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Abstract: Subverting the conventional concept of “the” ribosome, a wealth of information gleaned
from recent studies is revealing a much more diverse and dynamic ribosomal reality than has
traditionally been thought possible. A diverse array of researchers is collectively illuminating
a universe of heterogeneous and adaptable ribosomes harboring differences in composition and
regulatory capacity: These differences enable specialization. The expanding universe of ribosomes
not only comprises an incredible richness in ribosomal specialization between species, but also within
the same tissues and even cells. In this review, we discuss ribosomal heterogeneity and speculate
how the emerging understanding of the ribosomal repertoire is impacting the biological sciences
today. Targeting pathogen-specific and pathological “diseased” ribosomes promises to provide new
treatment options for patients, and potential applications for “designer ribosomes” are within reach.
Our deepening understanding of and ability to manipulate the ribosome are establishing both the
technological and theoretical foundations for major advances for the 21st century and beyond.
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1. Introduction

Contrary to beliefs held by children and certain politicians, the universe does not revolve around
ourselves. The Copernican revolution gave rise to a series of profound changes, initiating a shift from
a world view dominated by opaque and unknowable supernatural beings to one governed by laws
that are accessible to the human mind through the scientific process. In our lifetimes, the discovery of
exoplanets, gravitational waves, and multiverse theory is arguably having similar impact. However,
the concept of strength through diversity, while a cornerstone of the new cosmology, evolutionary
biology and liberal politics, is something that is only emerging in the molecular biosciences. The
prevailing view of messenger RNAs (mRNAs) carrying an invariant genetic code that is translated by
monochromatic ribosomes to produce identical proteins is only now becoming viewed as simplistic.
We are on the cusp of appreciating how diversity at the molecular level may confer selective advantages
by broadening both the coding and buffering capacity of the cells and organisms.

When discussing the molecular apparatus that translates genetic information in mRNAs into
proteins, our very language betrays the prevailing monolithic view: We tend to refer to “The
Ribosome”, as if this complex assemblage of RNAs and proteins is uniform in every living organism.
This assumption was not the case in the beginning. After the discovery that genetic information is
encoded in nucleic acids and that it is decoded by RNA-rich ribosomes, Francis Crick briefly proposed
that each ribosome encoded its own unique protein [1], an idea that was quickly discarded by the
discovery of mRNA. A western cultural bias for unifying theories led to the near universal adoption
of a single model organism (Escherichia coli), while technological limitations necessitated making
steady-state measurements in bulk systems: These factors helped to cement the idea of “The Ribosome”
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in the scientific domain. Even as recently as the turn of the millennium, when atomic resolution
structures were first being revealed, the technological reliance on ribosomes that were uniformly
packaged into crystals reinforced this monolithic ribosome bias.

A closer look at the literature reveals plentiful contradictory evidence going back as far as the late
1980s. The observation that the interactions between ribosomes and ternary complex were enhanced in
isolates from naturally occurring E. coli strains, and that this correlated with enhanced growth and
survival phenotypes relative to laboratory strains, suggested that ribosomal diversity may have a
selective advantage in nature [2]. Another early hint came from findings that deletion of one but not the
other ribosomal protein paralogous genes impaired the ability of Saccharomyces cerevisiae to propagate
the yeast “killer virus” [3]. Later studies using the yeast deletion collection revealed differences in
many cellular and metabolic functions [4] and translational accuracy [5], and a recent study revealed
that ribosomal protein deletion-specific differences in gene expression signatures were associated with
cellular growth rate [6]. Additionally, tissue-specific ribosomal heterogeneity observed both at the
level of core ribosomal proteins and regulation suggests that specialized ribosomes naturally exist
(reviewed in [7,8]). More recent studies have revealed requirements for specific ribosomal proteins for
translation of cellular mRNAs containing internal ribosome entry site (IRES) elements during mouse
development [9], and translational regulation in Drosophila melanogaster spermatogenesis [10]. Thus,
similar to how the discovery of the first exoplanet, 51 Pegasi b, revolutionized our understanding
of our place in the universe [11], recent evidence supporting the existence of specialized ribosomes
has changed our view of the “riboverse”. Here, we borrow terminology from astronomy and explore
this constantly expanding riboverse, and the implications of this growing knowledge on cellular life,
industrial applications, and therapeutics.

