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Abstract: Epidemiological studies have reported the relationship between bisphenol A (BPA) exposure
and increased prevalence of asthma, but the mechanisms remain unclear. Here, we investigated
whether BPA exposure and DNA methylation related to asthma in children. We collected urinary and
blood samples from 228 children (Childhood Environment and Allergic Diseases Study cohort) aged
3 years. Thirty-three candidate genes potentially interacting with BPA exposure were selected from a
toxicogenomics database. DNA methylation was measured in 22 blood samples with top-high and
bottom-low exposures of BPA. Candidate genes with differential methylation levels were validated
by qPCR and promoter associated CpG islands have been investigated. Correlations between the
methylation percentage and BPA exposure and asthma were analyzed. According to our findings,
MAPK1 showed differential methylation and was further investigated in 228 children. Adjusting
for confounders, urinary BPA glucuronide (BPAG) level inversely correlated with MAPK1 promoter
methylation (β = −0.539, p = 0.010). For the logistic regression analysis, MAPK1 methylation status
was dichotomized into higher methylated and lower methylated groups with cut off continuous
variable of median of promoter methylation percentage (50%) while performing the analysis. MAPK1
methylation was lower in children with asthma than in children without asthma (mean ± SD; 69.82 ±
5.88% vs. 79.82 ± 5.56%) (p = 0.001). Mediation analysis suggested that MAPK1 methylation acts as a
mediation variable between BPA exposure and asthma. The mechanism of BPA exposure on childhood
asthma might, therefore, be through the alteration of MAPK1 methylation. The mechanism of BPA
exposure on childhood asthma might, therefore, be through the alteration of MAPK1 methylation.

Keywords: bisphenol A; DNA methylation; asthma

1. Introduction

The use of harmful chemicals has been increasing in modern society. There has also been a
simultaneous increase in the number of asthma and other allergic disorders in children. Global
Initiative of Asthma reported in 2004 that as many as 300 million people of all ages have asthma, and
the estimated number might be further increased in the future [1].
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In Taiwan, the prevalence of children affected by asthma was around 12%; asthma is one of the
most important health issues in children in Taiwan and worldwide [2,3]. Our previous studies and
those of others have shown that children with asthma have difficulty in learning due to hyperactive
and impulsive behaviors that are secondary consequences of the illness [4,5], resulting in a considerable
burden on public health.

BPA is an endocrine-disrupting chemical being increasingly used in modern society. Hence,
health concerns regarding BPA use should not be ignored [6]. Some epidemiological studies have
presented the association between BPA exposure and a higher prevalence of asthma [7]. Pulmonary
pathological data further support that BPA might aggravate asthma through adjuvant effects [8].
In our previous study, we discovered that BPA exposure was related to high IgE levels in children [9].
We also discovered that the urine BPA metabolite level was significantly higher in Taiwanese children
than in those of other countries [9,10]. BPA has become serious public health problem globally and
been described the various epigenetic mechanisms, like DNA methylation, histone modifications and
non-coding RNAs, then affecting gene expression [11–13]. Furthermore, we found that exposure to
this harmful chemical affected DNA methylation, which influenced the prevalence of allergic disorders
in children [14]. Therefore, epigenetic variations caused by environmental factors might be associated
with the development of asthma.

Multiple exposure routes including oral, dermal, and airway routes contribute to the total
intracellular BPA concentration in children [15,16]. The increasing health concern was attributed to the
continuous low-level exposure to BPA in children [15–17]. BPA is not bio-accumulative, but continuous
exposure from many sources makes it as harmful as a bio-accumulative compound [18]. According
to a recent report, BPA has a longer than expected half-life [16]. Some animal studies have reported
that several endocrine-disrupting environmental chemicals can modify epigenetic marks [19]. Several
studies have focused on the epigenetic modifications caused by environmental exposure to BPA,
but most of them have not been directly linked to a clinical endpoint [20,21]. Further, there is limited
information available from large-scale data regarding children exposed to BPA based on clinical
specimens. In this study, we investigated the effects of BPA exposure on epigenetic modification and
established a correlation between healthy and asthmatic children. This study focused on whether
exposure to BPA induces aberrant DNA methylation of specific genes related to childhood asthma in
children aged 3 years.

