes
with contradictory results. 6-aminonicotinamide, was found to
decrease mammosphere formation and aldehyde dehydrogenase
activity (85, 86). Ghergurovich JM et al. presented that the most
known G6PD antagonist, dehydroepiandrosterone, does not
inhibit robustly G6PD in cells and as a consequence they have
identified a small molecule (G6PDi-1) that more effectively
inhibits G6PD and later the PPP pathway (68).

Phosphofructokinase (PFK)
Our understanding of PFK enzymes and their roles in cancer has
developed significantly in the last years. The formation of
fructose-1,6-bisphosphate from fructose-6-phosphate is
catalyzed by PFK-1 in an irreversible step and therefore PKF-1
is considered as one of the most important rate-limiting enzyme
in the process of glycolysis and is regulated by several effectors
like fructose 2,6-bisphosphate (F2,6-BP), AMP and ATP.
Moreover F2,6-BP levels are strongly associated with the
bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase (PFK-2, PFKFB) which display tissue-specific
pattern. Four known isozymes of PFKFB are described
(PFKFB1, PFKFB2, PFKFB3 and PFKFB4) with different
kinase-to-phosphatase activities (87).

Of the PFKFB family members, PFKFB3 and PFKFB4 in
particular, are overexpressed in breast cancers and in numerous
other malignancies (87). PFKFB3 presents the highest kinase
activity among the four isoforms and its inhibition resulted in the
suppression of the growth of tumor cells by downregulating the
glycolytic flux (74, 88).

Considering that standard chemotherapy inevitably is
associated with the development of chemoresistance, the
observation made by Kotowski K. et al. that PFKFB3 inhibition
therapy concurs with carboplatin and paclitaxel in therapy-
resistant cell lines of gynecological cancers to reduce tumor
weight presents an important step in further therapeutic
approach (87). Resveratrol (a natural product found in various
plants) nowadays is also considered as a potential anti-tumoral
drug that reduces glucose metabolism and viability in cancer
cells. Gomez LS et al. have demonstrated that resveratrol
decreases cell viability, glucose consumption and ATP content
in the human breast cancer cell line MCF-7 (66).

Phosphoglycerate-Kinase (PGK)
Phosphoglycerate-kinase (PGK) catalyzes the first substrate-level
phosphorylation in glycolysis while producing 3-PG. PGK1
activity is highly responsible for maintaining energy homeostasis
and serine biosynthesis. Clinically, PGK1 was overexpressed in
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many types of tumors. The exact molecular mechanisms for
PGK1-involved drug resistance are not fully clarified but were
found to be upregulated in radioresistant astrocytomas and
cisplatin-resistant ovarian cancers. Moreover, inhibition of
PGK1 increased the sensitivity of gastric adenocarcinoma cells
to chemotherapeutic drugs 5-fluorouracil and mitomycin-C (89–
91). Sun S et al. by analyzing PGK1 at protein and mRNA level in
breast carcinoma cases have found that high PGK1 expression is
associated with worse overall survival and concluded that PGK1
may be considered as a predictive biomarker of chemoresistance to
paclitaxel treatment in breast cancer (92).

Enolase (ENO)
Proteomics profiling revealed high enolase-1 (ENO-1) expression in
ER+ breast carcinomas. The high ENO-1 status was correlated with
poor prognosis and with positive nodal status (93). Qian X et al. by
analyzing gastric cancers have found that elevated levels of ENO-1
proteins (or downregulation of ENO-1 targeting miR-22) were
associated with shorter overall survival and ENO-1 is a novel
biomarker to predict drug resistance and overall prognosis in
gastric cancer. Based on their data targeting ENO-1 by chemical
inhibitors or upregulating miR-22 could be valuable to overcome
drug resistance (94). The ENO functions in different cancers and as
a potential cancer biomarker are summarized in a very recent study
by Almaguel FA et al. (95).

Pyruvate-Kinase (PK)
The conversion of phosphoenolpyruvate to pyruvate with
generation of ATP is catalyzed by PK. Till now four PK
isoforms are described: PKM1, PKM2, PKR, and PKL (96).
Apart from regulating glucose metabolism, PKs are involved in
the modulation of gene expression, cell cycle regulation and cell–
cell communication (97). Both PKM1 and PKM2 protein
expression showed high levels in TNBC and targeting PK
inhibited the proliferation of TNBC MDA-MB-231 and MDA-
MB-436 cells by involving the NFkB signaling pathway (98). In a
study involving 296 invasive breast carcinoma samples a
correlation between PKM2 expression and the prediction of
chemosensitivity to epirubicin and 5-fluorouracil was
demonstrated (99). Moreover, in ER+ breast carcinoma models
using MCF-7 and T47D cells PKM2 enhanced chemotherapy
resistance by promoting aerobic glycolysis (100). It was also
shown that PKM2 expression correlated mostly with cisplatin
resistance in breast carcinomas (74).

Lactate Dehydrogenase (LDH)
and Drug Resistance
A large amount of literature has been published regarding LDH
expression in different cancers, its effect on cancer development
and progression, and its diagnostic and prognostic significance.
Lactate production is an important phenomenon in the cancer
microenvironment and is used as a mechanism of tumor escape
from the immune response.

