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ABSTRACT Multiple studies have implicated microbes in the development of inflam-
mation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium
have been identified in the intestinal mucosa of patients with digestive diseases; thus,
we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The
addition of .50 kDa F. nucleatum conditioned media, which contain outer membrane
vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory
cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F.
nucleatum OMVs, but not compounds ,50 kDa, stimulated IL-8 and TNF production;
which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4).
These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucle-
atum .50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB
activation in human colonoid monolayers. In mice harboring a human microbiota, pre-
treatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflam-
mation. Compared to mice receiving vehicle control, mice treated with F. nucleatum
showed disruption of the colonic architecture, with increased immune cell infiltration
and depleted mucus layers. Analysis of mucosal gene expression revealed increased
levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-g, and MCP-1) at day 3 and day
5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects
were absent in mice who received F. nucleatum without pretreatment with antibiotics,
suggesting that an intact microbiome is protective against F. nucleatum-mediated
immune responses. These data provide evidence that F. nucleatum promotes proin-
flammatory signaling cascades in the context of a depleted intestinal microbiome.

IMPORTANCE Several studies have identified an increased abundance of Fusobacterium
in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing
cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However,
the direct mechanism(s) of action of Fusobacterium on pathophysiological within the
gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp.
polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stim-
ulate proinflammatory signals in vitro. Using mice harboring a human microbiome, we
demonstrate that F. nucleatum can promote inflammation, an effect which required an-
tibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a
mechanism by which F. nucleatum may contribute to intestinal inflammation.
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Recently, it has been hypothesized that the oral cavity may serve as a reservoir for
potential pathobionts that can exacerbate intestinal disease (1–4). In support of

this hypothesis, increased abundances of oral microbes, including Fusobacterium spp,
have been reported in the intestines of patients with colon cancer, primary sclerosing
cholangitis, gastroesophageal reflux disease, HIV infection, alcoholism, and inflamma-
tory bowel disease (IBD) (2, 5–21). In patients with IBD, an increased abundance of
Fusobacterium spp. has been identified in biopsy specimens (6, 10–20), and the pres-
ence of Fusobacterium strongly correlates with disease status (6). Fusobacterium is an
anaerobic, Gram-negative opportunistic pathogen from the Fusobacteriaceae family
that can cause several human diseases, including periodontal disease, intrauterine infec-
tion, Lemierre’s syndrome, skin ulcers, and appendicitis (22–28). Of the Fusobacterium
species, F. nucleatum has recently emerged as a compelling candidate for causing
human diseases given its prevalence in tissue specimens (10, 11, 14). In colorectal
cancer, F. nucleatum promotes a NF-κB-driven proinflammatory genetic signature,
including tumor necrosis factor (TNF) and interleukin-6 (IL-6) gene expression (29,
30), cytokines that are also important in intestinal inflammation. Despite the rela-
tive abundance of Fusobacterium species in gastrointestinal diseases, the literature
to date has focused on intestinal F. nucleatum in colorectal cancer. Whether F.
nucleatum is also a driver of intestinal inflammation in the normal gut represents a
major gap in knowledge.

Liu et al. demonstrated that F. nucleatum produces outer membrane vesicles
(OMVs) (31), nanoparticles that are naturally secreted by Gram-negative bacteria. OMVs
typically contain antigenic components that can activate Toll-like receptors (TLRs) on
epithelial cells or immune cells. TLR activation is linked to activation of the NF-κB path-
way and elicitation of proinflammatory cytokine release. In the APCMin/1 colorectal can-
cer model, F. nucleatum potentiates intestinal tumorigenesis via a TLR4 signaling cas-
cade (32). However, the link between F. nucleatum, OMVs, TLR4, and NF-κB activation
in the noncancerous intestinal epithelium has not yet been fully addressed. Here, we
connected these concepts and demonstrated that F. nucleatum produced OMVs acti-
vated TLR4 to drive extracellular signal-regulated kinase (ERK), CREB, NF-κB, and proin-
flammatory cytokines in human cell lines and human colonoid monolayers. We also
identified a role for F. nucleatum in initiating colonic inflammation in mice harboring a
human microbiome.

RESULTS
F. nucleatum subspecies polymorphum adheres to intestinal mucus and

secretes OMVs. Several studies have identified increased abundances of the oral
microbe Fusobacterium in setting of colorectal cancer (29, 33–35), liver cirrhosis
(36–38), primary sclerosing cholangitis (39–41), gastroesophageal reflux disease
(42–46), HIV infection (47–49), alcoholism (50), and IBD (6, 10–19). Given the prevalence
of F. nucleatum in mucosal specimens, we tested the hypothesis that this pathobiont
could promote an epithelial proinflammatory response and potentially contribute to
intestinal inflammation. Using fluorescently tagged F. nucleatum subsp. polymorphum
ATCC 10953, we found that F. nucleatum resided in aggregates in the mucus layer adja-
cent to human colonic T84 cells (Fig. 1A). To confirm binding to the mucus layer, we
also examined adhesion of F. nucleatum to coverslips coated with purified MUC2 from
T84 cells and observed robust adhesion (Fig. 1B). Colonization of the intestinal mucus
layer allows microbes such as F. nucleatum to secrete host-modulating subcellular
structures or compounds in close proximity to the epithelium. One potential subcellu-
lar structure that could influence the host is the OMV. Previous groups have shown
that F. nucleatum subsp. nucleatum and F. nucleatum subsp. animalis can secrete OMVs
(31, 51). Consistent with these findings, we observed F. nucleatum subsp. polymorphum
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secreted a range of OMVs, with an average hydrodynamic diameter of 2126 7 nm, as
determined by NanoSight (Fig. 1C and D).