2. Materials and Methods

2.1. Study Population

A total of 228 3-years-old children for whom urine and blood specimens were available from
the Childhood Environment and Allergic Diseases Study (CEAS) cohort were included in this
study [14,22]. Full enrollment was completed by monitoring BPA exposure, analyzing the urinary
BPA glucuronide (BPAG) level, and sampling of blood. The guardians were interviewed at pediatric
clinics to obtain information regarding gender, prematurity, maternal age, history of atopy, educational
level, breastfeeding or formula feeding, and exposure to environmental tobacco smoke (ETS) exposure,
family income and asthma history of the children. Informed consent was obtained and the study was
approved by the Institutional Review Board of the Taipei Hospital (IRB No. TH-IRB-09-04).

2.2. Determination of Cases

The International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire was
provided to the guardians of the children included in the study [3]. Asthma patients were defined as
“physician-diagnosed asthma.” Pediatric allergists accomplished a standardized history examination
of participants and the guardians were asked to report whether their child suffered from wheezing or
used asthma medications through a questionnaire using three criteria: (i) recurrence of at least two
of the three symptoms: cough, wheeze, and shortness of breath within the past 12 months without
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having a cold, (ii) doctor’s diagnosis of asthma with ongoing treatment, and (iii) response to treatment
with β2-agonists or inhaled corticosteroids [23,24]. Those who were not able to answer the questions,
had multiple gestation, and did not follow up regularly were excluded from the study.

2.3. Laboratory Method

2.3.1. Exposure Monitoring

The first mid-stream urine in the morning was collected from children and stored at −20 ◦C
before analysis. The specimen was analyzed by solid phase extraction method. We measured
the concentrations of urinary BPA glucuronide (BPAG) of children aged 3 years as an indicator of
exposure [9,25]. BPAG was determined by the method of ultra-performance liquid chromatography
and tandem mass spectrometry (UPLC-MS/MS) using isotope-dilution techniques [9,25,26]. The limit
of detection (LOD) was 1.61 ng/mL [9] and for a reported value less than the LOD, one-half the limit of
detection was assigned. All experiments were done in duplicates for data acquisition. Urine creatinine
levels were detected by enzymatic assay (Cayman Chemical, Ann Arbor, MI, USA) and urinary BPAG
was adjusted for urine creatinine levels.

2.3.2. Selection of Candidate Genes by Methylation-Dependent Fragment Separation (MDFS)

From the toxicogenomics database, we selected 33 human candidate genes having CpG islands,
which are known to interact with BPA [6]. These genes included ESR1, ESR2, AR, PGR, ESRRG, THRB,
CjYP1A1, CYP19A1, VEGFA, MAPK1, MAPK3, STAT3, LIF, NR1I2, TFF1, TNFα, IL-4, S100G, LHB, GH1,
NR4A1, HOXA10, CYP11A1, CYP17A1, PRL, STAR, IGF1, NCOA1, P4HB, DDIT3, FOS, HSP90AA1, and
THRA. The candidate genes were chosen based on the following criteria: (i) those genes that interacted
with BPA, and (ii) those that were known to be associated with asthma. Figure 1 shows the study flow
chart of the selection of candidate genes associated with BPA exposure.
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Figure 1. Flow chart describing this study.

Initially, we investigated DNA samples of 11 children who were ranked as having the
top-high BPAG exposure levels and 11 age- and gender-matched children who were ranked as
having the bottom-low BPAG exposure levels. The 22 blood samples were screened by utilizing
methylation-dependent fragment separation (MDFS) to assess the differences of methylation between
top-high and bottom-low BPA exposure groups. MethPrimer software was used to recognize CpG
islands (CGIs) of selected candidate genes and design primers for polymerase chain reaction (PCR) by
EpiTect Methl II qPCR.
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2.3.3. Analysis of the Methylation Status by Quantitative PCR (qPCR) and Pyrosequencing in a Cohort
of 228 Children