LDH is a tetrameric enzyme composed of two different
subunits LDHA (M) and LDHB (H) (encoded in humans by
LDHA and LDHB genes, which can assemble into five different
isoenzymes as LDH1 or LDHB (H4), LDH2 (M1H3), LDH3
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(M2H2), LDH4 (M3H1), and LDH5 or LDHA (M4) and is
involved in the conversion of pyruvate to lactate. Deregulated
levels of LDHs have been reported in multiple tumors (101, 102).
In cancer cells, LDHA plays an important role in rapid
conversion of pyruvate to lactate, minimizing in this way the
pyruvate entry into TCA cycle in the mitochondria (103). LDHA
is also involved in tumor cells proliferation, angiogenesis, tumor
cells invasion and migration (103–105).

Based on the review by Mishra D et al. inhibition of LDHA
and LDHB is of great interest and is unlikely to cause any
possible side effect (103).

Data presenting the role of LDHA in drug resistance
described that in chondrosarcoma inhibiting LDHA increased
cancer cell sensitivity to DOX (106), in breast cancer cells, led to
re-sensitization to paclitaxel (107). A link between LDHA and
paclitaxel resistance was described by Varghese E et al. (74).
Oxamate, an inhibitor of LDHA, combined with paclitaxel-
induced apoptosis in paclitaxel-resistant breast carcinoma
(MDA-MB-435 and MDA-MB-231) cells by inhibiting cellular
glycolysis (107).

Inhibition of LDHA by small molecule inhibitors or its
knockdown by siRNAs or shRNAs decreases tumorigenicity
(107). LDHA seems to be a safe therapeutic target, as patients
with hereditary LDHA gene deficiency only show symptoms
(exertional myoglobinuria) after strenuous exercise but not
under ordinary circumstances (108). In accordance with gene
deficiency, LDHA inhibition was not proven to be harmful to
normal cells (109). Studies showed that LDHB is up-regulated in
triple-negative breast cancer (110). Recently, a highly selective
LDHB inhibitor was identified (111).

PPP Pathway
In this pathway NADPH is generated by the oxidation of G6P via
an alternative pathway to glycolysis. In PPP ribose-5-phosphate-
R5P is synthesized as an essential precursor in nucleotide
biosynthesis. PPP is made up of two branches: the oxidative
and the non-oxidative. In the PPP oxidative phase, G6P is
converted into ribulose 5-phosphate and CO2, leading to the
synthesis of NADPH.The non-oxidative arm of the PPP
composed of a series of reversible reactions generates pentose
phosphates for ribonucleotide synthesis (112).

PPP activation has been described in different types of cancer
and was associated with metastasis, angiogenesis, and response
to chemotherapy and radiotherapy (113). Giacomini I et al. have
found that in particular, the oxidative branch of PPP seems to be
involved in cisplatin resistance (114). They also suggest that the
possibility to selectively deliver into the same cancer cell an
anticancer drug and a PPP inhibitor or drug affecting the glucose
seems a strategy to overcome the problem of drug resistance
(114). Goldman A et al. demonstrated that after taxane treatment
metabolic reprogramming of breast cancer cells was observed
and characterized by increased glycolytic and oxidative
respiration and glucose flux through the PPP pathway (115).
The association of PPP with cancer resistance to ACs has been
described in several studies (16, 116). Polimeni M et al. (116) by
comparing a DOX-resistant human colon cancer cell line (HT29-
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DX) with a DOX-sensitive (HT29 cells) have found increased
PPP and G6PD activity in DOX-resistant cell lines (116).

Citric Acid Cycle
Alternatively known as the tricarboxylic acid cycle (TCA) or
Krebs cycle is a hub of the metabolic system. Acetyl-CoA, a
common product of carbohydrate, fatty acid and amino acid
metabolism enters TCA cycle that oxidizes the acetyl group of
acetyl-CoA to two molecules of CO2 with the generation of three
NADH, one FADH2 and one ATP equivalent GTP.

The main enzymes involved in TCA cycle are: 1. citrate
synthase (catalyzes the condensation of acetyl-CoA and
oxaloacetate to yield citrate), 2. aconitase (isomerizes citrate), 3.
isocitrate dehydrogenase (catalyzes the oxidative decarboxylation
of isocitrate to a-ketoglutarate with the coupled reduction of
NAD+ to NADH and CO2 release), 4. a-ketoglutarate
dehydrogenase (decarboxylates a-ketoglutarate to succinyl-CoA,
releasing CO2 and NADH, 5. succinyl-CoA synthetase (converts
succinyl-CoA to succinate with the coupled synthesis of a GTP), 6.
succinate dehydrogenase (catalyzes the dehydrogenation of
succinate yielding fumarate and FADH2, 7. fumarase (catalyzes
the hydration of fumarates to yield malate) and 8. malate
dehydrogenase (reforms oxaloacetate) (117) (Figure 4).

NADH and FADH2 are important products of citric acid
cycle. Their reoxidation by O2 through the mediation of the
electron-transport chain during OXPHOS completes the
metabolic breakdown (117).