2. Aliens Among Us

Mammalian ribosomes are 80S particles consisting of 80 ribosomal proteins (RPs) and 4
ribosomal RNA (rRNA) molecules in an approximately 1:1 mass ratio. However, other seemingly
alien, ”specialized” ribosomes have always thrived in plain sight. Several salient examples are
discussed below.

2.1. Mitoribosomes and Chlororibosomes

The vast majority of the human proteome is synthesized by cytoplasmic or endoplasmic
reticulum-associated ribosomes. However, 13 proteins of the mitochondrial oxidative phosphorylation
machinery are translated exclusively by mitochondrial ribosomes (mitoribosomes), assembled from
special mitochondrial RPs (encoded by nuclear DNA) and rRNAs encoded in the mitochondrial
genome. Mitochondria are generally believed to be descendants of an ancient bacterium that entered
into a symbiotic relationship with a primordial single-cell organism. As a result, the 55S mitochondrial
ribosomes both structurally and dimensionally more closely resemble ribosomes found in modern day
bacteria, rather than those in eukaryotic cells. Mitoribosomes, however, display a 2:1 protein-to-rRNA
mass ratio, much higher, than the 1:2 ratio in bacterial ribosomes. Mitoribosomes also replaced large
parts of their non-core rRNA components with proteins as part of a devolutionary process, similar to
observations of other symbionts and parasites [12]. A close examination of the mitoribosome structure
reveals that the new proteinaceous component replaced rRNA around its periphery, creating an outer
“shell” around the conserved catalytic rRNA core [13]. This suggests that these ribosomes developed a
kind of “armor” to protect their catalytic rRNA cores from attack by reactive oxygen species, which are
produced in abundance by the process of oxidative phosphorylation in mitochondria. Thus, we suggest
that mitoribosomes may have become “specialized” to function in this particularly harsh environment.

Chloroplasts are also endosymbionts with their own genomes (plastome) and bacteria-like 70S
ribosomes. While the general protein-to-rRNA mass ratio of chlororibosomes does not differ much from
those in bacteria, they do contain unique rRNA features, five chloroplast-specific ribosomal proteins,
and unique protein extension elements. These enable the specialized function of chlororibosomes
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by promoting the association of translation factors involved in light- and temperature-dependent
control of plant protein synthesis [14,15]. These too may be considered to have become “specialized”
to optimize protein expression in the unique environment of the chloroplast.

2.2. Extreme Ribosomes

The first atomic resolution structures were generated using ribosomes that are specialized to
function in extreme environments [16–18]. The organisms from which they were purified, Thermus
thermophilis and Haloarculum marismortui, evolved to thrive in environments of high temperature
and in high osmolarity, respectively. Biochemically, such conditions tend to destabilize non-covalent
interactions, particularly hydrogen bonds and salt bridges. Accordingly, the biomolecules synthesized
by extremophiles have evolved to maximize stability, traits which make them ideal for crystallization
studies. Thus, one may consider these ribosomes optimized to ideally function in their respective
extreme environments. Given the ancient origins of the ribosome and its central role in biology, the
idea that ribosomes can become environmentally specialized has profound implications for the field
of astrobiology.