F. nucleatum subsp. polymorphum secreted compounds and purified OMVs
promote secretion of colonic proinflammatory cytokines. OMVs from other Gram-
negative species can activate innate immune responses, such as TLRs, which can acti-
vate the NF-κB pathway and drive proinflammatory cytokine responses (32). We
hypothesized that F. nucleatum secreted virulence factors, such as OMVs, would pro-
mote proinflammatory effects in epithelial cells. To test this hypothesis, we cultured F.
nucleatum subsp. polymorphum in BHIS (supplemented brain heart infusion medium)
for 48 h and size-fractionated the supernatants to less than or greater than 50 kDa.
The size-fractionated conditioned medium was applied to HT29 cell monolayers, and
IL-8 production was measured to determine whether secreted factors from F. nuclea-
tum stimulated a proinflammatory immune response. Conditioned medium fractions
less than 50 kDa (,50 kDa) behaved similarly to the negative control (BHIS) and had
no effect on IL-8 production by HT29 cells (Fig. 2A). However, the addition of condi-
tioned medium fractions greater than 50 kDa (.50 kDa) containing particles above
2.4 nm, including OMVs, stimulated an ;9-fold increase in IL-8 secretion compared
to medium alone. That addition of purified F. nucleatum OMVs to HT29 cell mono-
layers also stimulated IL-8 production, suggesting that the active secreted factors in
the .50-kDa fraction of conditioned media included OMVs. Pretreatment of HT29
cells for 1 h with the TLR4 inhibitor CLI-095 significantly attenuated the secretion of
IL-8 in response to .50-kDa F. nucleatum conditioned media and OMVs. This result
suggested that TLR4 activation results in stimulation of IL-8 production by F. nuclea-
tum subsp. polymorphum. A similar pattern was observed for TNF secretion (Fig. 2B);
.50-kDa and purified F. nucleatum OMVs stimulated an ;6-fold increase in TNF
secretion compared to uninoculated BHIS control and ,50-kDa F. nucleatum condi-
tioned media (Fig. 2B).

FIG 1 F. nucleatum subsp. polymorphum adheres to colonic MUC2 and secretes OMVs. (A) Representative images of T84 cells after incubation with
fluorescently tagged F. nucleatum subsp. polymorphum counterstained with nuclear dye Hoechst (scale bar, 50mm). (B) Representative image of
fluorescently tagged F. nucleatum subsp. polymorphum adhered to purified MUC2 (scale bar, 50mm). (C) TEM images of F. nucleatum (cross-section) with
OMVs attached and surrounding the bacterium. Images on the right-hand side depict the various sizes of OMVs (scale bar, 200 nm). (D) Nanoparticle
tracking analysis of F. nucleatum subsp. polymorphum OMVs.
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NF-κB is essential for upregulation of proinflammatory cytokines, including IL-8 (52).
To assess whether NF-κB was activated by F. nucleatum secreted factors, we trans-
fected HT29 monolayers with a pNFκB-MetLuc2-Reporter to monitor the activation of
the NF-κB signal transduction pathway. Using this system, we observed a significant
increase in secreted luciferase (indicating NF-κB activation) in response to the .50-kDa
F. nucleatum conditioned media and purified OMVs compared to the medium control
and ,50-kDa F. nucleatum conditioned media (Fig. 2C). Incubation of HT29 cells with
the TLR4 inhibitor resulted in an ;2-fold decrease in NF-κB luciferase production. Next,
we examined additional downstream targets TLR4, ERK, and CREB by Western blotting
after incubating HT29 cells with fractionated conditioned media or purified OMVs for

FIG 2 F. nucleatum compounds and OMVs promote IL-8, TNF, NF-κB, and MAPK activation. (A) Measurement of IL-8 (pg/ml) by ELISA in HT29 cell supernatant
after 16h of incubation with 25% uninoculated BHIS (BHIS), 25% F. nucleatum BHIS conditioned medium ,50-kDa fraction (,50 kDa), 25% F. nucleatum BHIS
conditioned medium .50-kDa fraction (.50 kDa), or 5% purified F. nucleatum OMVs (OMVs) in DMEM in the absence or presence of TLR4 inhibitor CLI-095
(n=6 replicates/experiment, repeated three independent times). (B) Measurement of TNF (pg/ml) by ELISA in HT29 supernatant after 16h incubation with 25%
uninoculated BHIS (BHIS), 25% F. nucleatum BHIS conditioned medium ,50-kDa fraction, 25% F. nucleatum BHIS conditioned medium .50-kDa fraction, or 5%
purified F. nucleatum OMVs (OMVs) in DMEM in the absence or presence of TLR4 inhibitor CLI-095 (n=6 replicates/experiment, repeated three independent
times). (C) Quantification of secreted luciferase in HT29 cells transfected with a pNFκB-MetLuc2-Reporter treated for 16h (n=9/experiment, repeated two
independent times). (D) Western blot analysis of phosphorylated ERK, phosphorylated CREB, phosphorylated iκB, total iκB, and actin at 30min incubation in
HT29 cells (n=3/experiment). Treatments are the same as in panels A, B, and C. Quantification of Western blots was performed using Fiji software. (E) Analysis
of metabolic activity/viability in HT29 cells by resazurin assay (excitation, 560; emission, 600nm). *, P , 0.05 (multi-way ANOVA).
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30 min (Fig. 2D). As expected, media control and the ,50-kDa F. nucleatum condi-
tioned media did not activate p-ERK p-CREB or p-iκB at the 30-min time point.
However, the addition of .50-kDa F. nucleatum conditioned media and purified OMVs
increased the amounts of p-ERK, p-CREB, and p-iκB compared to media control.
Importantly, we did not observe a decrease in cell viability/metabolism. In fact, we
observed a slight increase in the conversion of resazurin to resorufin, suggesting an
increase in cell metabolism in response to F. nucleatum conditioned media (Fig. 2E).
These data demonstrate a robust response of colonic epithelial cells to factors secreted
by F. nucleatum subsp. polymorphum.