The genomic DNA were derived from peripheral blood of all subjects and extracted by DNeasy
Blood and Tissue Kit (Cat No./ID: 69506, QIAGEN, Inc., Valencia, CA, USA). Candidate genes with
differential methylation level in two exposure groups (top-high and bottom-low BPA levels) were
identified through a screen with MDFS and further validated using a qPCR method or pyrosequencing
in all samples. The qPCR method was based on the detection of input DNA after digestion with a
methylation-dependent restriction enzyme that cleaves unmethylated and methylated DNA [27,28].
The bisulfate conversion of DNA was treated with EpiTect® Plus Bisulfite Conversion K it (#59124,
QIAGEN, Inc.). The bisulfate conversion efficiency was monitored by reference DNA set (included
unmethylated DNA and methylated DNA) (#59695, QIAGEN, Inc.). Restriction digestion was
performed using the EpiTect Methyl II DNA Restriction Kit (SAB# 335452). Following digestion,
the remaining DNA in each individual enzyme reaction was quantified by ViiA7 real-time PCR
instrument. The assay primers were designed and synthesized by QIAGEN SABioscience (QIAGEN,
Inc.). The relative fractions of methylated and unmethylated DNA are subsequently determined
by comparing the amount in each digest with that of a mock (no enzymes added) digest using a
∆CT method.

Since there was no commercial kit for qPCR-based DNA methylation of the IL-4 gene
and MAPK1, we validated DNA methylation of IL-4 and MAPK1 result by a customed
designed pyrosequencing method [29,30]. The PCR reaction was conducted using PyroMark
PCR Kit (#978703, QIAGEN, Inc.) with specific primers for IL-4 gene as below: Forward
5’-GTTGATTGGTTTTAAGTGATTGATAATT-3’ and backward 5’-Biotinylated ATACCCAAATA
AATACTCACCTTTCACT-3’; MAPK1 gene: Forward 5’-TGAATGTATTGTGAATGTATGT GATTGT-3’
and backward 5’-Biotinylated GAGAGTTGAAGAGTTGAT ATGTTATTTGG-3’. The PCR program was
performed by the Veriti Thermo Cycler (# 4375786, Life Technologies, Carlsbad, CA, USA) and then the
PCR products were separated into single strands using streptavidin-coated beads. The pyrosequencing
was applied with specific sequencing primer (IL-4: 5’-TTTTTGTTTTT TTTGTTAGTATGT-3’ and
MAPK1: 5’-TTTTTAGTTAA TGTTGTTGTAGTG-3’) using PyroMark Gold Q24 Reagents (#970802,
QIAGEN, Inc.) which was designed for CpG methylation analysis. The sequence signals were
generated by PyroMark Q24 instrument and analyzed the sequence peak signal intensity by PyroMark
Q24 software v2.0.6. The association between methylation status of the candidate gene, exposure
levels, and asthma were further analyzed.

2.3.4. Analysis of Plasma Level of MAPK1 Protein

For the quantitative measurements of MAPK1 (ERK1/2), an ELISA kit was used on lysed human
leukocytes as described (ERK1/2 SimpleStep ELISA Kit, ab176641, Abcam, Cambridge, UK) [27]. Briefly,
fifty microliters of human leukocytes lysates in Cell Extraction Buffer PTR were added to the wells,
followed by the antibody mix (50 microliters). After incubation for an hour at room temperature,
the wells are washed to remove unbound material by buffer PT. One-hundred microliters of TMB
substrate was added to each well and incubate for 15 min in the dark. After incubation, the reaction
was stopped by addition of one-hundred microliters of Stop Solution, and the intensity was measured
at 450 nm.

2.4. Statistical Analysis

Variables with skewed distributions were going to be log (Ln)-transformed then taking analyses
in the next step. All data after log-transformed in this study presented a normal distribution,
and no significant outliers were found. Associations between urine BPAG levels and the MAPK1
promoter Met% were evaluated by linear regression. Association between BPAG level and asthma
was analyzed by univariate and multivariate logistic regression. Independent t-tests were performed
to assess differences of methylation percentage (Met%) in the promoter methylation percentages
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(Met%) of 33 human candidate genes which are known to interact with BPA genes identified by
methylation-dependent fragment separation (N = 22) [6]. To analyze the association of MAPK1 5′CGI
methylation status with asthma in CEAS cohort, we first compared the mean of methylation levels.
A logistic regression analysis was performed to evaluate the association of methylation status of target
genes with asthma. For the logistic regression analysis, we dichotomized the methylation into higher
and lower groups. MAPK1 methylation status was dichotomized into higher methylated and lower
methylated groups with cut off continous variable of median of promoter methylation percentage
(50%) while performing the analysis. Selection of the confounders have been kept in the exploratory
model, which was based on the literatures and the standard statistical procedures, avoiding a change
of more than 10% in the point estimate of the exposure. All tests assumed a two-sided alternative
hypothesis and provide estimates of effects with exact p-values. All analyses were conducted using
SAS software version 9.1 (SAS Institute, Cary, NC, USA).