2.3. Ribosomes of Parasites

Parasites tend to be minimalists because a) their host organisms are able to meet most of the
metabolic needs, and b) their requirements for small genomes that can be rapidly replicated. Their
ribosomes also tend to follow the trend towards minimalization. For example, microsporidia are
eukaryotic parasites that have successfully adapted to parasitize almost all animals. Their genomes
have condensed to be the smallest known in the Eukaryota, and their mitochondria are rudimentary.
A recent cryo-EM analysis of Vairimorpha necatrix revealed the smallest known eukaryotic cytoplasmic
ribosome to date [19]. The rRNA from this species has been reduced to a functionally conserved
core due to the loss or severe compaction of all of the eukaryote-specific expansion segments, and it
lacks two eukaryote-specific ribosomal proteins, eL38 and eL41. Furthermore, this species lacks the
5.8 rRNA, whose core sequences have been fused with the large subunit rRNA to create a unique 23S
rRNA species. Interestingly, these ribosomes also associate with MDF1 and MDF2, distinct dormancy
factors that may allow these organisms to save energy by storing inactive, “hibernating” ribosomes
when they are not needed for active protein synthesis, e.g., during the spore stage.

Trypanosomes comprise a genus of parasitic flagellated protozoa in the class Kinetoplastea, best
known for causing a variety of infectious diseases, including sleeping sickness, cutaneous leishmaniasis,
and Chagas disease. Unlike the microsporidia, which have minimized rRNA content, trypanosomal
rRNAs have become enlarged, containing unusually large expansion segments, a large rRNA domain
that is not found in other eukaryotes, and additional rRNA insertions [20]. Additionally, some of
the ribosomal proteins contain unique extensions, which enable the formation of four inter-subunit
bridges that are not observed in other eukaryotic ribosomes. Curiously, although the genomic rDNA
genes encode the four rRNA species, the large subunit rRNA is cleaved into six unique pieces. The
functional aspects of these unique features are currently unknown.

The Apicomplexia include the genus Plasmodia, best known as the parasites responsible for
malaria. Interestingly, Plasmodium species carry two cytoplasmic ribosome variants with different
rRNA compositions. One of these is expressed in the mosquito vector, and the other is present in the
mammalian host, although both can simultaneously occur for limited periods of time [21]. Presumably,
these maximize the ability of the organism’s ribosomes to function in the very different environments
of the insect vector and human host.

3. Aliens Within Us

In contrast to the ideas presented in the previous section, the concept of “specialized” ribosomes
is more popularly associated with otherwise normal cytoplasmic ribosomes that, by virtue of a change
in protein or rRNA content, are endowed special properties. The reader is directed to reviews by
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the Barna [8] and Blanchard research groups [22], whose research efforts deeply explore this topic of
inquiry in mammalian and bacterial cells, respectively. Here, we explore emergent and perhaps more
controversial examples of this type of specialization.

3.1. Ribosomal Protein Paralogs

Mammalian ribosomes harbor 80 ribosomal proteins. However, the existence of splice variants
and paralogous versions of some of these suggests that incorporating one in favor of another may confer
some specialized function (reviewed in [23]). Of particular interest are instances of ribosomal proteins
that originally arose from gene duplication and are actively expressed, but which also have variations
in their amino acid sequences. These include three versions of the RPS4 gene (RPS4X on the human
X-chromosome, and RPS4Y1&2, both residing on the Y-chromosome), and genes encoding “ribosomal
protein-like” proteins (RPL3L, RPL7L, RPL10L, RPL22L, RPL24D1L, RPL26L, RPS27L, RPL36aL, and
RPL39L). All of these are actively transcribed. RPL7L and RPL24D1 are currently thought to be
exclusively involved in ribosome assembly and not incorporated into actively translating ribosomes.
However, the hypothesis that one or both of these may be incorporated into mature ribosomes devoted
to some special purpose remains to be disproved. Perhaps the strongest evidence for specialization
comes from work on RPL3L, which appears to be exclusively expressed in striated muscle tissue [24].
Hypertrophic stimulus of skeletal muscle inhibited Rpl3lp expression to 20% of baseline levels, while
increasing the expression of Rpl3p approximately five-fold, suggesting that Rpl3lp functions as a
negative regulator of muscle growth. This is supported by the observation that induction of Rpl3lp
expression in myoblasts during myotube formation greatly impaired myotube growth myoblast fusion.
Furthermore, muscle growth requires active ribosome biogenesis [25]. Given the key role of ribosomal
protein L3 in ribosome biogenesis and function [26], we suggest that mature muscles may utilize
ribosomes harboring Rpl3lp instead of Rpl3p to retain homeostasis in mass. Stimuli that lead to
muscle growth, such as injury and exercise, may cause striated muscle cells to switch to ribosomes
harboring Rpl3p.