Several cancer types are characterized by drastic changes in
TCA cycle enzymes compared to normal tissues. Accordingly
components of the TCA cycle may be exploited therapeutically
for the treatment of disease. Due to the importance of the TCA
cycle in normal cell development, high toxicity of this approach
have to be considered. By performing metabolomics profiling
Ning Shen et al. have found significant changes in the TCA cycle
and reactive oxygen species (ROS) related pathways in sensitive
TNBC cells compared to resistant TNBC cells (118). Applying
small molecule inhibitors to disturb the enhanced TCA for
cancer treatment start to evolve CPI-613 (inhibiting both
prolyl hydroxylases and a-ketoglutarate dehydrogenase
complex- as a key regulator enzyme of TCA) is being tested in
phase I and II clinical trials, as a single agent or in combination
with standard chemotherapy to treat cancers (119). As many
tumors utilize glutamine as a source for TCA cycle, suppression
of glutaminolysis by small molecule inhibitors seems also an
attractive approach to target tumors. CB-839 disrupts the
conversion of glutamine to glutamate and alters TCA cycle,
glutathione production, and amino acid synthesis (119).

OXPHOS
Oxidative phosphorylation is an active metabolic pathway in
many cancers and there is great interest in targeting
mitochondrial OXPHOS in cancer. Evans KW et al. performed
RNA sequencing from pre-treatment biopsies of TNBC patients
who received neoadjuvant chemotherapy. They demonstrated
that the top canonical pathway associated with worse outcome
showed higher expression of OXPHOS signature. They also
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found that inhibiting OXPHOS may be a novel approach to
enhance efficacy of several targeted therapies in TNBCs and have
validated the antitumor efficacy of the combination of
palbociclib, a CDK4/6 inhibitor, and IACS-10759 (a selective
OXPHOS inhibitor that blocks complex I) in vitro and in vivo
(120). Another study has established that TNBC cell lines
(MDA-MB-468 and MDA-MB-231) were highly dependent on
OXPHOS when compared to HR+ cell line MCF-7 (121).
Considering the ubiquitous necessity of OXPHOS in healthy
cellular metabolism, a major barrier to mitochondrial-targeted
drugs is the need for cancer-cell selectivity.
FUTURE CHALLENGES IN
GLUCOSE METABOLISM AND
BREAST CANCER TREATMENT

The increased uptake of glucose, hyperactivated glycolysis and
the accumulation of lactate are the main alterations in glucose
Frontiers in Oncology | www.frontiersin.org 10
metabolism associated with different tumor types. As future
challenges the following questions must be addressed and
discussed in more detail:

1. How the two frequently used ACs, DOX and epirubicin,
generate distinct metabolic vulnerabilities in human breast
cancer cells? This question is discussed in one recent study by
McGuirk S et al. and they have found that in contrast to
DOX-resistant cells, epirubicin-resistant cells present a
drastic increase in OXPHOS and were more sensitive than
DOX-resistant cells to treatment with phenformin. They have
noticed that resistance to DOX was mostly associated with
glutathione metabolism, whereas resistance to epirubicin to
increased mitochondrial bioenergetic capacity (122). No
similar data are available about the two frequently used
taxanes (PTX and DTX) whether they elicit distinct
primary metabolic vulnerabilities in human breast cancer
cells.

2. Drug resistance is induced directly by one of the elements
involved in the pathway (transporters, enzymes) or
FIGURE 4 | The most important steps of fatty acid oxidation. Created with BioRender.com. Agreement number: ZA23MRDTIU.
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indirectly, through an overall increase of the glycolytic
metabolism or both situations can occur? Marcucci F et al.
in a recent review show that both situations can be present,
and the upregulation of an individual enzyme is associated
with enhanced overall elevation of the glycolytic metabolism
(40).

3. What could be the importance of the fact that particular
isoforms (ex. HK2, PFKFB isoform 3, PGK isoform 1 etc.) of
the glycolytic enzymes expressed in tumor cells are involved
in the induction of drug resistance and of the fact that some
of these isoforms are associated with normal cells during
embryonic development? (40).

4. How glucose-related metabolic changes are restored months
or years after neoadjuvant therapy? Few studies address this
question. According to a very recent study neoadjuvant
chemotherapy worsens metabolic profile parameters (body
mass index, total cholesterol, and fasting glucose) which are
then recovered over 3 years. However, in the patients treated
with neoadjuvant endocrine therapy there were no significant
changes in fasting glucose and total cholesterol (123).

5. A hot topic in the oncological treatment is how selected
metabolic inhibitors work alone or how they can be used in
combination as potential treatments in breast cancer cases?
Howmetabolic inhibitors used in combination with currently
used drugs result in dose reduction of the chemotherapeutic
agents known to be highly toxic? In a very recent study
Draguet A et al. have evaluated the effect of selected metabolic
inhibitors alone and in combination in two (MDA-MB-231
and MCF-7) breast cancer cell lines. Special attention was
given to the analysis of metabolic inhibitors in combination
with DOX. Their results are encouraging as the combination
of CB-839 (glutaminase inhibitor) and Oxamate (lactate
dehydrogenase inhibitor) and the combination of CB-839/
Oxamate /D609 (a phospha t idy l cho l ine - spec ific
phospholipase C inhibitor) resulted in remarkable cell
mortality and all the inhibitors improved the efficacy of
DOX in cell lines. In addition, the same inhibitors
improved the efficacy of DOX. Some of the metabolic
inhibitors presented in their study like AZD3965 (a
selective monocarboxylate transporter 1 inhibitor) are being
evaluated in preclinical trials or in clinical trials (CB-839 - a
glutaminase inhibitor) (124).
LIPID METABOLISM

Obesity is considered as a risk factor of breast cancer especially in
post-menopausal women correlating with a diminished
therapeutic response and with worse disease outcome (125). By
analyzing obese vs. lean mice it was shown that decreased efficacy
of DOX corresponds with alterations of lipid metabolism
markers (126, 127).