3. Results

3.1. Selection of the Most Relevant Candidate Genes

After screening 33 candidate genes in 22 included children by MDFS, we observed marginal
differences methylation status of the promoter region for four genes (AR, TNFα, IL-4, and MAPK1)
between the top-high and bottom-low BPA exposure groups, which had marginal significances
methylation identified by methylation-dependent fragment separation. All the required information
was available for 453 children aged 3 years. Table 1 presents the basic demographic data of the study
population. We excluded children who discontinued follow-up (n = 84) and whose blood or urine data
(n = 75) or outcome data (n = 66) were not available, and the final number of the sample cohort studied
was 228. The basic demographics of the study population showed no significant differences between
those who discontinued to follow-up and those who completed follow-up (Table 1).

These four genes were selected for further investigation (Table 2) A review of the relevant
literature showed that these genes were related to the development and maintenance of the male sexual
phenotype (androgen receptor; AR, Gene ID: 367); stimulation of the acute phase proinflammatory
cytokine and regulator of immune cells (tumor necrosis factor alpha; TNFα, Gene ID: 7124); activation
of B-cells; promotion of T-cell proliferation; induction of B cell switching to IgE (interleukin 4; IL-4, Gene
ID: 16189); production of pro-inflammatory mediators; mediation of cell growth, adhesion, survival,
and differentiation; and regulation of meiosis, mitosis, and post-mitotic functions (mitogen-activated
protein kinase1; MAPK1, Gene ID: 5594) (Table 2). The percentage of promoter methylation (Met %),
as measured by qPCR, of these candidate genes, tested for 22 samples, is presented in Table 3. Only
MAPK1 showed a differential methylation status between the top-high and bottom-low exposure
groups after validation by qPCR (low vs. high exposure: 79.82 ± 5.56 vs. 69.82 ± 5.88, p = 0.001).

Table 1. Characteristics of the total population and the analyzed subsample.

Category Subjects with Urine and Blood
Specimens (N = 228)

Initial Cohort with Urine
Specimens (N = 453) p-Value

Gender (male) (%) 55.9 57.7 0.667
Prematurity <37week (%) 7.6 9.0 0.702

Maternal age ≥34 years (%) 24.0 17.8 0.126
Maternal history of atopy (%Yes) 40.7 35.1 0.408
Maternal education College (%) 25.4 30.8 0.370

Breast feeding (%Yes) 67.2 76.4 0.106
ETS exposure (%Yes) 59.5 46.2 0.066

Family income per year
>1,500,000 (NT dollars) (%) 9.1 8.0 0.531

Asthma (% Yes) 24.6 26.9 0.507

ETS exposure: environmental tobacco smoke exposure; Chi squared tests was used to evaluate the variables in
this table.
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Table 2. The description and promoter methylation percentages (Met%) of four candidate genes with relatively differential methylation identified by
methylation-dependent fragment separation (N = 22).

Gene (ID)
CpG Island Location Gene Function

Map
TSS Position Promoter Methylation Percentage (Met%)

(mean ± SD) upon Low and High BPA Exposure

AR (367)

ChrX: 66763684–66764077
Development and maintenance of the male sexual
phenotype, DNA-binding transcription factor that

regulates gene expression

NM_000044
Genome Position: chX 66680589–66860844(+)
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Chr6: 31543344–31544344 

Pro-inflammatory cytokine- 
stimulates the acute phase reaction 

and airway inflammation and 
regulates immune cells  

NM_000594 Genome Position: chr6 31651328–31654089(+) 

 31543350 
Bottom-low vs. top-high exposure 
42.15 ± 36.60 vs. 23.20 ± 22.37 333 

p = 0.16 

IL-4 
(16189) 

Chr5: 132035956–132036176 
Activates B-cell and T-cell 

proliferation induces B-cell class 
switching to IgE 

NM_000589 
Genome Position: chr5 132037271–132046267(+) 

 

132040541333 
Specific primers for IL-4 gene as below: Forward 

5′-GTTGATTGGTTTTAAGTGATTGATAATT-3’ and backward 
5′-Biotinylated ATACCCAAATAAATACTCACCTTTCACT-3’. 