3.2. Immunoribosomes

The plasma membranes of nucleated cells in jawed vertebrates present Major Histocompatability
Complex (MHC) Class I proteins in combination with antigenic peptides. These peptides are proteolytic
products derived from cellular proteins. It has been proposed that defective ribosomal products
(DRiPs) are a major source of these antigenic peptides [27]. The linkage between protein synthesis
and MHC Class I antigen production prompted the proposal of a special class of ribosomes, the
“immunoribosome”, which is specifically dedicated to producing DRiPs [28]. While still controversial,
a substantial body of evidence has emerged supporting this immunoribosome hypothesis over the
past decade (reviewed in [29]). Going forward, the challenge will be to demonstrate the presence of
such dedicated ribosomes using biochemical and/or genetic approaches. Success in this endeavor may
have far-reaching consequences on our understanding of how homeostasis at the cellular level may be
linked to immune surveillance at the organismal scale.

3.3. Onco-Ribosomes

In addition to the well-described ribosomal mutations in the congenital ribosomopathies, mutations
in several ribosomal proteins in somatically acquired cancers have recently been described (reviewed
in [30–32]). For example, alterations in RPs such as RPL5 (uL5), RPL10 (uL16), RPS15 (uS19), RPL11
(uL15), and RPL22 (eL22) have been described in 10–40% of multiple tumor types. Studies of some of
these suggest that, in addition to negatively impacting ribosome assembly similarly to RP mutations in
ribosomopathies, the somatic RP mutations also influence ribosomal function, resulting in an oncogenic
rewiring of the cellular protein expression profile. A well-studied example is the RPL10–R98S
mutation in T cell leukemia, which promotes specific overexpression of the oncogenic JAK–STAT
signaling cascade [33], IRES-dependent overexpression of the anti-apoptotic factor BCL2 [34], and
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both transcriptional and translational upregulation of serine and glycine biosynthesis [35]. Other
examples include elevated expression of the oncogene c-MYC upon RPL11 inactivation [36], induction
of stemness factor Lin28B by RPL22 inactivation [37], and altered translation of the critical hematopoietic
transcription factor GATA1 in the RP-mutant ribosomopathy Diamond Blackfan anemia, which is in
turn associated with a high risk of cancer progression [30,38]. More generally, ribosomal protein lesions
have recently been described to promote cellular oxidative stress and increased mutagenesis [39].

Aside from mutations in RPs, rRNA modifications such as methylation and pseudouridylation are
frequently altered in cancer cells [40]. It is tempting to speculate that unique modification patterns could
also translate into unique gene expression patterns. In support of this, disruption of dyskerin, which
catalyzes pseudouridylation, or of small nucleolar RNAs (snoRNAs) that guide dyskerin to rRNA is
found in many cancers and can impair the translation of tumor suppressor-encoding mRNAs [40].
While it is too early to definitively proclaim the existence of an onco-ribosome, the recent studies
supporting a specialized function of ribosomes in cancer underscore that ribosomal diversity can play
a key role in human disease.

4. The Expanding Universe of Ribosome Diversity

The number of known exoplanets is now in the thousands. Taking into account the possible
variations in parameters such as mass, orbit, composition, and distance to its star or stars, the number
of conceivable unique planets approaches infinity. In parallel, the large number of known and possible
ribosomes might be thought of as a constellation of ribosomes, which we call the “ribo-system”
(Figure 1).

Figure 1. The ribo-system. Various types of ribosomes populate the known riboverse. Each type of
ribosome is specialized for particular environments, which are represented by orbits in the above image.
Each orbit corresponds to each ribosomal species’ “habitable zone”.