Elevated and dysregulated lipid metabolism is a common
hallmark of cells surviving neoadjuvant therapy in breast cancer
patients (128). Studies also suggested that aberrant lipid
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metabolism plays an important role in cancer cells’ adaptation
to treatment-induced cellular stress (129).

With the advent of new and more effective tools to study
lipids is more and more recognized that lipids are central players
in cancer biology (are essential builders for membranes, serve as
fuel to the highly energetic process of uncontrolled tumor cell
division and regulate numerous cellular functions) (130).

It is intriguing to analyse whether the breast cancer subtype
defined by the transcriptome is reflected in the lipidome of breast
cancer cells or whether is there any relationship between
lipidomic profile and response to different therapies. Eiriksson
FF et al. by performing liquid chromatography mass
spectrometry (LC-MS) to analyze the lipidome of six breast
cancer cell lines of different subtypes have found differences in
lipidomes within the previously defined subtypes and concluded
that subtypes defined by the transcriptome are also reflected in
differences in the lipidome (131).

As it is presented in some of the recently published papers it
would be also important to discuss in further reviews the utility of
circulating lipid metabolites [to enhance the accuracy of known
tumor markers or to distinguish tumors with early-stage vs. benign
tumors (132)], the importance of lysophosphatidic acids (LPAs) as
their role in different cancers is of great interest from therapeutic
view and the role of the polyunsaturated fatty acids (PUFA).
Recent studies analysing the role of the arachidonic acid (AA), a
representative PUFA in different tumors have found a link
between AA and macrophage function in ovarian cancer and
have demonstrated that high level of AA is associated with poor
clinical outcome in ovarian cancers (133). Another recent study
has presented that in chemoresistant malignant pleural
mesothelioma AA is a mediator of the adaptive response to
pemetrexed (134)

Based on preclinical models lipid metabolism inhibition
reversed the resistance of cancer cells to anticancer drugs
suggesting that lipid metabolism play important role in drug
resistance (129). The question is how, and at which step lipid
metabolic changes contribute to drug resistance. Germain N et al.
have suggested that at least the following changes in lipid
metabolism may contribute to anticancer drug resistance: 1.
lipid metabolism counteracts oxidative and ER stress-induced by
anticancer drugs, 2. reduces metabolic stress and genotoxicity
induced by anticancer drugs and contributes to the maintenance
of drug-resistant cancer stem cells (129).

Pharmacological inhibitors have been developed for some of
the enzymes of lipid metabolism and some of the compounds are
used in combination with conventional therapies (129).

The dysregulation of lipid metabolism may occur at different
steps of the metabolic process. The most frequent aberrations
associated with drug resistance are overactivation of fatty acid
oxidation, elevated fatty acid biosynthesis, aberrant
accumulation of lipid droplets (LD) and changes in lipid
composition of cell membranes (135).

Changes in lipid metabolism of resistant cells are considered
treatment-specific and may include changes both in de novo
lipogenic synthesis and/or lipolytic pathway (129). Table 3 lists
the most frequently used drugs in breast cancer treatment and
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the possible lipid metabolism pathway associated with resistance
to different drugs.

Fatty Acid Oxidation
Fatty acid b-oxidation (FAO) is a primary bioenergetic source by
which fatty acids are broken down in a multistep process. Fatty
acids enter cells through fatty acid transport proteins like: fatty
acid translocase (FAT/CD36), tissue-specific fatty acid transport
proteins (FATP), and plasma membrane-bound fatty acid-
binding protein (FABPpm) (142, 143). In breast cancer loss-of-
function studies have demonstrated that CD36 is critical in fatty
acid uptake (144). Compared to CD36, FATPs and FABPpm
have received far less attention (145).

Fatty acid transportation across the mitochondrial membrane
is controlled by several enzymes. Once inside the cell, a CoA group
is added to the fatty acid by acyl-CoA synthetase, forming long-
chain acyl-CoA (146). The conversion of the long-chain acyl-CoA
to long-chain acylcarnitine by carnitine palmitoyltransferase 1
(CPT1) is the step by which fatty acid is transported across the
inner mitochondrial membrane, the process controlled by
carnitine translocase (CAT). CPT2 enzyme converts back the
long-chain acylcarnitine to long-chain acyl-CoA that enters the
fatty acid b-oxidation pathway (146) (Figure 4).

The transport of fatty acyl-CoAs into the mitochondria by
CPT1 proteins is considered a rate-limiting step in the
mitochondrial fatty acid b-oxidation pathway is (147). All three
known isoforms of CPT1 enzyme (CPT1A, CPT1B, and CPT1C)
have been recognized as important players in drug resistance.
Using an integrated genomic strategy, Gatza ML et al. identified
CPT1A as an important player also in cell proliferation especifically
in hormone receptor-positive breast carcinomas (148).

The b-oxidation is a cyclic process responsible for the
mitochondrial disintegration of long-chain acyl-CoA to acetyl-
CoA. This process is controlled by following four main enzymes:
acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl-
CoA dehydrogenase, and ketoacyl-CoA transferase (thiolase)
(149). In each cycle, FAD-dependent dehydrogenation and
NAD-dependent oxidation leads to the formation of FADH2

and NADH.
Complete oxidation of the produced acetyl-CoA, NADH, and

FADH2 is accomplished by the TCA and OXPHOS (Figure 4)
(146, 150).

