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Abstract

Early identification of individuals at risk of developing Alzheimer’s disease (AD) dementia is 

important for developing disease-modifying therapies. In this study, given multimodal AD markers 

and clinical diagnosis of an individual from one or more timepoints, we seek to predict the clinical 

diagnosis, cognition and ventricular volume of the individual for every month (indefinitely) into 

the future. We proposed and applied a minimal recurrent neural network (minimalRNN) model to 

data from The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) challenge, 

comprising longitudinal data of 1677 participants (Marinescu et al., 2018) from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI). We compared the performance of the minimalRNN 
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model and four baseline algorithms up to 6 years into the future. Most previous work on predicting 

AD progression ignore the issue of missing data, which is a prevalent issue in longitudinal data. 

Here, we explored three different strategies to handle missing data. Two of the strategies treated 

the missing data as a “preprocessing” issue, by imputing the missing data using the previous 

timepoint (“forward filling”) or linear interpolation (“linear filling). The third strategy utilized the 

minimalRNN model itself to fill in the missing data both during training and testing (“model 

filling”). Our analyses suggest that the minimalRNN with “model filling” compared favorably 

with baseline algorithms, including support vector machine/regression, linear state space (LSS) 

model, and long short-term memory (LSTM) model. Importantly, although the training procedure 

utilized longitudinal data, we found that the trained minimalRNN model exhibited similar 

performance, when using only 1 input timepoint or 4 input timepoints, suggesting that our 

approach might work well with just cross-sectional data. An earlier version of our approach was 

ranked 5th (out of 53 entries) in the TADPOLE challenge in 2019. The current approach is ranked 

2nd out of 63 entries as of June 3rd, 2020.

1. Introduction

Alzheimer’s disease (AD) dementia is a devastating neurodegenerative disease with a long 

prodromal phase and no available cure. It is widely believed that an effective treatment 

strategy should target individuals at risk for AD early in the disease process (Scheltens et al., 

2016). Consequently, there is significant interest in predicting the longitudinal disease 

progression of individuals. A major difficulty is that although AD commonly presents as an 

amnestic syndrome, there is significant heterogeneity across individuals (Murray et al., 

2011; Noh et al., 2014; Zhang et al., 2016; Risacher et al., 2017; Young et al., 2018; Sun et 

al., 2019). Since AD dementia is marked by beta-amyloid- and tau-mediated injuries, 

followed by brain atrophy and cognitive decline (Jack et al., 2010, 2013), a multimodal 

approach might be more effective than a single modality approach to disentangle this 

heterogeneity and predict longitudinal disease progression (Marinescu et al., 2018, 2020).

In this study, we proposed a machine learning algorithm to predict multimodal AD markers 

(e.g., ventricular volume, cognitive scores, etc.) and clinical diagnosis of individual 

participants for every month up to six years into the future. Most previous work has focused 

on a “static” variant of the problem, where the goal is to predict a single timepoint 

(Duchesne et al., 2009; Stonnington et al., 2010; Zhang and Shen, 2012; Moradi et al., 2015; 

Albert et al., 2018; Ding et al., 2018) or a set of pre-specified timepoints in the future 

(regularized regression; (Wang et al., 2012; Johnson et al., 2012; McArdle et al., 2016; Wang 

et al., 2016)). By contrast, our goal is the longitudinal prediction of clinical diagnosis and 

multimodal AD markers at a potentially unlimited number of timepoints into the future,1 as 

defined by The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) 

challenge (Marinescu et al., 2018, 2020), which arguably a more relevant and complete goal 

for tasks, such as prognosis and cohort selection.

1Although the goal is to (in principle) predict an unlimited number of time points into the future, the evaluation can only be performed 
using the finite number of timepoints available in the dataset.
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One popular approach to this longitudinal prediction problem is mixed-effect regression 

modeling, where longitudinal trajectories of AD biomarkers are parameterized by linear or 

sigmoidal curves (Vemuri et al., 2009; Ito et al., 2010; Sabuncu et al., 2014; Samtani et al., 

2012; Zhu and Sabuncu, 2018). However, such a modeling approach requires knowing the 

shapes of the biomarker trajectories a priori. Furthermore, even though the biomarker 

trajectories might be linear or sigmoidal when averaged across participants (Caroli and 

Frisoni, 2010; Jack et al., 2010; Sabuncu et al., 2011), individual subjects might deviate 

significantly from the assumed parametric forms.

Consequently, it might be advantageous to not assume that the biomarker trajectories follow 

a specific functional form. For example, Xie and colleagues proposed an incremental 

regression modeling approach to predict the next timepoint based on a fixed number of input 

time points (Xie et al., 2016). The prediction can then be used as input to predict the next 

timepoint and so on indefinitely. However, the training procedure requires participants to 

have two timepoints, thus “wasting” data from participants with less or more than two 

timepoints. Therefore, state-based models (e.g., discrete or continuous state Markov model) 

that do not constrain the shapes of the biomarker trajectories or assume a fixed number of 

timepoints might be more suitable for this longitudinal prediction problem (Sukkar et al., 

2012; Goyal et al., 2018). Here, we considered recurrent neural networks (RNNs), which 

allow an individual’s latent state to be represented by a vector of numbers, thus providing a 

richer encoding of an individual’s “disease state” beyond a single integer (as in the case of 

discrete state hidden Markov models). In the context of medical applications, RNNs have 

been used to model electronic health records (Lipton et al., 2016a; Choi et al., 2016; Esteban 

et al., 2016; Pham et al., 2017; Rajkomar et al., 2018; Suo et al., 2018) and AD disease 

progression (Nguyen et al., 2018; Ghazi et al., 2019).