The rate of expansion in our knowledge of the degree of heterogeneity among ribosomes is
similarly expanding, representing an exciting field of research. In addition to the different ribosomal
protein paralogs discussed above, the functional importance of differences in their post-translational
modification is beginning to emerge.
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Recent advances, particularly in single-cell sequencing and quantitative mass spectroscopy, are
helping to bring the visible riboverse into sharper focus. In mammals, the observation of tissue-specific
patterning defects in mice lacking the RPL38 gene and its linkage to defects in translation of specific
homebox (HOX) mRNAs represented a seminal breakthrough because of its implications for ribosome
specificity in developmental biology [41]. The demonstration of the importance of this protein for
translation of IRES-containing mRNAs created a new paradigm with regard to ribosome-mediated
control of gene expression [9]. However, the idea of generating heterogeneity through subtraction [42]
is less appealing than showing specificity through substitution of one ribosomal protein variant
for another, e.g., the Rpl3l case described above. Later, sophisticated proteomics analyses revealed
non-stoichiometric levels of ribosomal proteins, their association with various classes of other proteins,
and association with different transcript sub-pools, painting a picture of ribosomes specialized by the
ability of intrinsic protein content to recruit specific trans-acting factors [43,44]. Similarly, the evolution
of rRNA expansion segments has been found to provide new platforms for binding trans-acting factors
required for recruitment of specific mRNA classes [45].

Ufmylation is a metazoan-specific post-translational modification in which UFM1 proteins
are conjugated to particular ribosomal proteins. The finding that differences in ufmylation confers
differences in specificity for trans-acting proteins suggests another route for specialization via differences
in post-translational modification of ribosomal proteins [43]. Since then, evidence for such has steadily
accumulated [46–56]. Post-transcriptional modification of ribosomal rRNAs presents a similar path
to ribosome specialization [57,58]. In particular, the recent findings of variably methylated rRNA
bases [59] and of changes in rRNA modification levels in response to external stimuli [60] suggest
another avenue through which raised ribosome function and specificity may be regulated.

Ribosome specialization can also be achieved through allelic variation, the most well-documented
example of which comes from recent studies of rRNA. For example, the E. coli genome contains seven
distinct rRNA operons, each with their specific sequence variants [61]. RNAseq analyses were used to
detect differences in the utilization of specific rRNA operons in response to nutrient limitation-induced
stress, and these correlated with changes in ribosome function, gene expression, and cellular physiology,
thus demonstrating specific roles for rRNA allelic variants [62]. In eukaryotes, rDNA copy number
varies widely, and a cursory analysis of the human and mouse rDNA sequences revealed the potential for
sequence heterogeneity within rDNA operons [63]. More recently, a meta-analysis of human and mouse
genome databases identified pervasive intra- and inter-individual nucleotide variation in the 5S, 5.8S,
18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse, and ribosomes bearing variant
rRNA alleles were found to be present in the actively translating ribosome pool [64]. These findings
strengthen the idea that physically and functionally heterogeneous ribosomes may be important
for normal physiological development and homeostasis and, conversely, in pathological processes.
Allelic variation may also play an important role in population biology and evolution. This may
provide a means though which a species could be pre-adapted to survive fluctuations in environmental
conditions, e.g., climate change or location-specific differences in micronutrient availability.