Many types of cancer exhibit a high activity of FAO such as
TNBC, KRAS mutant lung cancer, hepatitis B-induced
hepatocellular carcinoma etc. (136, 151, 152). The mechanisms
of FAO activation in different tumor cells are under serious
debate and different mechanisms have been proposed to explain
drug-induced FAO activation and the role played by FAO in
drug resistance (153).

Studies have reported that prominent oncoproteins play
important role in the activation of several FAO enzymes.
Overexpression of c-Myc in TNBC resulted in FAO enzymes
and metabolic intermediates upregulation whereas inhibition of
FAO blocked Myc-driven tumorigenesis (154). Another study
identified CPT1B as a downstream target of the JAK/STAT3
pathway in breast cancer (135, 136).
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Hoy AJ et al. discuss several aspects of the association of
tumor fatty acid metabolism and therapy resistance. In recurrent
breast carcinomas they described enhanced CPT1B mRNA
expression compared to tumours that did not recur (135). In
patients with pancreatic and gastric cancers higher CPT1A
expression was associated with chemoresistance and with
shorter overall survival (135, 155, 156).

Studies suggest that pathways like PI3K/AKT/mTOR, JAK/
STAT3 play a pertinent role in lipid metabolism regulation (157–
159). Wang T et al. have found that leptins upregulate STAT3
and FAO activity and this metabolic switch promotes cancer
stemness and chemoresistance. In in vivo conditions blocking
FAO re-sensitized resistant cells to chemotherapy (136, 159).
Another study described that inhibition of FAO by
mercaptoacetate and etomoxir sensitizes paclitaxel-resistant
lung adenocarcinoma cells (160).

Targeting FAO came into the focus of researches as a
chemosensitization strategy given its key role in promoting
tumor cell survival via energy generation. More and more
studies suggest that addition of FAO inhibitors completely or
partially inhibited drug resistance of cancer cells (160–162).

Fatty Acid Biosynthesis
Substantial efforts have been documented to develop strategies to
target fatty acid biosynthesis since new and new studies have
demonstrated that activation of de novo fatty acid synthesis is
specific to some cancerous tissues (163).

In a standard way fatty acids are synthesized through the fatty
acid synthesis cycle (Figure 5). The substrate for FA synthesis is
cytoplasmic acetyl-CoA, which is obtained through different
mechanisms (163). The synthesis of fatty acids from acetyl-
CoA and malonyl-CoA involves two main steps: 1.
carboxylation of acetyl-CoA by acetyl-CoA carboxylase (ACC)
to form malonyl-CoA (ATP dependent) and 2. decarboxylation
of the malonyl group in the condensation reaction catalyzed by
the multifunctional FASN containing substrate shuttling domain
ACP and six catalytic domains: malonyl/acetyl-CoA-ACP
transacylase, b-ketoacyl-ACP synthase, b-ketoacyl-ACP
reductase, b-hydroxyacyl-ACP dehydrase, enoyl-ACP reductase
and thioesterase (163, 164).

The enzymes playing role in FA biosynthesis are under the
control of sterol regulatory element-binding proteins (SREBPs)
(165). The three isoforms of SREBPs (SREBP1a, -1c, and -2) are
encoded by two different genes (166). The importance of SREBP-
1 in lipid metabolism and tumor prognosis is discussed in several
papers (167, 168). In vitro studies performed on MDA-MB-231
and MCF7 breast cell lines revealed that the suppression of
SREBP-1 significantly inhibited cell migration and invasion
(168). Targeting SREBP could therefore be an efficient strategy
to halt tumor growth (163). Fatostatin, a nonsteroidal
diarylthiazole derivative inhibits the activation of SREBP1 and
additionally inhibits cell proliferation (169).

FASN
Overexpression of FASN is considered as one of the major changes
in lipid metabolism associated with drug resistance. FASN is
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FIGURE 5 | Main steps of fatty acid and cholesterol synthesis. Created with BioRender.com. Agreement number: YB23MRDXCR.
TABLE 3 | The most frequently used drugs in breast cancer treatment and the possible lipid metabolism pathway associated with resistance to different drugs.

Resistance to Drugs Lipid Metabolism Reprogramming in Resistant Cells

Drug Drug Target Pathway Mechanism Reference

Paclitaxel Antimicrotubule agent Increased lipolysis High mRNA levels of CPT1B and FAO (136)
Doxorubicin and Mitoxantrone DNA binding and Topoisomerase II inhibitor Increased lipogenesis Increased FASN expression (137)
Cisplatin DNA binding Increased lipogenesis Increased FASN expression (138)
Lapatinib Inhibitor of EGFR/HER1 and HER2 receptors Partly unknown Increased adipocyte lipolysis (139)
Trastuzumab Inhibitor of HER2 receptors Increased lipogenesis Increased FAS promoter activity (140)
Tamoxifen Inhibitor of oestrogen receptors (ERs) Increased lipogenesis Increased cholesterol pathway gene expression (141)
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overexpressed in breast carcinomas with over 70% of primary
TNBC and in several other epithelial malignancies as
demonstrated with immunohistochemistry. Breast cancers
overexpressing FASN are more likely to recur and metastasize
and present significantly shorter disease-free and overall survival
(170, 171). FASN induces resistance to multiple DNA-damaging
agents including DOX and cisplatin (170). The impact on
sensitivity to microtubule agents such as taxane is contradictory.
Sardesai SD et al. have found that FASN induces resistance to
multiple DNA-damaging agents including DOX and cisplatin
without impacting sensitivity to microtubule agents or
antimetabolites whereas Menendez JA et al. have found that the
inhibition of FASN activity strengthens the cytotoxicity of
docetaxel in the HER2-overexpressing breast cancer cell lines
(170, 171). FASN mediates drug resistance via palmitate
production involving different pathways. Palmitate limits AC
transmembrane uptake by cancer cells by modulating the
transmembrane mobility of the drugs, a major way for AC entry
inside the cells (16). FASN overexpression is also associated with
the suppression of drug (DOX)-induced ceramide production by
inhibiting the activity of sphingomyelinase (172).