Most previous work on predicting AD progression ignore the issue of missing data 

(Stonnington et al., 2010; Sukkar et al., 2012; Lei et al., 2017; Liu et al., 2019). However, 

missing data is prevalent in real-world applications and arises due to study design, delay in 

data collection, subject attrition or mistakes in data collection. Missing data poses a major 

difficulty for modeling longitudinal data since most statistical models assume feature-

complete data (García-Laencina et al., 2010). Many studies sidestep this issue by removing 

subjects or timepoints with missing data, thus potentially losing a large quantity of data. 

There are two main approaches for handling missing data (Schafer and Graham, 2002). 

First, the “preprocessing” approach handles the missing data issue in a separate 

preprocessing step, by imputing the missing data (e.g., using the missing variable’s mean or 

more sophisticated machine learning strategies; Azur et al., 2011; Rehfeld et al., 2011; 

Stekhoven and Buhlmann, 2011; White et al., 2011; Zhou et al., 2013), and then using the 

imputed data for subsequent modeling. Second, the “integrative” approach is to integrate the 

missing data issue directly into the models or training strategies, e.g., marginalizing the 

missing data in Bayesian approaches (Marquand et al., 2014; Wang et al., 2014; Goyal et al., 

2018; Aksman et al., 2019).

In this work, we proposed to adapt the minimalRNN model (Chen, 2017) to predict AD 

progression. The minimalRNN has fewer parameters than other RNN models, such as the 

long short-term memory (LSTM) model, so it might be less prone to overfitting. Although 

Nguyen et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RNNs are usually trained using feature-complete data, we explored two “preprocessing” and 

one “integrative” approaches to deal with missing data. We used data from the TADPOLE 

competition, comprising longitudinal data from 1677 participants (Marinescu et al., 2018; 

2019). An earlier version of this work was published at the International Workshop on 

Pattern Recognition in Neuroimaging and utilized the more complex LSTM model (Nguyen 

et al., 2018). Here, we extended our previous work by using a simpler RNN model, 

expanding our comparisons with baseline approaches and exploring how the number of 

input timepoints affected prediction performance. We also compared the original LSTM and 

current minimalRNN models using the live leaderboard on TADPOLE.

2. Methods

2.1. Problem setup

The problem setup follows that of the TADPOLE challenge (Marinescu et al., 2018). Given 

the multimodal AD markers and diagnostic status of a participant from one or more 

timepoints, we seek to predict the cognition (as measured by ADAS-Cog13; Mohs et al., 

1997), ventricular volume (as measured by structural MRI) and clinical diagnosis of the 

participant for every month indefinitely into the future.

2.2. Data

We utilized the data provided by the TADPOLE challenge (Marinescu et al., 2018). The data 

consisted of 1677 subjects from the ADNI database (Jack et al., 2008). Each participant was 

scanned at multiple timepoints. The average number of timepoints was 7.3 ± 4.0 (Fig. 1A), 

while the average number of years from the first timepoint to the last timepoint was 3.6 ± 2.5 

(Fig. 1B).

For consistency, we used the same set of 23 variables recommended by the TADPOLE 

challenge, which included diagnosis, neuropsychological test scores, anatomical features 

derived from T1 magnetic resonance imaging (MRI), positron emission tomography (PET) 

measures and CSF markers (Table 1). The diagnostic categories corresponded to normal 

control (NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD).

2.3. Proposed model

We adapted the minimalRNN (Chen, 2017) for predicting disease progression. Here, we 

utilized minimalRNN instead of LSTM because it has less parameters and is therefore less 

likely to overfit (see Appendix A for details). The model architecture and update equations 

are shown in Fig. 2. Let xt denote all variables observed at time t, comprising the diagnosis 

st and remaining continuous variables gt (Eq. (1) in Fig. 2B). Here, diagnosis was 

represented using one-hot encoding. In other words, diagnosis was represented as a vector of 

length three. More specifically, if the first entry was one, then the participant was a normal 

control. If the second entry was one, then the participant was mild cognitively impaired. If 

the third entry was one, then the participant had AD dementia. For now, we assume that all 

variables were observed at all timepoints; the missing data issue will be addressed in Section 

2.4.
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At each timepoint, the transformed input ut (Eq. (2) in Fig. 2) and the previous hidden state 

ht−1 were used to update the hidden state ht (Eqs. (3) and (4) in Fig. 2B). The hidden state 

can be interpreted as integrating all information about the subject up until that timepoint. 

The hidden state ht was then used to predict the observations at the next timepoint xt+1 (Eqs. 

(5) and (6) in Fig. 2B).

In the ADNI database, data were collected at a minimum interval of 6 months. However, in 

practice, data might be collected at an unscheduled time (e.g., month 8 instead of month 6). 

Consequently, the duration between timepoints t and t + 1 in the RNN was set to be 1 month. 

However, experiments with different durations were also performed with little impact on the 

results (see Section 2.7.2).

2.3.1. Training with no missing data—The RNN training is illustrated in Fig. 3. The 

RNN was trained to predict the next observation (xt) given the previous observations (x1, x2, 

…, xt−1). The errors between the predicted outputs (e.g. x2) and the ground truth outputs 

(e.g. x2) were used to update the model parameters. The error (or loss L) was defined as 

follows:

L = ∑
t > 1

(CrossEntropy(st, st) + MAE(gt, gt)) (7)

CrossEntropy(st, st) = − ∑
j = 1

3
st

j log st
j

(8)

MAE(gt, gt) = 1
23 ∑

j = 1

23
gt

j − gt
j

(9)

It is important to note that the loss function was only evaluated using available observations. 