Bottom-low vs. top-high exposure 
89.36 ± 7.65 vs. 85.73 ± 6.99 333 

p = 0.26 

MAPK1 
(5594) 

Chr22: 20443948–20551970 

Mediates cell growth, adhesion, 
survival, and differentiation. 

Regulates meiosis, mitosis and 
postmitotic functions 

NM_002745 Genome Position: chr22 2044394–20551970(-) 

 20447613 Bottom-low vs. top-high exposure 
79.82 ± 5.56 vs. 69.82 ± 5.88 p = 0.001 

Figure source: MethPrimer 2.0. 

20447613 Bottom-low vs. top-high exposure 79.82 ± 5.56 vs.
69.82 ± 5.88 p = 0.001

Figure source: MethPrimer 2.0.
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Table 3. Promoter methylation percentage (Met%) of four candidate genes with marginal significant
differential methylation validated by quantitative PCR (N = 22).

Sample BPAG Level (ng/mL) TNFα p-Value AR p-Value IL-4 p-Value MAPK1 p-Value
Met% Met% Met% a Met%

Bottom-Low Exposure

L1 0.81 11.07 0.158 50.00 0.138 87.00 0.258 82.00 0.001
L2 0.81 85.22 33.86 88.00 87.00
L3 0.81 73.88 6.57 71.00 81.00
L4 0.81 14.41 50.00 88.00 75.00
L5 6.55 67.60 8.36 100.00 86.00
L6 6.55 14.38 79.64 89.00 79.00
L7 6.55 11.04 27.36 91.00 75.00
L8 6.55 94.64 52.27 89.00 76.00
L9 6.55 76.97 65.62 88.00 84.00

L10 6.55 6.85 28.80 92.00 84.00
L11 6.55 7.57 12.91 100.00 69.00

Top-High Exposure

H1 86.55 34.31 51.32 81.00 71.00
H2 96.26 5.59 4.57 84.00 66.00
H3 99.03 10.16 11.95 71.00 73.00
H4 115.60 6.14 50.43 91.00 74.00
H5 137.20 23.49 14.76 91.00 69.00
H6 143.20 22.76 13.19 87.00 72.00
H7 147.40 21.59 36.34 90.00 69.00
H8 155.10 84.09 4.78 82.00 77.00
H9 239.50 28.02 13.66 80.00 60.00

H10 260.50 10.39 14.32 90.00 60.00
H11 392.00 8.63 45.65 96.00 77.00

a Met% is the percentage of methylated cytosine in the CGIs determined by pyrosequencing. Logistic regression
analysis was used to evaluate the variables in this table.

3.2. Relationship of MAPK1 5′CGI Methylation Status with BPA Exposure and Asthma

After adjusting for confounders, urinary BPAG levels maintained a significant negative regression
coefficient for the MAPK1 5’CGI promoter methylation percentage (Met %) in the initial cohort (β =

0.83, p = 0.022) (Table 4). Table 5 presents the association of the MAPK1 5’CGI methylation status with
asthma. For the logistic regression analysis, we dichotomized the methylation into higher and lower
groups. MAPK1 methylation status was dichotomized into higher methylated and lower methylated
groups with cut off continous variable of median of promoter methylation percentage (50%) while
performing the analysis. Lower methylation of the MAPK1 5’CGIs was found to be positively associated
with asthma compared to higher methylation of MAPK1 5’CGIs (adjusted OR = 2.33, 95% CI = 1.01–5.39,
p = 0.020).

Table 4. The association between the log-transformed BPAG level and standardized regression
coefficient βeta for the MAPK1 promoter methylation percentage (N = 228).

MAPK1 Promoter Methylation Percentage (Met %) Ln-BPAG p-Value

Adjusted β a 0.83 0.022 *
a Adjustment for urine creatinine, white blood cell proportion, gender, age, maternal education, and environmental
tobacco smoke exposure. BPAG: bisphenol A glucuronide. * p < 0.05. Linear regression analysis was used to
evaluate the variables in this table.
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Table 5. The association between the MAPK1 5′CGI methylation status and asthma (N = 228).