While HT29 colonic cancer-derived cells can model some intestinal epithelial func-
tions, they do not reflect the intestinal epithelium as a whole (53). The human intesti-
nal enteroid (HIE; also known as organoid) system has expanded our in vitro capabil-
ities in understanding the physiology of the noncancerous human intestinal
epithelium. HIEs are derived from intestinal stems cells and provide a long-term pri-
mary culture system. Importantly, HIEs harbor all cell lineages found in native tissue,
are segment specific, and contain TLRs (53–55). We have previously shown that HIE
media contains a number of antioxidants, including N-acetylcysteine, glutathione,
B27 supplement, and N2 supplement, which dampen proinflammatory signaling cas-
cades (54). However, by using a simplified media without anti-oxidants, we can gen-
erate HIEs that are responsive to microbial stimulation such as lipopolysaccharides
(LPS), lipoteichoic acid, and flagellin. We used HIEs derived from colonic epithelial
stem cells isolated from healthy adults to examine the effects of F. nucleatum
secreted compounds on the uninflamed intestinal epithelium. Observation by light
microscopy showed that treatment of colonic HIE monolayers with .50-kDa F. nucle-
atum conditioned media did not affect cell morphology (Fig. 3A). Treatment with the
.50-kDa F. nucleatum conditioned media promoted TNF secretion by colonic HIE
monolayers compared to the media control (Fig. 3B). In contrast to our HT29 model,
we found no differences in IL-8 secretion between media control and F. nucleatum
conditioned media (data not shown). Transfection of colonic HIE monolayers with
the pNFκB-MetLuc2-Reporter confirmed upregulation of NF-κB after treatment with
F. nucleatum conditioned medium (Fig. 3C). Analysis of HIE cell lysates by Luminex
Magpix revealed increased p-ERK and p-CREB after treatment with .50-kDa F. nucle-
atum conditioned media, consistent with our HT29 cell data. These data confirm our
HT29 cell data and demonstrate that .50-kDa compounds produced by F. nucleatum
can stimulate epithelial inflammatory signals.

F. nucleatum subsp. polymorphum promotes inflammation in a humanized
mouse model following antibiotic administration. Based on our promising in vitro
data, we next addressed whether F. nucleatum could elicit proinflammatory responses
using a mouse model (Fig. 4). Since Fusobacterium spp. are commonly found in the
gastrointestinal tracts of humans, but not mice (56), and may have unique interactions
with human-derived microbes, we used mice colonized with a human intestinal micro-
biota, also known as humanized microbiota mice. Mice were orally gavaged with a sin-
gle dose of F. nucleatum (109 CFU) and euthanized on day 3 and day 5 postinoculation
with F. nucleatum. No changes were observed in the crypt architecture or immune infil-
tration of the intestinal epithelium from mice treated with F. nucleatum at days 3 or 5
postinoculation (Fig. 4A). Likewise, F. nucleatum was not identified in the colonic mu-
cus layer by FISH (Fig. 4B), although low levels of Fusobacterium gDNA was found in
the feces by quantitative PCR (qPCR) analysis (Table 1), and no weight differences were
observed between groups (Fig. 4C). A closer examination of colonic gene expression
revealed no changes in the proinflammatory cytokine gene expression of KC (the
mouse homolog to IL-8), IL-6, IFN-g, and monocyte chemoattractant protein-1 (MCP-1)
in F. nucleatum-treated mice at days 3 or 5 when an intact gut microbiota was present
(Fig. 4D and E). These findings suggest that F. nucleatum does not have detrimental
effects on overall health parameters in the setting of an intact human microbiota.

We previously detected increased Fusobacterium operational taxonomic unit (OTU)
abundance in stool samples from patients on antibiotics (57). As result, we reasoned
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that F. nucleatum may require an available niche to promote intestinal inflammation.
To address this question, humanized microbiota mice were treated with a cocktail of
antibiotics (kanamycin, gentamicin, colistin, metronidazole, and vancomycin) for
5 days, followed by a single injection of clindamycin. This broad-spectrum antibiotic
regimen has previously been shown decrease multiple bacterial OTUs by 16S rRNA
sequencing (58). Directly after antibiotic treatment, the mice were orally gavaged with
F. nucleatum (109 CFU). This treatment regimen was designed to alter the microbiome
and provide a potential niche for F. nucleatum. The intestinal epithelium from mice eu-
thanized at day 3 postinoculation with F. nucleatum exhibited disruption of the colonic
architecture, with increased immune infiltration and a depleted mucus layer which
resulted in luminal contents being closer in proximity to the intestinal epithelium

FIG 3 F. nucleatum .50-kDa compounds promote TNF, NF-κB, and MAPK signaling in human colonoid
monolayers. (A) Representative images of human colonoid monolayers treated with 25% BHIS (BHIS) or 25% F.
nucleatum conditioned medium .50-kDa fraction (.50 kDa) in DMEM, 1� HEPES, 1� GlutaMAX, and pyruvate
for 16 h (scale bar,100mm). (B) Measurement of TNF (pg/ml) by ELISA in colonoid monolayers treated with 25%
BHIS (BHIS) or 25% F. nucleatum BHIS conditioned medium .50-kDa fraction after 16 h incubation (n= 4
monolayers/experiment, repeated two independent times). (C) Quantification of secreted luciferase in human
colonoid monolayer cells transfected with a pNFκB-MetLuc2-Reporter treated for 16 h (n= 4 monolayers/
experiment). (D and E) Luminex Magpix multiplex analysis of phosphorylated ERK (D) and CREB (E) in human
colonoid monolayers treated with 25% BHIS (BHIS) or 25% F. nucleatum conditioned medium .50-kDa fraction
for 1 h (n = 3 monolayers/experiment). *, P , 0.05 (Student t test).
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(Fig. 5A). After 5 days postinoculation with F. nucleatum, colonic epithelia of mice
exhibited reduced architecture disruption and immune infiltration compared to day 3,
but still displayed loss of goblet cells and a thinner mucus layer. Fluorescence in situ
hybridization (FISH) confirmed the presence of F. nucleatum in the epithelial mucus
layer at both days 3 and 5, with the greatest numbers of bacteria observed at day 3
(Fig. 5B and Table 1). Oral gavage with F. nucleatum also correlated with weight loss
compared to phosphate-buffered saline (PBS)-treated mice, supporting the notion that
F. nucleatum had negative effects on health (Fig. 5C). Analysis of colonic gene expres-
sion revealed increased concentrations of epithelial- and immune-cell-secreted KC (the
mouse IL-8 homologue) and immune-cell-secreted IL-6, IFN-g, and MCP-1 in F. nuclea-

TABLE 1 Calculated Fusobacterium fecal load based on standard cultures of F. nucleatum
subspecies polymorphum

Treatment

Mean Fusobacterium CFU± SEMa

No Abx Abx
Day 3
PBS 0 0
F. nucleatum 3.1� 101 6 0.6� 101 2.4� 104 6 1.5� 103

Day 5
PBS 0 0
F. nucleatum 0 4.3� 103 6 0.8� 103

aAs determined by qPCR. Abx, antibiotics.