Missing data were not considered when computing the loss. Furthermore, we note that the 

two terms in the loss function (Eq. (7)) were weighted equally. Changing the relative 

weights of the two terms could potentially influence the model performance. However, this 

would increase the number of hyperparameters, so we did not experiment with varying the 

weighting in this study. The value of h0 was set to be 0. During training, gradients of loss L 
with respect to the model parameters were back-propagated to update the RNN parameters. 

The RNN was trained using Adam (Kingma and Ba, 2015).

2.3.2. Prediction with no missing data—Fig. 4 illustrates how the RNN was used to 

predict AD progression in an example subject (from the validation or test set). Given 

observations for months 1, 2 and 3, the goal of the model was to predict observations in 

future months. From month 4 onwards, the model predictions (x4 and x5) were fed in as 

inputs to the RNN (for months 5 and 6 respectively) to make further predictions (dashed 

lines in Fig. 4).
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2.4. Missing data

As seen in Table 1, there were a lot of missing data in ADNI. This was exacerbated by the 

fact that data were collected at a minimum interval of 6 months, while the sampling period 

in the RNN was set to be 1 month (to handle off-schedule data collection). During training, 

the loss function was evaluated only at timepoints with available observations. Similarly, 

when evaluating model performance (Section 2.6), only available observations were utilized.

The missing data also posed a problem for the RNN update equations (Fig. 2B), which 

assumed all variables were observed. Here, we explored two “preprocessing” strategies 

(Sections 2.4.1 & 2.4.2) and one “integrative” strategy (Section 2.4.3) to handle the missing 

values. As explained in the introduction, “preprocessing” strategies impute the missing data 

in a separate preprocessing. The imputed data is then used for subsequent modeling. On the 

other hand, “integrative” strategies incorporate the missing data issue directly into the model 

or training strategies.

2.4.1. Forward filling—Forward filling involved imputing the data using the last 

timepoint with available data (Che et al., 2018; Lipton et al., 2016b). Fig. 5A illustrates an 

example of how forward-filling in time was used to fill in missing input data. In this 

example, there were two input variables A and B. The values of feature A at time t = 2, 3 

and 4 were filled using the last observed value of feature A (at time t = 1). Similarly, the 

values at t = 7, 8 of feature A were filled using value at t = 6 when it was last observed. If 

data was missing at the first timepoint, the mean value across all timepoints of all training 

subjects was used for the imputation.

2.4.2. Linear filling—The previous strategy utilized information from previous 

timepoints for imputation. One could imagine that it might be helpful to use previous and 

future timepoints for imputation. The linear filling strategy performed linear interpolation 

between the previous timepoint and the next time point with available data (Junninen et al., 

2004). Fig. 5B shows an example of linear interpolation. Values of feature A at time t = 2, 3, 

4, 6 were filled in using linear interpolation. However, linear-filling did not work for months 

8, 9 and 10 because there was no future observed data for linear interpolation, so forward-

filling was utilized for those timepoints. Like forward filling, if data was missing at the first 

timepoint, the mean value across all timepoints of all training subjects was used for the 

imputation.

2.4.3. Model filling—We also considered a novel model filling strategy of filling in 

missing data. As seen in Section 2.3.2 (Fig. 5), the prediction of the RNN could be used as 

inputs for the next timepoint. The same approach can be used for filling in missing data.

Fig. 5C shows an example of how the RNN was used to fill in missing data. At time t = 2 to 

6, the values of feature A were filled in using predictions from the RNN. The RNN could 

also be used to extrapolate features that “terminate early” (e.g., time t = 8 and 9).

A theoretical benefit of modeling filling was that the full sets of features were utilized for 

the imputation. For example, both features A and B at time t = 1 were used by the RNN to 
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predict both input features at time t = 2 (Fig. 5C). This was in contrast to forward or linear 

filling, which would utilize only feature A (or B) to impute feature A (or B).

Like forward filling, if data was missing at the first timepoint, the mean value across all 

timepoints of all training subjects was used for the imputation.

2.5. Baselines

We considered four baselines: constant prediction, support vector machine/regression (SVM/

SVR), linear state-space (LSS) model, and long short-term memory (LSTM) model.

2.5.1. Constant prediction—The constant prediction algorithm simply predicted all 

future values to be the same as the last observed values. The algorithm did not need any 

training. While this might seem like an overly simplistic algorithm, we will see that the 

constant prediction algorithm is quite competitive for near term prediction.

2.5.2. SVM/SVR—As explained in the introduction, most previous studies have focused 

on a “static” variant of the problem, where the goal is to predict a single timepoint or a set of 

pre-specified timepoints in the future. Here, we will consider such a baseline by using SVM 

to predict clinical diagnosis (which was categorical) and SVR to predict ADAS-Cog13 and 

ventricular volume (which were continuous). The models were implemented using scikit-

learn (Pedregosa et al., 2011). We note that separate models were trained for each target 

variable (clinical diagnosis, ADAS-Cog13 and ventricular volume).