Association Between
the MAPK1 5′CGI
Methylation Status

Asthma
(N = 56)

Non-Asthma
(N = 172)

Subjects
(N = 228)

OR
(95% CIs)

Adjusted OR b

(95% CIs)

Lower methylated
MARK1 5′CGI a 35 (62.5) 93 (46.5) 114 (50.0) 2.17 (1.27–3.68)

*
2.33 (1.01–5.39)

*
Higher methylated

MARK1 5′CGI 21 (37.5) 107 (53.5) 114 (50.0) 1 1

a The MAPK1 methylation status was dichotomized into a lower and a higher methylated group with the median of
promoter methylation percentage as the cut off value, b Adjustment for age, gender, prematurity, maternal history of
atopy, and environmental tobacco smoke exposure. * p < 0.05. Logistic regression analysis was used to evaluate the
variables in this table.

To investigate whether the MAPK1 5′CGI methylation status affects its protein expression, we
also determined the plasma MAPK1 protein level. The mean level ± SD was 901.78 ± 11.51 pg. We
found that MAPK1 methylation (Met %) was significantly inversely related to the MAPK1 protein level
(β = −0.18, p = 0.041). Urinary BPAG levels were also significantly associated with asthma (adjusted
OR = 1.52, 95% CI = 1.12–2.05), p < 0.05 (Table 6).

Table 6. The association of BPA exposure with asthma in children (N = 228).

BPA Levels Ln-BPAG

Asthma Adjusted OR (95% CI) 1 1.52 (1.12–2.05) *
1 Adjustment for gender, age, prematurity, maternal history of atopy, maternal education, and environmental
tobacco smoke exposure; * p < 0.05. Univariate and multivariate logistic regression were conducted in this table.

Table S1 presented the promoter methylation percentages (Met%) of 33 human candidate genes
which are known to interact with BPA genes identified by methylation-dependent fragment separation
(N = 22) [6].

4. Discussion

This study is the first large-scale assessment demonstrating a link between BPA exposure and
asthma via epigenetic mechanisms in children. We demonstrated that a higher exposure to BPA is
related to a lower DNA methylation of the MAPK1 gene, which is associated with a higher risk of
developing asthma. Furthermore, we showed that the protein level of MAPK1 were inversely related
to BPA exposure.

It has been shown that BPA is a harmful environmental chemical and its exposure may influence
the human immune system [8,31]. BPA exposure might affect the immune system by releasing some
pro-inflammatory mediators, including cysteinyl leukotriene, MAPK1, prostaglandin D2, and IL-13,
which might be related to the development of asthma [32]. In addition, BPA exposure has been shown to
affect many human chronic diseases, including diabetes, metabolic syndrome, reproductive disorders,
cardiovascular diseases, respiratory diseases, and breast cancer [33]. Animal studies suggested that BPA
exposure might reduce the levels of regulatory T cells, IL-10, and IFN-γ and increase the production of
IL-4 and antigen-specific IgE [34,35]. Donohue et al. (2012) reported that urinary BPA levels at the
ages of 3, 5, and 7 years were associated with childhood asthma between the ages of 5 and 12 years [7].
Pre-natal and post-natal BPA exposure has been reported to increase the odds of childhood asthma
and allergic disorders [7,9,22,36–40]. Moreover, our previous study showed that higher BPA exposure
was associated with increased serum IgE levels and might be related to the development of allergic
disorders, particularly in children [9]. However, the mechanism underlying BPA-induced asthma
remains unknown.

In our study, we found that BPA exposure was related to decreased methylation of MAPK1
5′CGI, which might be related to the development of asthma in children. Microtubule Affinity
Regulating Kinase 1 (MARK1) is a protein-coding gene and a member of the MAPK signaling pathway.
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Among its functions are cytoskeletal signaling, energy metabolism, production of pro-inflammatory
mediators, and cell growth and differentiation. Hung et al. demonstrated that circulating myeloid
dendritic cells treated with two common environmental endocrine-disrupting chemicals, nonylphenol,
and 4-octylphenol, increased the expression of tumor necrosis factor-α via the MAPK signaling
pathway [41]. Another study showed that overexpression of a family of MAPKs in cells leads to
hyperphosphorylation of microtubule-associated proteins and disruption of the microtubule array,
resulting in morphological changes and cell death [42]. These findings indicate that exposure to
endocrine disruptors can potentially alter the DNA methylation status of the MARK1 gene.