FIG 4 F. nucleatum subsp. polymorphum is unable to promote inflammation in the presence of a complete gut microbiome. (A) Representative images of
H&E stains of control animals and F. nucleatum subsp. polymorphum-treated animals at day 3 and day 5 postinfection (scale bar, 100mm). (B) FISH staining
of Fusobacterium (red) counterstained with MUC2 (yellow) and Hoechst (blue) at day 3 and day 5 postinfection (scale bar, 100mm). (C) Analysis of mouse
weights at days 1, 2, 3, and 5 postinfection (n = 6/group). *, P , 0.05 (repeated-measures ANOVA). (D) Colonic mRNA expression of proinflammatory
related genes on day 3 postinfection (n = 6/group). *, P , 0.05 (two-way ANOVA). (E) Colonic mRNA expression of proinflammatory related genes on day 5
postinfection (n = 6/group). *, P , 0.05 (two-way ANOVA).
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tum-treated mice compared to PBS treatment at day 3 (Fig. 5D). IL-6 showed the great-
est change in increased expression at day 3 postinoculation with F. nucleatum. With
the exception of TNF, cytokine gene expression was substantially lower in the F. nucle-
atum group on day 5 compared to that observed on day 3 (Fig. 5E). However, KC, TNF,
IL-6, IFN-g, and MCP-1 were still increased in the F. nucleatum-treated mice compared
to mice gavaged with PBS control. These data indicate that F. nucleatum is capable of
driving a proinflammatory signaling cascade in vivo in the presence of an antibiotic-
disrupted humanized microbiota. Collectively, these findings expand our knowledge of
F. nucleatum-host interactions and indicates that orally derived F. nucleatum can stimu-
late inflammatory responses.

DISCUSSION

Providing a deeper understanding of how F. nucleatum promotes inflammation
could potentially lead to novel therapeutic approaches for the treatment of multi-
ple intestinal diseases. Our data indicate that F. nucleatum subsp. polymorphum
secretes OMVs, which can activate TLR4 and downstream targets ERK, CREB, and
NF-κB, thereby promoting proinflammatory cytokine production. These effects
were observed in colonic HT29 cells, as well as in human colonoid (organoid)
monolayers. These in vitro data support the hypothesis that F. nucleatum is capable
of eliciting intestinal inflammation through the production of secreted compounds,
among other mechanisms. In mice harboring a human microbiome, we found that
antibiotic treatment allowed F. nucleatum to adhere to the intestinal mucus layer
and drive inflammation, as indicated by weight loss, increased immune infiltration,

FIG 5 F. nucleatum subsp. polymorphum drives inflammation in vivo with antibiotic disruption of the gut microbiome. (A) Representative images of H&E
stains of control animals and F. nucleatum subsp. polymorphum-treated animals who received antibiotics at day 3 and day 5 postinfection (scale bar,
100mm). Blue arrows highlight immune infiltration. (B) FISH staining of Fusobacterium (red) counterstained with MUC2 (yellow) and Hoechst (blue) at day 3
and day 5 postinfection. Enlarged insets demonstrate Fusobacterium at day 3 and 5 (scale bar, 100mm). (C) Analysis of mouse weights at days 1, 2, 3, and 5
postinfection (n = 6/group). *, P , 0.05 (repeated-measures ANOVA). (D) Colonic mRNA expression of proinflammatory related genes on day 3
postinfection (n = 6/group). *, P , 0.05 (two-way ANOVA). (E) Colonic mRNA expression of proinflammatory related genes on day 5 postinfection (n = 6/
group). *, P , 0.05 (two-way ANOVA).

Engevik et al. ®

March/April 2021 Volume 12 Issue 2 e02706-20 mbio.asm.org 8

https://mbio.asm.org


altered colonic architecture, and proinflammatory cytokine mRNA signatures. We
also found that antibiotic-mediated depletion of the gut microbiome is essential
for F. nucleatum-mediated effects. These data provide solid evidence that F. nuclea-
tum can promote inflammation in the gastrointestinal tract when an open niche is
available.

The majority of research on F. nucleatum has focused on its role as a periodontal
pathogen. However, in recent years investigators have begun to view F. nucleatum as
an intestinal pathogen as well (11, 12). This is largely due to the identification of F.
nucleatum in colonic biopsy specimens from patients with IBD and colorectal cancer
(10, 11, 13, 14, 17, 29, 30, 35, 59–66). Many Gram-negative bacteria, including F. nuclea-
tum, release OMVs both in vitro and in vivo (67–69), and these nanoparticles have been
implicated as major players in bacterial pathogenesis. OMVs commonly contain LPS,
DNA, adhesins, and enzymes and therefore have been proposed to act as a delivery
system for these virulence factors (70). Our in vitro work indicates the TLR4 activation
by F. nucleatum-conditioned media, including OMVs, play a significant role in epithelial
cytokine production. As a result, we speculate that outer membrane LPS may be driv-
ing this effect. Consistent with this hypothesis, we observed that application of purified
LPS from F. nucleatum subsp. polymorphum also stimulated IL-8 in our HT29 cells (data
not shown). However, we do not think that TLR4 is the only pathway employed by F.
nucleatum secreted compounds and OMVs. In colon cancer studies, F. nucleatum stimu-
lation of proinflammatory cytokines was found to occur by both TLR4-dependent and
-independent mechanisms (71). Park et al. demonstrated that F. nucleatum activates
both TLR2 and TLR4 in bone-marrow-derived macrophages to stimulate IL-6 produc-
tion (72), an effect that is completely ablated in the absence of MyD88. Thus, it is likely
that other TLRs may be activated in response to F. nucleatum-secreted products. As a
result, we speculate that OMVs activate epithelial cells and immune cells through both
TLR4-dependent and -independent mechanisms in vivo. We speculate that, similar to
cancer models, inflammation associated with F. nucleatum is likely dependent on
MyD88 signaling. In addition to LPS, there are many proteins in F. nucleatum OMVs
with potential virulence functions. These proteins include FomA, FadA, FadD, Fad-I,
NapA, ClpB, GroEL, TraT, and YadA; future studies on their contributions to disease are
needed.