Because SVM/SVR accepts fixed length feature vectors, it cannot handle subjects with 

different number of input timepoints. Therefore, we trained different SVM/SVR models 

using 1 to 4 input timepoints (spaced 6 months apart) to predict the future. The 6-month 

interval was chosen because the ADNI data was collected roughly every 6 months. As can 

be seen in Section 3.1, the best results were obtained with 2 or 3 input timepoints, so we did 

not explore more than 4 input timepoints. The features were concatenated across the input 

timepoints. For example, since there were 23 features at each timepoint, then for the “2 input 

timepoints” SVM/SVR models, the input features constituted a vector of length 46. On the 

other hand, for the “3 input timepoints” SVM/SVR models, the input features constituted a 

vector of length 69.

For each SVM/SVR baseline, we trained separate SVM/SVR models to predict 10 sets of 

timepoints (spaced 6 months apart) into the future, i.e., 6, 12, 18,…,60 months into the 

future. 60 months were the maximum because of insufficient data to train SVM/SVR to 

predict further into the future (Fig. 1B). To summarize, separate SVM/SVR models were 

trained for different target variable (clinical diagnosis, ADAS-Cog13 and ventricular 

volume), for different number of input timepoints (1, 2, 3 or 4 input timepoints) and for 

different number of future predictions (6, 12, 18,…,60 months). This yielded a total of 3 × 4 

× 10 = 120 SVM/SVR models.

To maximize the number of data samples for training, we used all available timepoints in the 

training subjects to train the SVM/SVR models. For example, let us consider a training 

subject with 10 observed timepoints spaced 6 months apart. In the case of the SVM/SVR 
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models with one input timepoint, this subject would contribute 9 training samples to train a 

model for predicting 6 months ahead, 8 training samples to train a model for predicting 12 

months ahead, 7 training samples to train a model for predicting 18 months ahead, and so 

on.

The linear filling strategy (Fig. 5B) was used to handle missing data. We also experimented 

with using multivariate functional principal component analysis (MFPCA) for filling in the 

missing data (Happ and Greven, 2018; Li et al., 2018). Because prediction performance was 

evaluated at every month in the future, prediction at intermediate months (e.g., months 1 to 

5, months 7 to 11, etc.) were linearly interpolated. Prediction from month 61 onwards 

utilized forward filling based on the prediction at month 60.

One tricky issue arose when a test subject had insufficient input timepoints for a particular 

SVM/SVR baseline. For example, the 4-timepoint SVM/SVR baseline required 4 input 

timepoints in order to predict future timepoints. In this scenario, if a test subject only had 2 

input timepoints, then the 2-timepoint SVM/SVR was utilized for this subject even though 

we were considering the 4-timepoint SVM/SVR baseline. We utilized this strategy (instead 

of discarding the test subject) in order to ensure the test sets were exactly the same across all 

algorithms.

2.5.3. Linear state space (LSS) model—We considered a linear state space (LSS) 

baseline by linearizing the minimalRNN model (Fig. 6). Other than the update equations 

(Fig. 6), all other aspects of training and prediction were kept the same. For example, the 

LSS models utilized the same data imputation strategies (Section 2.4) and were trained with 

the same cost function using Adam.

2.5.4. Long short term memory (LSTM) model—The LSTM model is widely used 

for modeling sequences and temporal trajectories (Ghazi et al., 2019; Lipton et al., 2016a). 

We have previously used LSTM for predicting AD progression (Nguyen et al., 2018). Here, 

we favor minimalRNN over LSTM models, as they have less parameters, so are less prone to 

overfitting when data is limited. See Appendix A for further discussion.

2.6. Performance evaluation

We randomly divided the data into training, validation and test sets. The ratio of subjects in 

the training, validation and test sets was 18:1:1. The training set was used to train the model. 

The validation set was used to select the hyperparameters. The test set was used to evaluate 

the models’ performance. For subjects in the validation and test sets, the first half of the 

timepoints of each subject were used to predict the second half of the timepoints of the same 

subject. All variables (except diagnostic category, which was categorical rather than 

continuous) were z-normalized. The z-normalization was performed on the training set. The 

mean and standard deviation from the training set was then utilized to z-normalize the 

validation and test sets. The random split of the data into training, validation and test sets 

was repeated 20 times to ensure stability of results (Kong et al., 2019; Li et al., 2019; 

Varoquaux, 2018). Care was taken so that the test sets were non-overlapping so that the test 

sets across the 20 data splits covered the entire dataset.
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The HORD algorithm (Regis and Shoemaker 2013; Eriksson et al., 2015; Ilievski et al., 

2017) was utilized to find the best hyperparameters by maximizing model performance on 

the validation set. We note that this optimization was performed independently for each 

training/validation/test split of the dataset. The hyperparameter search space for 

minimalRNN, LSS, and LSTM is shown in Table 2. The hyperparameter search space for 

the SVM/SVR is shown in Table 3. The final set of hyperparameters are found in Tables S1 

to S13.

Following the TADPOLE competition, diagnosis classification accuracy was evaluated using 

the multiclass area under the operating curve (mAUC; Hand and Till, 2001) and balanced 

class accuracy (BCA) metrics. The mAUC was computed as the average of three two-class 

AUC (AD vs not AD, MCI vs. not MCI, and CN vs not CN). For both mAUC and BCA 

metrics, higher values indicate better performance. ADAS-Cog13 and ventricles prediction 

accuracy was evaluated using mean absolute error (MAE). Lower MAE indicates better 

performance. The final performance for each model was computed by averaging the results 

across the 20 test sets. Even though the 20 test sets do not overlap, the subjects used for 

training the models do overlap across the test sets. Therefore, the prediction performances 

were not independent across the 20 test sets. To account for the non-independence, we 

utilized the corrected re-sampled t-test (Bouckaert and Frank, 2004) to evaluate differences 

in performance between models.