5. Conclusions and Perspectives

5.1. Medical Implications of the Riboverse

Mirroring the inappropriate moniker “The Ribosome”, we frequently refer to “cancer” as if it were
one disease. However, to borrow from a Buddhist expression—there are many paths to enlightenment.
In the cancer context, this refers to the path towards transformation, and almost no two cells follow the
exact same path. Cancer thus ultimately encompasses many diseases. And heterogeneity is a hallmark
of cancer at every level, as even one patient’s tumor often displays several mutant clones, and still,
within one clone, inter-cellular variability. To therapeutically overcome the tremendous hurdle posed
by cancer’s heterogeneity, it is essential to continuously improve the technologies illuminating the
altered wiring of cancer cells at the DNA, RNA, and protein levels.
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While proteins are the chief cellular performers, tumor protein biology has been largely inaccessible
and under-explored, as proteomics technologies have lagged for several decades behind other -omics
technologies. The flow from DNA to RNA to protein is accompanied by an exponential increase
in complexity, and this entire layer of additional potential variation within tumors has thus largely
remained out of view. The cancer genome atlas (TCGA) contains full transcriptome, exome, and genome
data for thousands of tumor samples, but the first full quantitative mass spectrometry-based proteomic
descriptions of these cancer datasets are only now appearing (e.g., [65]). We have just begun to build
correlations between tumor genomes, transcriptomes, and proteomes, giving rise to terminology
such as “proteogenomics”. Such initial analysis enabled the identification of significant RNA–protein
discordances, indicative of translational dysregulation. There is now a plethora of examples in both
congenital and somatic ribosomopathies that support the differential translational output of specialized
onco-ribosomes stemming from RP or ribosome biogenesis factor defects (reviewed in [32]). This
provides an additional facet to the vast heterogeneity of cancer, but one that is beginning to be
therapeutically exploited.

Over half of existing antibiotics bind and inhibit prokaryotic ribosomes. The selectivity of antibiotic
binding is often provided by very subtle differences in ribosomal structure, and resistance to antibiotics
is often enabled by changes as minor as a single chemical modification or the position of a single
nucleotide in the ribosome [66,67]. Unique species-specific ribosomal features are being continuously
discovered. For example, as noted above, the 80S ribosome from the malarial P. falciparium harbors
parasite-specific structural elements. These are currently being explored as targets for the rational
design of small molecules to specifically inhibit the parasitic translational apparatus [68]. It should
therefore be feasible to also develop small molecules that target RP-mutant cancer ribosomes, provided
that these have distinguishing structural features. However, the exact composition of these specialized
ribosomes has not been elucidated. In-depth structural studies by cryogenic electron microscopy or
X-ray crystallography, combined with analysis of the protein composition, the rRNA modification status,
and the spectrum of interacting proteins (ribo-interactome), would be required to characterize these
specialized ribosomes in more detail. This might in turn encourage the development of “specialized”
translation inhibitors. Indeed, new classes of translation inhibitors are being developed that selectively
target translation of small subsets of mRNAs, with few off-target effects [69,70]. Illuminating the
structure and function of oncogenic ribosomes, along with discovering their inhibitors, could enable a
novel promising type of personalized therapy.

Such an approach might also find applications with regard to mitochondrial ribosomes, as a
growing body of evidence suggests an important role for mitoribosomes in cancer progression. Cancer
cells generally display higher rates of mitochondrial biogenesis [71] and their fitness is improved through
a concerted increase in both cytosolic and mitochondrial translation [72]. Moreover, mitochondrial
translation inhibition was proposed as an attractive therapeutic strategy for acute myeloid leukemia [71].
The clinical relevance of mitochondrial translation is further highlighted by the occurrence of mutations
in mitochondrial RP genes, associated with mitochondrial dysfunction disorders (reviewed in [12]).
For example, a recent case report highlights a common familial mitochondrial mutation that sensitizes
the affected individuals to the ototoxicity of aminoglycoside antibiotics due to the mutation-induced
structural changes in the mitoribosome [73]. While somatic mutations in mito-RP genes also regularly
appear in cancer genomics datasets, their significance in cancer pathogenesis is not yet fully understood.

Finally, ribosome heterogeneity might play a causative role in another class of ribosome-mutant
disorders: Ribosomopathies. These disorders stem from ribosome dysfunction and display a broad
spectrum of phenotypic defects. However, most of these diseases also display similar hematopoietic
deficiencies, such as bone marrow failure and anemia. This intriguing tissue specificity paradox begs the
question of why mutations in the biochemical machine found in every single cell of the body, and with an
essential role in every tissue, tend to have a more profound effect on hematopoietic cells. The notion that
ribosomes can vary in composition between different tissues, as discussed above, may shed some light
on this paradox. For example, a quarter of human ribosomal proteins exhibit tissue-specific expression,
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and primary hematopoietic cells display the most complex expression patterns [74]. Additionally,
a recent study indicates that ribosomal proteins found mutated in ribosomopathies like Diamond
Blackfan Anemia are substoichiometric and demarcate ribosomes with specialized functions [44]. This
study demonstrated how haploinsufficiencies of specific ribosomal proteins particularly perturb the
translation of specific mRNAs, which may disproportionately result in hematopoietic dysfunction.
Moreover, while the precise roles of the recently discovered ufmylation, discussed above, remain to be
determined, the available knockout mouse models for the enzymes of the ufmylation cascade show
defects in erythrocyte differentiation and result in embryonic lethality [75]. This is highly similar to the
defects arising from haploinsufficiency of some ribosomal proteins in several ribosomopathies. These
initial studies suggest that the specialized composition of the translational machinery in hematopoietic
tissues might make them more vulnerable to defects in ribosomal function and regulation.