In addition to OMVs, F. nucleatum may secrete other compounds which stimulate
TLRs and drive inflammation. Although our in vitro studies suggest that OMVs con-
tribute to inflammation, it is possible that our .50-kDa fraction also contains other
large-molecular-weight compounds capable of stimulating cytokines. In addition, it
is possible that large-molecular-weight compounds act in synergy with OMVs to
drive inflammation. Our in vivo studies do not exclude other mechanisms of inflam-
mation. Future studies are warranted to address the role of other factors in stimu-
lating inflammatory signals.

In addition to secreted factors, several studies have found that F. nucleatum is capa-
ble of invading epithelial cells and can directly activate proinflammatory signals
(73–75). F. nucleatum invasion of oral epithelial cells activates NF-κB and induces proin-
flammatory cytokines (IL-8, TNF, IL-1b , and IL-6) (73–75). In the setting of cancer, F.
nucleatum invasion of cancer cells also induces NF-κB and proinflammatory cytokine
production (11, 29, 30, 35, 62, 64, 71). Although we observed cytokine production and
inflammation in our studies, we saw little evidence of epithelial invasion by F. nuclea-
tum by our FISH staining. We found that F. nucleatum can adhere to colonic mucin gly-
cans and predict mucus adhesion may limit the invasion of F. nucleatum into the epi-
thelium. Another possible explanation of the lack of invasion may be explained by the
intact epithelium in our mouse model. It is possible that F. nucleatum may require
damage or epithelial fragility to invade the colonic epithelium. In addition, our findings
may be strain dependent, since clinical isolates from patients with IBD have been char-
acterized to be more proinflammatory than F. nucleatum isolated from healthy sub-
jects. For example, F. nucleatum isolated from inflamed regions of the gut exhibit
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enhanced invasion of Caco-2 cells and trigger TNF (76). These results suggest that
although F. nucleatummay be proinflammatory in general, some strains are more path-
ogenic than others.

Our data indicate that F. nucleatum requires disruption of the microbiome to pro-
mote inflammation. Previous work from Collins et al. using the same humanized mouse
model demonstrated that antibiotic treatment significantly reduced the levels of
Lachnospiraceae, Bacteroidaceae, Clostridiaceae, and Verrucomicrobiaceae compared to
mice without antibiotics (58). These findings appear to resemble that of microbial com-
position in intestinal microbiomes of patients in IBD, both ulcerative colitis (UC) and
Crohn’s disease (CD), whereas a diminution of Lachnospiraceae and Bacteroidetes has
been observed compared to healthy volunteers or non-IBD controls (77–80). In addi-
tion, the gut microbiota of the patients with colorectal cancer are often depleted in
Lachnospiraceae, Bacteroidetes, and Clostridia and enriched in Fusobacterium (65,
81–85). One study identified that high abundance of Lachnospiraceae was negatively
associated with the colonization of colonic tissue by oral microbes (Fusobacterium,
Streptococcus, Gemella, etc.) (84). These microbiome studies suggest a protective colo-
nization resistance role for select gut microbes, such as Lachnospiraceae and commen-
sal Bacteroides. We theorize that the presence of Lachnospiraceae, Bacteroidetes, and
other antibiotic-depleted microbes may prevent F. nucleatum colonization and there-
fore inflammation.

The intestinal microbiome is resilient and can revert back toward the original popu-
lation following antibiotic treatment. Consistent with this notion, Collins et al. observed
resolution of the microbiome in the same human microbiome mouse model following
antibiotics and predicted that the microbial communities would eventually return to
baseline (58). As a result, we speculate that F. nucleatum subsp. polymorphum would
not persist in our antibiotic-treated mouse model long term. We predict that as the
microbiome returned, F. nucleatum would be outcompeted, and there would be reso-
lution of inflammation. By day 5 postgavage, we observed less F. nucleatum by FISH
staining and lower inflammatory markers in the antibiotic-treated mice compared to
day 3. We predict that the effects of F. nucleatum would only remain for a few more
days (ca. days 7 to 10) as the microbiome returned to its usual complexity. To fully
address this question, more studies are needed to determine the precise balance of F.
nucleatum and the microbiome following antibiotic administration.

Fusobacterium is commonly found in mixed microbial infections (86). This is due in
part to the communal nature of F. nucleatum. It harbors multiple adhesins which pro-
mote multispecies biofilm formation (87–92). These microbe-microbe interactions have
been well documented in the oral cavity; however, biofilm formation may also be a
potential strategy for F. nucleatum colonization in the gut. It is possible that the
microbes present after antibiotics interact with F. nucleatum and promote its persist-
ence. Since oral microbes are commonly found in intestinal disease states and F. nucle-
atum is known to aggregate and form biofilms with multiple oral bacteria (87–91,
93–97), a synergy may exist between these groups to promote intestinal inflammation
and pathology. Ledder et al. demonstrated that F. nucleatum can coaggregate with in-
testinal microbes, including Bifidobacterium adolescentis and Lactobacillus paracasei,
and to a lesser degree with Bacteroides vulgatus and Enterococcus faecium (91).
Therefore, F. nucleatum may be interacting with mucosa-associated gut microbes to
enhance colonization.

Overall, our findings indicate that F. nucleatum can promote inflammation in normal
epithelial cells in vitro and in vivo (Fig. 6). We speculate that certain strains of F. nuclea-
tum in genetically susceptible patients may be an initiating or contributing factor to
inflammation. We predict that in patients undergoing antibiotics, the microbiome does
not provide colonization resistance and F. nucleatum can establish residence. We also
reason that an aberrant immune response coupled with an altered microbiome and F.
nucleatum could lead to chronic inflammation. As a result, our findings point to F.
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nucleatum and OMVs as drivers of intestinal inflammation and warrant further study as
future targets for treatment strategies aimed at reducing mucosal inflammation.

MATERIALS ANDMETHODS
Bacterial culture conditions. Fusobacterium nucleatum subsp. polymorphum ATCC 10953 (American

Type Culture Collection) was cultured in brain heart infusion medium (Difco) supplemented with 2%
yeast extract and 0.2% cysteine (BHIS) anaerobically at 37°C in an anaerobic workstation (Anaerobe
Systems AS-580) with a mixture of 5% CO2, 5% H2, and 90% N2.