2.7. Further analysis

2.7.1. Impact of the number of input timepoints on prediction accuracy—For 

the minimalRNN to be useful in clinical settings, it should ideally be able to perform well 

with as little input timepoints as possible. Therefore, we applied the best model (Section 2.6) 

to the test subjects using only 1, 2, 3 or 4 input timepoints (Fig. 7). This is different from the 

main benchmarking analysis (Section 2.6), where all input timepoints (which accounted for 

half of the total number of timepoints) of the test subjects were used for predicting future 

timepoints. Test subjects with less than 4 input timepoints were discarded, so that the same 

test subjects were evaluated across the four conditions (i.e., 1, 2, 3 or 4 input timepoints). 

Because we discarded some test subjects, the result of this analysis is not comparable to that 

of the main benchmarking analysis (Section 2.6).

2.7.2. Effect of temporal resolution of minimalRNN—Even though the ADNI data 

was collected at a minimum interval of 6 months, in practice, data was not collected at 

exactly 6-month interval, e.g., the data might be collected at month 4, instead of the 

scheduled data collection at month 6. Furthermore, the TADPOLE challenge required 

participants to make future prediction at a monthly interval with prediction performance 

evaluated at a monthly resolution. Therefore, our main analysis utilized minimalRNN 

models with a temporal resolution of 1 month.

However, the choice of temporal resolution (i.e., number of months between timepoints) 

might affect the performance of the minimalRNN. For example, using a finer temporal 

resolution (e.g., 1-month interval versus 6-month interval) leads to more missing data, which 

might lead to worse performance. On the other hand, using a coarser temporal resolution 
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(e.g., 6-month interval versus 1-month interval) leads to greater mis-alignment between the 

minimalRNN’s timepoints and the actual observations. For example, if we consider a 

minimalRNN with a temporal resolution of 6 months, then actual observed data at month 10 

would need to be assigned to month 12, which might lead to worse performance. Finally, 

using a coarser temporal resolution results in fewer hidden state updates between two points 

in time, making it potentially easier for the minimalRNN to learn longer-term temporal 

patterns.

Here, we experimented with three different temporal resolutions: 1-month interval, 3-month 

interval, and 6-month interval. The RNN models were trained and tested using the same 

procedure described in Section 2.6, including hyperparameter search. For training the 3-

month and 6-month minimalRNN models, observed data were assigned to the closest 

timepoint. To evaluate performance of the 3-month and 6-month minimalRNN models, their 

predictions were linearly interpolated to obtain a temporal resolution of 1 month. 

Performance was evaluated only at timepoints with observed ground truth data.

2.7.3. Impact of different terms in the minimalRNN model—To investigate which 

term in the minimalRNN model is important for model performance, we conducted ablation 

experiments whereby we gradually simplify the MinimalRNN update equations in 4 steps 

(Fig. 8). In the last step (Variant 4), the simplified update equations were the same as the 

update equations of the linear state space (LSS) model. The ablated RNN models were 

trained and tested using the same procedure described in Section 2.6, including 

hyperparameter search.

2.7.4. Impact of different features on prediction performance—We performed 

feature ablation to analyze the contributions of different features to prediction performance 

of the trained minimalRNN model. To ablate a feature in the input data, the value of that 

feature was set to the mean value in the dataset, while the other input features were left 

unaltered. Thus, there were 23 different versions of input data, whereby each version has a 

different feature ablated. We used the trained minimalRNN model from each split of the data 

(as described in Section 2.6) and the ablated input data to make prediction in the test data. A 

large drop in prediction performance when a feature was ablated would suggest that the 

feature was important for the trained minimalRNN model to make accurate predictions.

2.8. TADPOLE live leaderboard

The TADPOLE challenge involves the prediction of ADAS-Cog13, ventricular volume and 

clinical diagnosis of 219 ADNI participants for every month up to five years into the future. 

We note that these 219 participants were a subset of the 1677 subjects used in this study. 

However, the future timepoints used to evaluate performance on the live leaderboard (https://

tadpole.grand-challenge.org/D4_Leaderboard/) were not part of the data utilized in this 

study. Here, we utilized the entire dataset (1677 participants) to tune a set of 

hyperparameters (using HORD) that maximized performance either (1) one year into the 

future or (2) all years into the future. We then submitted the predictions of the 219 

participants to the TADPOLE leaderboard.
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2.9. Data and code availability

The code used in this paper can be found at https://github.com/ThomasYeoLab/CBIG/tree/

master/stable_projects/predict_phenotypes/Nguyen2020_RNNAD. This study utilized data 

from the publicly available ADNI database (http://adni.loni.usc.edu/data-samples/access-

data/). The particular set of participants and features we used is available at the TADPOLE 

website (https://tadpole.grand-challenge.org/).

3. Results

3.1. Overall performance

Fig. 9 illustrates the test performance of minimalRNN and four baselines (LSS, LSTM, 

constant prediction, and SVM/SVR). For brevity, we denote minimalRNN as RNN in all 

subsequent figures and tables. For clarity, we only showed minimalRNN with model filling 

(RNN–MF), LSS with model filling (LSS–MF), LSTM with model filling (LSTM-MF) and 

SVM/SVR using one input timepoint because they yielded the best results within their 

model classes. Table 4 shows the test performance of all models across all three missing data 

strategies.