Moreover FASN is an established therapeutic target. Wang W
et al. in a recent study detailed the new therapeutic perspectives
in cancers based on the lipid metabolic pathway (173).

Summarized data of the therapeutic challenges in lipid
metabolism are presented in Table 4.

A real challenge in targeting lipid metabolism is the lack of
selectivity. For example the first generation of FASN inhibitors
such as Orlistat (presenting with lack of selectivity, poor
metabolic stability) displayed considerable side effects (e.g.
anorexia). The next-generation FASN inhibitors present
limited systemic toxicity in a preclinical study, higher anti-
tumor potential and higher specificity for FASN (173, 189).
TVB-2640, a selective FASN inhibitor showed good tolerability
and efficacy when combined with taxol in previously treated
patients with advanced metastatic breast cancer. By inhibiting
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FASN a partial regression in ~20% of patients and stable disease
in the remainder of patients was documented (189). Based on the
very recent study of Sardesai SD et al. Omeprazole can be safely
administered in doses that inhibit FASN. Further validation is
needed but a promising pCR rate was diagnosed after the
addition of Omeprazole to neoadjuvant AC-T (170).

Other enzymes involved in fatty acid synthesis might also be
therapeutic targets in cancer. Inhibition of key enzymes for FAs
synthesis, such as FASN (presented above), ATP-citrate lyase
(ACLY) and ACC can decrease the proliferation and growth of
different cancer cells. In hepatocellular carcinoma, ND-654, an
ACC inhibitor, has been shown to suppress carcinogenesis (190).
In human glioblastoma cells reduced proliferation and de novo
lipogenesis was observed after the inhibition of acetyl-CoA
carboxylase 1 (ACC1) and 2 (ACC2) (190, 191). However,
Jeon SM et al. targeting ACCs by short interfering RNAs
(siRNAs) have found that only ACC2 knockdown inhibited
markedly cell death and H2O2 accumulation without
decreasing O2 (192).

ACLY
ACLY, a cytoplasmic enzyme catalyzing citric acid breakdown to
acetyl-CoA, was found to be overexpressed in several cancers like
breast, colorectal, non-small cell lung cancers etc. (193). The
ACLY inhibitor SB-204990 has been set out to inhibit the
proliferation of lung adenocarcinoma cells in vivo and in vitro.
Other ACLY inhibitors like difluorocitric acid and hydroxycitrate
have been demonstrated to block the synthesis of FAs. Although
some ACLY inhibitors performed well and have been validated,
most of the studies to date are still in the preclinical phase
(193–195).

Mitochondrial proteomics reveal acetyl-CoA acetyltransferase,
hydroxacyl-CoA dehydrogenase and short chain enoyl-CoA
hydratase overexpression in DOX-resistant compared to DOX-
sensitive uterine sarcoma cells, providing potential diagnostic
markers and therapeutic candidates (16).
TABLE 4 | Non-exhaustive list of drugs targeting lipid metabolism used in association with standard treatments in resistant cancer.

Target Drug name Drug effect Drug Combination References/trial
number

FASN Orlistat Pancreas lipase inhibitor anti obesity drug approved
by FDA

Trastuzumab, Taxanes (174)

TVB-3664, TVB-3166, TVB-
2644

Reversible and selective FASN inhibitor (175, 176)

Omeprazole Proton pump inhibitor (173)
Conjugated linoleic acid Reduces FASN gene expression (173)
C75/Cerulenin Inhibition of b-ketoacyl-synthase activity Trastuzumab (177)
G28UCM Selective FASN inhibitor Trastuzumab, Lapatinib, Gefitinib,

Erlotinib
(178)

FACS Triacsin C Inhibitor of fatty acyl-CoA synthetase 1and 4 Paclitaxel, Doxorubicin (179, 180)
HMG-CoA
reductase

Statins Inhibitors of HMG-CoA reductase Doxorubicin, Daunorubicin (181, 182)

FPTase L-744,832 Selective inhibitor of FPTase Doxorubicin (183)
Lipin Propanolol Inhibition of Lipin-1 Rapamicin (184)
FAT/CD36 Anti-CD36 antibody Irreversible inhibition of CD36 Tamoxifen (185)
CPT1/CPT2 Perhexiline CPT1 and 2 inhibitors Lapatinib (186)
SCD-1 CAY-10566 Selective SCD-1 inhibitor (187, 188)
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SCD1
It is worth mentioning the stearoyl-CoA desaturase 1 (SCD1)
enzyme as another rate-limiting enzyme in fatty acid synthesis
that converts saturated acids to monounsaturated fatty acids
(MUFAs) involved in many biological processes (are major
constituent of biological structures such as membranes and can
also function as or modify signaling molecules). Accordingly
more and more studies highlight different roles of SCD1 like
modulation of autophagy (196) others discussing the
involvements of SCD1 in regulation of cancer stem cells (197)
and in the promotion of cancer cell proliferation, migration and
metastasis (198). Cancer cells presenting with high degree of
membrane saturation are known to be less sensitive to oxidative
stress induced by agents like ACs. It is intriguing and important
to find combination of therapies that acts synergistically. Many
inhibitors of SCD1 like CAY10566, MF-438 and CVT-11127
have been presented but only a few have progressed to clinical
trials due to their adverse effects (198).