(i) Preparation of F. nucleatum subsp. polymorphum conditioned media. To assay compounds
secreted by F. nucleatum, we prepared conditioned media as follows. Overnight cultures were subcul-
tured into BHIS at an optical density at 600 nm (OD600) of 0.1 and cultured anaerobically for 48 h at 37°C.
Cells were centrifuged at 7,000� g for 5min, and the supernatant was filter sterilized using 0.45-mm pol-
yvinylidene difluoride Millipore centrifuge filters. This filtered supernatant was termed conditioned
media (CM). F. nucleatum CM was size fractionated with Amicon Ultra 50-kDa centrifugal filters
(Millipore, UFC905024). The fraction below 50 kDa was termed “,50 kDa” and the fraction above 50 kDa
was termed “.50 kDa.”

(ii) Isolation of F. nucleatum subsp. polymorphum outer membrane vesicles. We isolated OMVs
produced by F. nucleatum subsp. polymorphum as follows. BHIS medium (500ml) was inoculated to an
OD600 of 0.1 using F. nucleatum overnight cultures and incubated anaerobically at 37°C for 48 h. Cells
were pelleted by centrifugation at 7,000� g for 10min. Cell-free supernatant was collected, mixed with
120 g of ammonium sulfate, and then incubated for 2 h at 4°C. The vesicle-containing precipitate was
collected by centrifugation at 10,000� g for 20min, and the pellets resuspended in 50mM HEPES buffer
(pH 7.5). The resuspended pellets were dialyzed overnight in 50mM HEPES (pH 7.5) buffer at 4°C using
10,000-molecular-weight cutoff dialysis tubing. The vesicles were concentrated with .50-kDa Amicon
Ultra centrifugation filters and added to OptiPrep solution (Sigma, D1556) at a ratio of 1:3 (vol/vol). This
suspension was then added to 45% OptiPrep in Ultraclear centrifuge tubes and ultracentrifuged at
292,700� g (70 Ti rotor; Beckman Coulter Inc.) for 3 h. Sequential fractions were collected and analyzed
by 15% SDS-PAGE to identify fractions containing vesicles. Vesicle-containing fractions were pooled,
diluted 10-fold in DPBS (Thermo Fisher, catalog no. 14190144), and separated from the OptiPrep by cen-
trifugation at 38,400� g for 3 h to remove the OptiPrep solution. Finally, the purified OMVs were resus-
pended in 500ml of DPBS and used for microscopy and tissue culture experiments.

(iii) OMV analysis measured by NTA. Nanoparticle tracking analysis (NTA) was performed to deter-
mine the size of the OMVs using a NanoSight LM10 instrument (Malvern, Westborough, MA). Equipped
with a sample chamber, a laser light source of 532 nm, sCMOS camera, and an optical microscope. The
samples were diluted by 200-fold in Millipore water and the particle concentration were between
1.2E18 to 4.0E18 particles/ml. The samples were injected into the LM10 unit with a 1-ml syringe at a sy-
ringe pump speed of 100. The capturing settings (camera level, slider shutter, and gain) were adjusted
automatically. The NanoSight LM10 recorded 30-s sample videos, which were analyzed by using NTA3.4
software. The particle diameter was obtained from the Stokes-Einstein equation.

(iv) Fluorescent labeling of F. nucleatum subsp. polymorphum. Fluorescently tagged F. nucleatum
subsp. polymorphum were generated by incubation with 10mM carboxyfluorescein diacetate succini-
midyl ester (CFDA-SE) as previously described (98). Briefly, F. nucleatum subsp. polymorphum was grown

FIG 6 Proposed model for F. nucleatum subsp. polymorphum-driven inflammation. F. nucleatum
adheres the intestinal mucus layer in the setting of an altered gut microbiome, in which it delivers
secreted compounds as “cargo” in OMVs. The OMVs activate epithelial TLRs, including TLR4, which
promotes phosphorylation and activation of ERK, CREB, and NF-κB, thereby driving the production of
proinflammatory cytokines and initiating inflammation.
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overnight in BHIS anaerobically at 37°C. The following day, the cultures were centrifuged at 5,000� g for
5min, and the pellet was washed twice with anaerobic PBS. F. nucleatum was then incubated with
10mM CFDA-SE (Thermo Fisher, C1157) in PBS anaerobically at 37°C for 1 h. After incubation, CFDA-SE
tagged cultures were centrifuged at 5,000� g for 5min, and the pellet was washed three times with an-
aerobic PBS to remove the residual CFDA-SE. Fluorescence was confirmed by microscopy.

Tissue culture. In vitro experiments were performed with the human colon cell line HT-29 (ATCC
HTB-38). HT29 cells were maintained in McCoy’s 5A medium (ATCC) supplemented with heat-inactivated
10% fetal bovine serum (FBS; Invitrogen) and antibiotics (100 U/ml penicillin and 100mg/ml streptomy-
cin) at 37°C and 5% CO2. For adhesion assays, the mucin-producing human colon T84 line (ATCC CL-248)
was used. T84 cells were grown in Dulbecco modified Eagle medium (DMEM; Thermo Fisher) supple-
mented with 10% FBS in a humidified atmosphere at 37°C and 5% CO2. Purified MUC2 was isolated from
T84 cells and adhered to glass coverslips as previously described (99). For monolayer adhesion, T84 cells
were seeded at 5� 105 cells/well in a 24-well plate containing poly-L-lysine-coated glass coverslips and
grown to confluence. Prior to adhesion assays, T84-coated coverslips were incubated with Hoechst
33342 (Invitrogen, H3570) for 10min at room temperature to stain the epithelial nuclei. Fluorescently
tagged F. nucleatum subsp. polymorphum was added to either T84 monolayers or APTS-coated MUC2-
coated coverslips and incubated for 1 h at 37°C and 5% CO2. After incubation, coverslips were washed
three times with PBS and fixed with Clarke’s fixative to preserve the mucus layer, and mounted cover-
slips were examined by microscopy.