We performed statistical tests comparing the three minimalRNN variants (RNN–FF, RNN–

LF and RNN–MF) with all other baseline approaches (LSS, LSTM, constant prediction, 

SVM/SVR). Multiple comparisons were corrected with a false discovery rate (FDR) of q < 

0.05. RNN-MF showed the best results and was statistically better than most baseline 

approaches (Table 4). For example, RNN-MF was statistically better than LSS-MF for 

clinical diagnosis, but not ADAS-Cog13 or ventricular volume. Similarly, RNN-MF was 

statistically better than LSTM-MF for clinical diagnosis and ventricular volume, but not 

ADAS-Cog13.

In terms of handling missing data, model filling (MF) performed better than forward filling 

(FF) and linear filling (LF), especially when predicting ADAS-Cog13 and ventricular 

volume (Table 4). Interestingly, more input timepoints do not necessarily lead to better 

prediction in the case of SVM/SVR. In fact, the SVM/SVR model using one timepoint was 

numerically better than SVM/SVR models using more timepoints, although differences were 

small. This might be because SVM/SVR models with one input timepoint had access to 

more training data than SVM/SVR models with more input timepoints (Section 2.5.2). 

Furthermore, SVM/SVR models with more input timepoints had to handle longer feature 

vectors, which increased the risk of overfitting (Section 2.5.2).

Recall that for test subjects, the first half of the timepoints of each subject were used to 

predict the second half of the timepoints of the same subject (Section 2.6). Table 5 shows the 

breakdown of subjects based on their clinical diagnoses at the last input timepoints (with 

observed clinical diagnoses) and the last timepoints (with observed clinical diagnoses). For 

example, if a subject had 10 timepoints, then the 10 timepoints were split into 5 input 

(observed) timepoints and 5 unobserved timepoints we seek to predict. Then, in the case of 

this subject, the last input timepoint would be timepoint 5 and the last timepoint would be 

timepoint 10. If the subject did not have observed clinical diagnosis at timepoint 10, then we 

would consider the clinical diagnosis at timepoint 9 and so on. We note that a small number 
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of subjects was not included in Table 5 because they did not have any observed clinical 

diagnosis in the first half and/or second half of the timepoints.

Fig. 10 shows the breakdown of the prediction performance (Fig. 9) into six different 

groups. The “stable” groups (NC-S, MCI-S, AD) comprised subjects whose diagnostic 

categories were the same at the last input timepoint and the last timepoint. The “progressive” 

groups (NC-P, MCI-P) comprised subjects who progressed along the AD dementia spectrum 

(e.g., from MCI to AD). Finally, the MCI recovered (MCI-R) group comprised subjects who 

have reverted from MCI to NC. We did not consider the 4 subjects that reverted from AD to 

MCI because of the small sample size. We note that diagnostic prediction performance was 

measured using accuracy (fraction of correct predictions) instead of mAUC and BCA 

because there was only one class in the stable groups.

In the case of predicting ventricular volume or ADAS-Cog13, minimalRNN was comparable 

to or numerically better than all baselines. In the case of diagnostic category, minimalRNN 

compared favorably with all baselines except for constant prediction in the stable groups. 

The reason is that it is optimal to predict all future diagnostic categories to be the same as 

the last observed diagnosis in the stable groups. However, in reality, whether subjects are 

stable or not is not known in advance. Therefore, for the stable groups, constant prediction 

should be treated as an upper bound on prediction performance, rather than a baseline. We 

note constant prediction did not achieve 100% accuracy in the stable groups because the 

clinical diagnoses could fluctuate over time. For example, if a subject had 4 timepoints with 

corresponding diagnoses NC, NC, MCI and NC. Then, the subject would be classified as 

NC-stable because the second and fourth timepoints had the same NC diagnoses.

Fig. 11 shows the breakdown of the prediction performance from Fig. 9 in yearly interval up 

to 6 years into the future. Not surprisingly, the performance of all algorithms became worse 

for predictions further into the future. The constant baseline was very competitive against 

the other models for the first year, but performance for subsequent years dropped very 

quickly. The minimalRNN model was comparable or numerically better than all baseline 

approaches across all the years.

3.2. Further analysis

3.2.1. MinimalRNN using one and four input timepoints in test subjects 
achieve comparable performance—Given that the MinimalRNN with model filling 

(RNN–MF) performed the best (Table 4), we further explored how well the trained RNN–

MF model would perform on test subjects with different number of input timepoints. Fig. 12 

shows the performance of RNN-MF averaged across 20 test sets using different number of 

input timepoints. The exact numerical values are reported in Table 6. RNNs using 2 to 4 

input timepoints achieved similar performance across all metrics. RNN using 1 input 

timepoint had numerically worse results, especially for ventricular volume. However, there 

was no statistical difference between using 1 input timepoint and 4 input timepoints even in 

the case of ventricular volume (p = 0.20).

3.2.2. Varying temporal resolution has little impact on performance—Table 7 

shows the prediction performance of the RNN-MF model when the temporal resolution 
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varied from 1-month interval to 6-month interval. There was no significant difference in 

prediction performance across different temporal resolutions.