Furthermore, prenatal exposure to BPA was reported to alter the methylation status of the genes
related to reproductive processes in the animal [43] and human [38,39,44]. In addition, BPA could
induce a dose-dependent activation of the pro-inflammatory cytokine MAPK1 and the formation of
reactive oxygen species (ROS) in rat alveolar macrophages [42,45,46]. Therefore, BPA exposure might
trigger airway macrophages to express MAPK1, mediated by alterations in DNA methylation, which
then activates downstream signals to enhance inflammatory responses [47,48].

Higher BPA exposure was shown to lead to a decrease in MAPK1 5′CGI methylation in our
study. Lower methylation of MAPK1 5′CGI is associated with increased gene expression, which
in turn increases MAPK1 expression at protein levels and triggers the development of allergic
inflammation [49–53]. We demonstrated that the methylation of MAPK1 5′CGI is an intervening factor
between BPA exposure and asthma. MAPK signaling pathways are known to be involved in airway
inflammation and the regulation of immune cells, which are the hallmark features of asthma [49,50,53].
In addition, genetic variants of MAPK1 might be involved in regulating cytokine levels in asthma
patients, which might modulate the severity of asthma [54–56].

We initially found DNA methylation in the AR gene, which is related to BPA exposure. However,
AR failed to display a significant difference in methylation after adjusting for potential confounders.
In particular, sex differences in AR expression may also account for this finding.

There are a few limitations to our study. First, our study was confined to the use of the candidate
genes approach. The candidate genes approach has limited accuracy due to the dependence on
prior studies, which lead to an information bottleneck. Therefore, instead of only one candidate
gene, we chose 33 candidate genes from a published toxicogenomics database to carry out our
investigations. This approach provides biological plausibility to our study and is more cost-effective
than the genome-wide approach. Second, RNA samples were not available for this study. High-quality
RNA isolation from blood was technically difficult because of its limited cellular components. However,
we assessed the relationship between the methylation and translation of genes via protein quantitation.
Third, our analysis was based on a single morning urine sample. However, spot urine samples and
24-h urine samples have been reported to produce similar levels of daily BPA intake [57]. Even though
BPA has a relatively short half-life, its continuous daily intake contributes to an exposure scenario
that is similar to those of bioaccumulative compounds [58,59]. Additionally, if the measurements
are not precisely and carefully performed, outcomes are nullified and the effects of exposure could
be underestimated. Forth, the DNA-methylation information is derived from whole blood samples,
which includes other cell types besides lymphocytes. The whole blood consists of many functionally
distinct cell populations. The interpretation of DNA-methylation profiles from whole blood should be
conducted with great caution, because the differences might be resulted from varying proportions of
white blood cell types. In this study, we analyzed DNA-methylation status of 33 genes in whole blood
DNA, and found methylation status of MAPK1 gene was associated with BPA exposure. However, the
FACS sorting approach might be needed to isolate neutrophils, B and T lymphocytes, monocytes, and
other granulocytes to study which subpopulation of whole blood cells are affected.

The strengths of this study are the collection of clinical specimens with available clinical and
environmental exposure data. The use of urinary BPAG level analyzed by UPLC-MS/MS provided a
more direct measure of individual BPA exposure. Furthermore, asthma was confirmed by pediatric
allergists using a questionnaire. Diagnosis of asthma by pediatric allergists through questionnaires
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is a gold standard method [60]. Therefore, the errors in the classification of the outcome could be
minimized through these means. Another strength of our study is that we employed a two-step study:
MDFS method was used to identify candidate gene methylation and was then followed by qPCR to
confirm the methylation status of the candidate genes in a larger sample cohort of 228 children. This
step-wise approach allowed us to identify the possible candidates in a cost-effective manner.

5. Conclusions

In conclusion, we found through this study, that the effect of BPA exposure on the development
of asthma in children might be mediated through the alteration of DNA methylation. In particular,
the MAPK1 5′CGI methylation status might act as an epigenetic biomarker for the induction of
childhood asthma due to BPA exposure. Our findings contribute to a better understanding of the
etiology of asthma and will aid the development of new strategies for the early prevention or therapeutic
intervention of asthma. Further studies are needed to evaluate the long-term biological effects of BPA
exposure in children.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/1/298/s1,
Table S1: The description and promoter methylation percentages (Met%) of 33 human candidate genes which are
known to interact with BPA.
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