To examine cytokine production, HT29 cells were seeded at 1� 104 cells/well in 96-well tissue cul-
ture-treated plates (Corning) and incubated at 37°C and 5% CO2 overnight. The following day, the cells
were treated with either DMEM (without FBS or media), 25% uninoculated BHIS media in DMEM (BHIS),
25% F. nucleatum conditioned medium (,50-kDa fraction) in DMEM, 25% F. nucleatum conditioned me-
dium (.50-kDa fraction) in DMEM, or 5% F. nucleatum OMVs in DMEM and then incubated overnight at
37°C and 5% CO2. To examine the contribution of TLR4 to cytokine production, HT29 cells in 96-well
plates were pretreated for 1 h with 1mM CLI-095 (TLR4 inhibitor; InvivoGen, TLRLCLI95) and maintained
in 1mM CLI-095 throughout an overnight incubation. Supernatants were examined for IL-8 production
by IL-8/CXCL8 DuoSet ELISA (R&D Systems, DY208-05) and TNF production by TNF-a DuoSet ELISA (R&D
Systems, DY210-05). Cell viability/metabolism was confirmed by using the dye resazurin (7-hydroxy-3H-
phenoxazin-3-one 10-oxide; Sigma, R7017) at a final concentration of 44mM. Cells were incubated for 3
h at 37°C and 5% CO2, and the fluorescence resulting from resazurin reduction to resorufin was analyzed
using a microplate spectrofluorometer at an excitation wavelength of 570 nm and an emission wave-
length of 600 nm.

For Western blot analysis, HT29 cells were seeded at 2� 105 cells/well in 24-well tissue culture
treated plates (Corning). After growing cells to confluence, the monolayers were treated as described for
the 96-well plate assay (DMEM, 25% BHIS, 25% ,50 kDa, 25% .50 kDa, and 5% OMVs) in DMEM (no
FBS) for 30min. Cells were then lysed with radioimmunoprecipitation assay buffer (Thermo Fisher
Scientific, Waltham, MA) containing a protease inhibitor cocktail (Roche). After centrifugation, the pro-
tein concentrations were quantitated by a Bradford assay (100). Portions (50 mg) of total protein were
resolved by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes (Millipore,
Billerica, MA). After a blocking step with 5% milk in PBS-Tween 20 (PBS-T) for 30min at room tempera-
ture, the PVDF membranes were incubated at 4°C overnight with antibodies for phosphorylated ERK,
CREB, and iκBa, as well as total iκBa and b-actin. After three washes with TBS-T, the PVDF membranes
were incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h at room tempera-
ture. After TBS-T washes, the membranes were developed with ECL substrate (GE Healthcare,
Buckinghamshire, UK). Western blots were analyzed using Fiji (formerly ImageJ) software (National
Institutes of Health).

To examine NF-κB activation, HT29 monolayers were grown to 75% confluence and transiently trans-
fected with a NF-κB secreted luciferase reporter (Clontech, pNFκB-MetLuc2-Reporter) in Opti-MEM
(Thermo Fisher) using the XtremeGene HP DNA transfection reagent (Roche) (101) at a final concentra-
tion of 0.6ml of XtremeGene HP and 0.3mg of DNA per well. HT29 monolayers were incubated for 48 h
at 37°C and 5% CO2. After transfection, the cells were treated with DMEM, 25% BHIS, 25% ,50 kDa, 25%
.50 kDa, and 5% OMVs) in DMEM (no FBS) for 16 h. The supernatants were examined for luciferase ac-
tivity using a Lonza Lucetta tube luminometer.

Human colonoid cultures. The human stem cell-derived colonoid line C103 was purchased from
the Baylor College of Medicine GEMs enteroid core. Three-dimensional human colonoids were cultured
in complete medium with growth factors (CMGF1) in phenol red-free, growth factor-reduced Matrigel
(Corning) as previously described (102–104). Colonoids at passage 9 were seeded into flat 96-well plates
as described previously (104–109). Briefly, three-dimensional colonoids were dislodged from Matrigel
domes, washed with an ice-cold solution of 0.5mM EDTA in 1� PBS, and dissociated at 37°C for 4min
with 0.05% trypsin and 0.5mM EDTA. After 4min, the trypsin was inactivated with Advanced DMEM/F-
12, 1� GlutaMAX, and 1� HEPES continuing 10% FBS. The dissociated colonoids were filtered through a
40-mm nylon cell strainer (Falcon, catalog no. 352340) to generate single cells and then suspended with
CMGF1 and 10mM Y-27632 Rock inhibitor. The solution was added to Matrigel-precoated 96-well
plates, followed by incubation for 48 h at 37°C and 5% CO2. After 48 h, the medium was changed to dif-
ferentiation medium, which contains the same components as CMGF1 but without Wnt3A conditioned
medium, R-spondin conditioned medium, SB202190, and nicotinamide and only 5% (vol/vol) Noggin
conditioned medium, but was still supplemented with 10mM Y-27632 Rock inhibitor. The differentiation
medium was changed daily for 5 days.

To examine F. nucleatum stimulation of colonoid monolayers, the differentiation medium was
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changed to DMEM supplemented with 1� HEPES, 1� GlutaMAX, and 1� pyruvate. This simplified media
has previously been demonstrated to improve cytokine production by human colonoids (54). Colonoids
were treated with either 25% uninoculated BHIS or 25% F. nucleatum conditioned media (.50 kDa) in
DMEM/HEPES/GlutaMAX/pyruvate media. For cytokine analysis, colonoids were treated for 16 h, and the
supernatants were examined for IL-8 and TNF by ELISA. In order to examine NF-κB activation, 96-well
colonoid monolayers were transduced on day 3 with NF-κB secreted luciferase reporter (Clontech,
pNFκB-MetLuc2-Reporter) and incubated for an additional 2 days in differentiation media. After 16 h
incubation with either 25% uninoculated BHIS or 25% .50 kDa, the supernatants were examined for
secreted luciferase as described above. For intracellular signaling analysis, colonoid monolayers were
treated for 1 h, washed with PBS containing Ca21 and Mg21, lysed with Luminex lysis buffer, and ana-
lyzed with a Milliplex MAP multi-pathway total magnetic bead assay (Millipore, catalog no. 48-681-MAG)
with a Magpix instrument (Luminex Corporation, Austin, TX). Magpix analysis was performed by the
Functional Genomics and Microbiome Core of the Texas Medical Center Digestive Diseases Center. Data
were collected and analyzed by using Luminex xPONENT for MAGPIX, version 4.2, build 1324, and
Milliplex Analyst version 5.1.0.0, standard build 10/27/2012.