3.2.3. Impact of different terms in the minimalRNN model—Table 8 shows the 

performances of the original minimalRNN model (RNN-MF) and 4 ablated variants 

decreasing in complexity from RNN-MF to variant 4 (LSS-MF). Numerically, RNN-MF had 

the best results compared with all 4 variants. However, it was not the case that performance 

continually degraded from the most complex model (RNN-MF) to the least complex model 

(LSS-MF). Interestingly, among the 4 variants, LSS-MF (Variant 4) showed the worst 

performance for clinical diagnosis, but close to the best performance for ADAS-Cog13 and 

ventricular volume. This suggests that some level of nonlinearity might be more useful for 

predicting clinical diagnosis, but less so for ADAS-Cog13 and ventricular volume. Overall, 

it was difficult to conclude that a specific component was essential to minimalRNN’s 

performance. This might not be surprising because as its name suggested, the minimalRNN 

was designed to be as simple as possible, so removing any component yielded somewhat 

worse results.

3.2.4. Impact of different features on prediction performance—The results of 

the feature ablation experiments are shown in Table 9. Unsurprisingly, ablating diagnosis 

resulted in the most significant drop in diagnostic mAUC and BCA, while ablating ADAS-

Cog13 and ventricular volume resulted in the most significant increase in ADAS-Cog13 

MAE and ventricular MAE respectively. Ablating CDRSB also led to a noticeable drop in 

diagnosis mAUC and BCA, probably because CDRSB is used in the diagnosis of an 

individual. Interestingly, ablating CDRSB also led to a noticeable increase in ventricular 

MAE.

3.3. TADPOLE live leaderboard

The original LSTM model (Nguyen et al., 2018) was ranked 5th (out of 53 entries) in the 

TADPOLE grand challenge in July 2019 (entry “CBIL” in https://tadpole.grand-

challenge.org/Results/). Our current minimalRNN models were ranked 2nd and 3rd (out of 

63 entries) on the leaderboard as of June 3rd, 2020 (entries (“CBIL-MinMFa” and “CBIL-

MinMF1”; https://tadpole.grand-challenge.org/D4_Leaderboard/). Interestingly, the model 

obtained from hyperparameters tuned to predict all years into the future (“CBIL-MinMFa”) 

performed better than the model obtained from hyperparameters tuned to predict one year 

into the future (“CBIL-MinMF1”), even though the leaderboard currently utilized about one 

year of future data for prediction.

4. Discussion

In this work, we adapted a minimalRNN model for predicting longitudinal progression in 

AD dementia. Our approach compared favorably with baseline algorithms, such as SVM/

SVR, LSS, and LSTM models. However, we note that there was no statistical difference 

between the minimalRNN and LSS for predicting ADAS-Cog13 and ventricular volume 

even though other studies suggested benefits of modeling nonlinear interactions between 

features (Popescu et al., 2019).
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As can be seen when setting up the SVM/SVR baseline models (Section 2.5.2), there were a 

lot of edge cases to consider in order to adapt a “static” prediction algorithm (e.g., SVM/

SVR) to the more “dynamic” longitudinal prediction problem we considered here. For 

example, data is wasted because static approaches generally assume that participants have 

the same number of input timepoints. Therefore, for the SVM/SVR models using 4 input 

timepoints, we ended up with only 1454 participants out of the original 1677 participants. 

This might explain why the SVM/SVR model using 1 input timepoint compared favorably 

with the SVM/SVR model using 4 input timepoints (Table 4). Another issue with static 

models is that the relationship between input features and outputs might vary over time (i.e., 

temporal conditional shift; Oh et al., 2018; 2019), thus better performance might be achieved 

by building separate models to predict month 12, month 18, and so on. Here, we built 

multiple separate SVM/SVR models to predict at a fixed number of future timepoints and 

performed interpolation at intermediate timepoints. By contrast, state-based models (e.g., 

minimalRNN, LSS, or LSTM) are more elegant in the sense that they handle participants 

with different number of timepoints and can in principle predict unlimited number of 

timepoints into the future.

Even though the ADNI dataset comprised participants with multiple timepoints, for the 

algorithm to be clinically useful, it has to be successful at dealing with missing data and 

participants with only one input timepoint. We found that the “integrative” approach of using 

the model to fill in the missing data (i.e., model filling) compared favorably with 

“preprocessing” approaches, such as forward filling or linear filling. However, it is possible 

that more sophisticated “preprocessing” approaches, such as matrix factorization 

(Mazumder et al., 2010; Nie et al., 2017; Thung et al., 2016) or wavelet interpolation 

(Mondal and Percival, 2010), might yield better results. We note that our model filling 

approach can also be considered as a form of matrix completion since the RNN (or LSS) 

was trained to minimize the predictive loss, which is equivalent to maximizing the likelihood 

of the training data. However, matrix completion usually assumes that the training data can 

be represented as a matrix that can be factorized into low-ranked or other specially-

structured matrices. On the other hand, our method assumes temporal dependencies between 

rows in the data matrix (where each row is a timepoint).

Our best model (minimalRNN with model filling) had similar performance when using only 

1 input timepoint instead of 4 input timepoints, suggesting that our approach might work 

well with just cross-sectional data (after training using longitudinal data). However, we 

might have simply lacked the statistical power to distinguish among the different conditions 

because of the smaller number of subjects in this experiment. Overall, there was no 

noticeable difference among using 2, 3 or 4 input timepoints, while the performance using 1 

input timepoint appeared worse, but the difference was not statistically significant (Fig. 12).