The Role of Membrane Lipid Composition
in Chemotherapy Resistance
Reduced fluidity of lipid bilayers in the membranes are also
characteristics of chemoresistant cancer cell lines. Membrane
lipid composition has gained high importance in cancer research.
The reduced membrane fluidity influence or disrupt drug
uptake via passive diffusion or endocytosis (135). Plasma
membrane cholesterol was reported to be elevated in AC-
resistant MCF-7 breast cancer cells (199). The increased
expression of sphingolipid metabolizing enzymes, specifically
ceramide transport protein, sphingosine kinase 1 and 2 have
been correlated with resistance to DOX and paclitaxel (39).

Studying the cholesterol metabolic reprogramming in cancer
came in the focus of researches in the last years based in part on
its important role in maintaining cellular homeostasis (providing
essential hormones) as well as considering its role in forming
lipid rafts, an indispensable cell membrane structure in cancer
cells. As many tumor-related proteins are located in lipid rafts
this cell component is an important platform for oncogenic
signaling pathways. Considering other aspects like the
metabolites obtained by de novo modification of cholesterol
(mevalonic acid, farnesyl pyrophosphate and geranylgeranyl
pyrophosphate) also playing an important role in cancer
growth and/or oncogenic signaling pathways it is reasonable to
consider the significant role played by cholesterol in tumor
metabolism. Cholesterol deficiency in cell membranes has been
shown to inhibit cancer progression (157) and cholesterol
metabolic reprogramming in cancer cells is strongly linked to
several aspects of drug resistance (157, 200).

Cholesterol is mostly synthetized through the mevalonate
pathway (Figure 5) or acquired from the circulation via LDL
receptor (LDLR)-mediated endocytosis. In the mevalonate
pathway 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) is
reduced to mevalonate by HMG-CoA-reductase enzyme
considered as the primary control site for cholesterol
biosynthesis (201). The enzyme activity and protein level is
controlled by multiple regulatory mechanisms, its competitive
Frontiers in Oncology | www.frontiersin.org 15
inhibitors are among the most widely prescribed medications,
collectively known as statins. Further a series of enzymatic
reactions convert mevalonate to cholesterol (199, 202, 203).

The role of cholesterol in drug resistance has been
demonstrated in several cancer types including breast cancer
(199) and is mostly related to AC resistance given the role of the
cell membrane permeability in AC drugs. It was shown that
decreased cholesterol levels resulted in the increased uptake of
DOX (204).

Some mechanisms through which cholesterol regulates drug
resistance are lipid rafts, ABC transporters, drug uptake. These
mechanisms are highly discussed in a recently published review
of Yan A et al. (199).

The “membrane-lipid therapy” based on the modulation of
membrane lipid composition is considered as an effective
therapeutic strategy in several diseases. Preta G. mentions that
instead of modifying membrane cholesterol/sphingolipids
content new schemes like modulation of membrane bilayer
properties (fluidity and elasticity) by inducing changes in the
organization of lipid rafts are preferred (205).

The accumulation of lipid droplets is a less well-studied aspect of
chemoresistant cancer cell lines (135). Lipid droplets are considered
to directly contribute to chemoresistance by providing an extra
source of lipids for FAO when nutrient stress occurs, or may play a
role in hydrophobic drug sequestration (206).

Sirois I et al. in a very impressive study by analyzing a novel
MDA-MB-436 cell-based model of chemoresistance characterized
by a unique and complex morphologic phenotype with numerous
lipid droplets and a set of primary chemoresistant TNBCs have
identified several metabolic vulnerabilities. These include a
dependence on perilipin family member perilipin 4 (PLIN4), a
protein coating of the observed lipid droplets that play important
role in fat mobilisation, expressed both in experimental conditions
(in the chemoresistant TNBC cells) and in chemoresistant tumors
treated with neoadjuvant DOX-based chemotherapy. Their results
call attention to a novel mechanism of chemotherapy resistance
that may have therapeutic consequences in the treatment of drug-
resistant cancer (207).
FUTURE CHALLENGES IN LIPID
METABOLISM AND BREAST CANCER
TREATMENT

Based on the above-mentioned data related to lipid metabolism
in breast carcinomas there are some intriguing questions to be
analyzed in more detail:

1. How breast carcinoma treatment is going to be tailored based
on the metabolic phenotypes/subtypes? In a review by Marie
E. Monaco analyzing fatty acid metabolism based on mRNA
expression data in breast cancer subtypes suggested that
significant differences are observed. While the less
aggressive, HR+ (luminal) subtypes depend on a balance
between de novo fatty acid synthesis and oxidation as sources
for energy requirements the TNBCs are characterized by
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overexpression of the genes involved in the utilization of
exogenous fatty acids. They suggest that treatments have to
be tailored to individual subtypes (147).