Animal models. Animal experiments were approved by the Institutional Animal Care and Use
Committee (IACUC) at Baylor College of Medicine. For animal experiments, F. nucleatum subsp. polymor-
phum was cultured overnight anaerobically in BHIS and centrifuged at 7,000� g for 5min. The bacterial
pellet was washed twice, with sterile anaerobic PBS viability confirmed by serial plating F. nucleatum on
BHIS agar to calculate the CFU; the cells were adjusted to 109 cells ml21 and used to treat animals as
described below. Humanized microbiota C57BL/6 mice were generated as described previously (58) and
maintained in a BCM BSL-2-approved animal facility. Adult mice (10 to 16weeks) were administered an
antibiotic cocktail (kanamycin [0.4mgml21], gentamicin [0.035mgml21], colistin [850Uml21], metroni-
dazole [0.215mgml21], and vancomycin [0.045mgml21]) ad libitum in drinking water for 3 to 5 days as
previously described (58). After 24 h, the mice were treated with clindamycin (10mg kg21, injected intra-
peritoneally). Mice were gavaged orally with sterile PBS (control) or F. nucleatum subsp. polymorphum in
PBS (109 CFU) 24 h later. Mice were monitored twice daily and euthanized on day 3 and day 5 after oral
gavage. No visual or behavioral differences were noted in mice receiving antibiotics compared to control
mice (no antibiotic). To examine the contribution of the microbiome on F. nucleatum-induced inflamma-
tion, a subset of mice did not receive any antibiotic treatment and only received PBS (control) or F. nucle-
atum subsp. polymorphum in PBS (109 CFU). For all experiments, groups contained equal numbers of
male and female mice to exclude sex bias (6 females/6 males per treatment group).

Intestinal tissue staining. (i) H&E and PAS-AB. Mouse colons were placed intact in cassettes and
fixed in 10% Carnoy’s fixative. Paraffin-embedded tissue sections (7 mm) were processed for hematoxylin
and eosin (H&E) or periodic acid-Schiff/Alcian blue (PAS-AB) staining. H&E and PAS-AB sections were
examined by bright-field and imaged on the Nikon Eclipse 90i (Nikon) microscope using a DS-Fi1-U2
camera (Nikon) with a differential interference contrast (DIC) objective.

(ii) Immunofluorescence. F. nucleatum localization was examined using a Fusobacterium-specific
FISH probe (59-CGCAATACAGAGTTGAGCCCTGC-39), and total bacteria were examined using a universal
bacterial FISH probe EUB338 (59-GCTGCCTCCCGTAGGAGT-39; Integrated DNA Technologies [IDT]) (110).
Briefly, tissue sections were dehydrated and incubated with the Fusobacterium probe at 45°C in a dark
humidifying chamber, hybridized for 45min, and counterstained with MUC2 (1:200 dilution; Cloud-
Clone Corp., PAA705Mu01) and Hoechst 33342 (Invitrogen, H3570). Immunostained slides were imaged
on an Eclipse 90i (Nikon, Tokyo, Japan) with a 20� Plan Apo (NA 0.75) DIC objective, and the images
were recorded using a CoolSNAP HQ2 camera (Photometrics) using a Nikon Intensilight C-HGFI mercury
lamp.

Transmission electron microscopy of OMVs. F. nucleatum and OMVs were prepared for transmis-
sion electron microscopy (TEM) by fixing in 2.5% glutaraldehyde in 0.1 M cacodylate buffer at room tem-
perature for 1 h, followed by further fixation at 4°C. Samples were postfixed in 1% tannic acid for 1 h, fol-
lowed by 1% osmium tetroxide for 1 h and en bloc stained with 1% uranyl acetate. The samples were
dehydrated with a graded ethanol series. Samples were infiltrated into Quetol-Spurrs resin using propyl-
ene oxide as a transition solvent and polymerized at 60°C for 48 h, as previously described (111). The
resulting blocks were sectioned at 70 nm on 300-mesh copper grids and imaged on a Tecnai T12 trans-
mission electron microscope at 100 kV using an AMT CMOS camera. OMV sizes were measured using Fiji
software (NIH) from TEM images.

RNA isolation, gDNA isolation, and qPCR. RNA was extracted from mouse colons using TRIzol
according to manufacturer details (Thermo Fisher, catalog no. 15596018). RNA (1mg) was converted to
cDNA using the SensiFAST cDNA synthesis kit (Bioline USA, Inc.) and examined by quantitative real-time
PCR (qPCR). qPCR was accomplished on a QuantStudio 3 qPCR machine (Applied Biosystems) using
FastSYBR Green (Thermo Fisher) and 10 nM concentrations of primers designed using PrimerDesign
(Thermo Fisher). The relative fold change was calculated with the 18S rRNA housekeeping gene using
the DDCT method.

gDNA was extracted from mouse stool using the Zymo gDNA isolation kit (Zymo) according to the
manufacturer’s instructors with the addition of two rounds of bead beating. To generate a standard
curve for comparison, F. nucleatum was grown overnight in BHIS, and 1ml was serial diluted and used to
isolated gDNA. These same cultures were plated for CFU counts, generating matching gDNA and CFU
values. gDNA from mouse stool and culture standards were examined using FAST SYBR green and pri-
mers (Fusobacterium forward, CAACCATTACTTTAACTCTACCATGTTCA; Fusobacterium reverse, GTTGACTT
TACAGAAGGAGATTATGTAAAAATC) on a QuantStudio3 qPCR machine. The Fusobacterium load was
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calculated based on the cycle of threshold (CT) values of the standards and back-calculated to CFU by using a
four-parameter logistics curve as previously described (112).

Statistics. Data are presented as means 6 the standard deviations, with points representing individ-
ual mice. Comparisons between groups were made with the Student t test or one- or two-way analysis
of variance (ANOVA), using the Holm-Sidak post hoc test. GraphPad was used to generate graphs and
statistics (GraphPad Software, Inc., La Jolla, CA). A P value of ,0.05 was considered significant, and “n”
indicates the number of experiments performed.
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