5.2. Designer Ribosomes

Some of the first yeast molecular genetics studies involved screening for resistance to antibiotics.
One of these, the peptidyltransferase inhibitor trichodermin, was used to clone the TCM1 gene [76].
Contemporaneously, a genetic screen for mutants unable to maintain the yeast killer virus identified a
family of MAK (MAintenance of Killer) genes, including MAK8 [77]. A subsequent study demonstrated
that both the TCM1 and MAK8 encoded ribosomal protein uL3 (RPL3) and that they both carried the
W255C mutation [78], which was later shown to structurally alter the peptidyltransferase center, thus
accounting for its ability to confer resistance to a broad range of peptidylteransferase inhibitors [79].
Importantly, this was the first demonstration that ribosomes could be manipulated to incorporate novel
functions, i.e., antibiotic resistance. The list of human-made mutations in ribosomal proteins, in both
bacteria and yeast, is long and growing [80]. rRNA is equally amenable to bioengineering approaches,
including insertion of aptamers, which can be used to facilitate affinity-based applications [81]. More
recently, both E. coli and S. cerevisiae ribosomes have been bioengineered to contain a single rRNA,
greatly facilitating the creation of “designer” ribosomes [82,83]. Given the malleability of ribosomes
and the expanding set of tools that can be used to create new variations, the theoretical possibilities
are manifest. For example, ribosomes may be created to optimize synthesis of therapeutic proteins
containing novel amino acids. They could be engineered to polymerize novel functionalized monomers
or perhaps nanostrings having incredible strength or utility for their informational complexity. Indeed,
it is not pure science fiction to contemplate creating ribosomes designed to function in microorganisms
with a particular purpose, and we dare to speculate that such organisms may play roles in the
terraforming of Mars, Europa, or Enceladus in the not-so-distant future.

6. Final Remarks: Looking Backwards and Forwards

The potential number of unique ribosomes is on the same order of magnitude as the number
of stars in the visible universe [63], and like our universe, it is constantly expanding (Figure 2).
Nevertheless, direct evidence for specialized ribosomes remains elusive, and failure to uncover such
evidence is more prevalent than success [84]. Extraordinary claims require extraordinary evidence;
thus, the criteria for establishing the existence of specialized ribosomes must be stringently defined.
Proposals include the biochemical “one enzyme, one substrate” approach [63], as well as genetic
methodologies, e.g., demonstrations of gain-of-function mutation and inducibility under specific
physiological conditions [85]. However, it is now clear that ribosomal heterogeneity abounds. The
remarkable durability of life in the face of at least five mass extinction events during the Earth’s
planetary history may be attributable to the remarkable degree of heterogeneity that can be tolerated by
ribosomes. Given the challenges currently facing humankind, our future may, at least in part, depend
on our ability to manipulate this central organelle.
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Figure 2. The expanding riboverse. The primordial ribosomal core, the proto-ribosome, is thought to
have evolved approximately 4 billion years ago, marking the “Big Bang” of the riboverse. This ancient
molecule continued to structurally and functionally evolve along with cellular evolution, diversifying
and specializing to thrive in an increasing number of environments. Recent evidence suggests that in
addition to inter-species specialization, ribosomal diversity also exists at the intra-organismal level.
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