2. Lipid metabolism has been difficult to analyze partly due to
technical problems. Considering the challenges (tumor
heterogeneity, metabolic diversity, the rapidly changing
environmental context, differences in nutrients use among
different cell types, the cooperative or competitive
relationships between cells, etc.) it is questionable how the
new technologies could help in delineating the contribution
of lipid metabolism to tumor differentiation, progression and
resistance to different drugs. Matsushita Y et al. summarize
the new technology currently used in lipidomics and confirm
that recent innovations especially in mass spectrometry- and
chromatography-based lipidomics technologies have
improved our understanding of the role of lipids in cancer
(208).

3. Cancer-associated adipocytes are poorly investigated cells in
breast tumor microenvironment. What should be the role of
the surrounding and breast cancer-associated adipocytes? A
few studies suggest that cancer-associated adipocytes can also
cause resistance to radiotherapy and to chemotherapeutic
drugs (209, 210). Another study described that interaction
between cancer-associated adipocytes and cancer cells seems
to be more pronounced in obese patients (211).

4. How is lipid profile of patients restored after (neo)adjuvant
chemotherapy? TianW et al. suggested that different age groups
showed different changes in lipid levels and in general the lipid
profiles were restored to baseline levels approximately 6 months
after chemotherapy completion (212).
CONCLUSIONS

Main metabolic alterations in breast cancers include the preference of
the glycolytic pathway (the increased uptake of glucose,
hyperactivated glycolysis), the enhanced oxidative phosphorylation
pathway and dysregulation of fatty acid metabolism.

Current studies present the important aspect of tumor
metabolism associated with anticancer drug resistance and the
association of the partly unknown aspect of the metabolic
plasticity in chemotherapy resistance. Efforts are made to
combine chemotherapies with drugs targeting different steps of
metabolic pathways. Compared to a huge amount of results
related to the above-mentioned questions only a few studies
Frontiers in Oncology | www.frontiersin.org 16
present data related to changes in metabolic profile induced by
currently applied chemotherapeutic agents used in neoadjuvant
or adjuvant settings. There are also gaps in analysing the
assoc ia t ion of the metabol i c changes induced by
chemotherapies with different response rates to the applied
treatment regimen or with tumor progression.

Considering just some of the points like: the regulation of
lipid and glucose metabolism is also important for normal cells,
the intra- and intertumoral metabolic heterogeneity in breast
cancers, the different metabolic signatures observed in different
breast carcinoma subtypes, the lack or imperfect technologies
to study components of metabolic pathways, it is still a huge
challenge to find substances that target different steps of glucose
and lipid metabolism in the very heterogeneous group of breast
tumors without affecting normal cells. Additionally, current
metabolomic and especially lipidomic approaches have
identified several partly unknown components of metabolic
pathways paving the way to a better understanding of cancer
biology. As exemplified in our and in recently published
reviews there are relatively broad opportunities in targeting
metabolism in cancers but it is a key question whether we have
considered nearly all metabolic hubs as targets and whether we
can rewire our mind to optimise the therapies based on the
several new data.
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GLOSSARY

1,3 BPG 1,3 bisphosphoglycerate
2-DG 2-deoxy-D-glucose
2PG 2-phosphoglycerate
HMG-CoA 3-hydroxy-3-methylglutaryl-CoA
ACC1 acetyl-CoA carboxylase 1
ACC acetyl-CoA carboxylase
AC anthracylines
AA arachidonic acid
ACLY ATP-citrate lyase
3- BrPA bromopyruvate
CBZ cabazitaxel
CPT1 carnitine palmitoyltransferase 1
DTX docetaxel
DOX doxorubicin
ENO enolase
FPTase L-744 832 Selective inhibitor of FPTase, farnesyl transferase inhibitor
FA fatty acid
FAO fatty acid b-oxidation
FACS fatty acyl-CoA synthetase
FASN fatty acid synthase
FAT/CD36 fatty acid translocase
FATP fatty acid transport proteins
FEC fluorouracil, epirubicin and cyclophosphamide
FBP fructose-1,6-bisphosphate
F6P fructose-6-phosphate
G6PD glucose-6-phosphate-dehydrogenase
G6P glucose-6-phosphate
GAPDH glyceraldehide-3-phosphate dehydrogenase
GAP glyceraldehyde-3-phosphate
HK hexokinase
HR hormone receptor
LD lipid droplets
LND lonidamine
LDL low-density lipoprotein
MDR multidrug resistance
NeST neoadjuvant systemic therapy
OXPHOS oxidative phosphorylation
PTX paclitaxel
pCR pathological complete response
PPP pentose phosphate pathway
PLIN4 perilipin 4
PEP phosphoenolpyruvate
PFK-1 phosphofructokinase-1
PGI phosphoglucose isomerase
PGK phosphoglycerate kinase
PGM phosphoglycerate mutase
FABPpm plasma membrane bound fatty acid binding protein
PK pyruvate kinase
SCD stearoyl-CoA desaturase
SREBPs sterol regulatory element binding proteins
TOPOII topoisomerase II
TCA tricarboxylic acid cycle
TPI triose phosphate isomerase
TNBC triple-negative breast cancer
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