Although our approach compared favorably with the baseline algorithms, we note that any 

effective AD dementia treatment probably has to begin early in the disease process, 

potentially at least a decade before the emergence of behavioral symptoms. However, even 

in the case of our best model (minimalRNN with model filling), prediction performance of 

clinical diagnosis dropped from a BCA of 0.935 in year 1 to a BCA of 0.810 in year 6, while 

Nguyen et al. Page 14

Neuroimage. Author manuscript; available in PMC 2021 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ventricular volume MAE increased from 0.00104 in year 1 to 0.00511 in year 6. Thus, 

significant improvement is needed for clinical utility.

One possible future direction is to investigate new features, e.g., those derived from 

diffusion MRI or arterial spin labeling. Previous studies have also suggested that different 

atrophy patterns (beyond the temporal lobe) might influence cognitive decline early in the 

disease process (Noh et al., 2014; Byun et al., 2015; Ferreira et al., 2017; Zhang et al., 2016; 

Risacher et al., 2017; Sun et al., 2019), so the atrophy features considered in this study 

(Table 1) might not be optimal. Although the new features may be correlated with currently 

used features, the new features might still provide complementary information when 

modeling AD progression (Popescu et al., 2019). Another possible source of information 

might come from electronic health records (EHR), which can be collected more frequently 

and easily than neuropsychological test scores or MRI scans (Tjandra et al., 2020). 

Combining neuropsychological test scores, MRI scans and EHR might potentially yield 

better prediction.

As mentioned in the introduction, an earlier version of our algorithm was ranked 5th out of 

50 entries in the TADPOLE competition. Our current model was ranked 2nd out of 63 

entries on the TADPOLE live leaderboard as of June 2nd, 2020. Interestingly, the top team 

considered additional handcrafted features, which might have contributed to its success. 

Furthermore, the top team utilized a non-deep-learning algorithm XGboost (Chen and 

Guestrin, 2016), which might be consistent with recent work suggesting that for certain 

neuroimaging applications, non-deep-learning approaches might be highly competitive (He 

et al., 2020)

5. Conclusion

Using 1677 participants from the ADNI database, we showed that the minimalRNN model 

was better than other baseline algorithms for the longitudinal prediction of multimodal AD 

biomarkers and clinical diagnosis of participants up to 6 years into the future. We explored 

three different strategies to handle the missing data issue prevalent in longitudinal data. We 

found that the RNN model can itself be used to fill in the missing data, thus providing an 

integrative strategy to handle the missing data issue. Furthermore, we also found that after 

training with longitudinal data, the trained RNN model can perform reasonably well using 

one input timepoint, suggesting the approach might also work for cross-sectional data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

This appendix summarizes differences between the minimalRNN and LSTM. For the 

convenience of the readers, the minimalRNN state equations (Fig. 2B) are repeated below.

ut = tanh(W xxt)
ft = σ(Uhht − 1 + W uut)
ht = ft ⊙ ht − 1 + (1 − ft) ⊙ ut

For ease of comparison, we use a similar set of notations to show the LSTM state equations 

below.

ut = tanh(Uh
uht − 1 + W xuxt)

it = σ(Uh
i ht − 1 + W ui xt)

ft = σ Uh
fht − 1 + W u

fxt
ot = σ(Uh

oht − 1 + W uoxt)
ct = ft ⊙ ct − 1 + it ⊙ ut
ht = ot ⊙ tanh ct

As can be seen, minimalRNN uses fewer parameters than LSTM by doing away with the 

output gate (ot) and setting the input gate (it) to be the complement of the forget gate (i.e. (1 

− ft)). The hyperbolic tangent is also removed from the computation of ht thus making ht = 

ct. In addition, the term ht−1 is removed from the computation of the term ut in the 

minimalRNN, so the hidden state (ht) of the minimalRNN decays to zero when the input (xt) 

is zero. Note that in the context of our study, all variables (except clinical diagnosis) were z-

normalized (Section 2.6). Thus, input of zero corresponds to observing the mean value. In 

contrast, the hidden state of the LSTM can fluctuate even when the input is zero.
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Fig. 1. 
(A) Distribution of the number of timepoints for all subjects in the dataset. (B) Distribution 

of the number of years between the first and last timepoints for all subjects in the dataset.
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Fig. 2. 
(A) MinimalRNN. (B) MinimalRNN update equations. st and gt denote categorical (i.e., 

diagnosis) and continuous variables respectively (Table 1). The input xt to each RNN cell 

comprised the diagnosis st and continuous variables gt (Eq. (1)). Note that st was represented 

using one-hot encoding. The hidden state ht was a combination of the previous hidden state 

ht−1 and the transformed input ut (Eq. (4)). The forget gate ft weighed the contributions of 

the previous hidden state ht−1 and current transformed input ut toward the current hidden 

state ht (Eq. (3)). The model predicted the next month diagnosis st + 1 and continuous 

variables gt + 1 using the hidden state ht (Eqs. (5) and (6)). ⊙ and σ denote element-wise 

product and the sigmoid function respectively.
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Fig. 3. 
The minimalRNN was trained to predict the next observation given the current observation 

(e.g., predicting x2 given x1). Errors between the actual observations (e.g., x2) and 

predictions (e.g., x2) were used to update the model parameters. The hidden state ht encoded 

information about the subject up until time t.
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Fig. 4. 
Predicting future timepoints (x4, x5, x6, etc.) given three initial timepoints (x1, x2, and x3). 

Prediction started at month 4. Since there were no observed data at timepoints 4 and 5, the 

predictions (x4 and x5) were used as inputs (at timepoints 5 and 6 respectively) to predict 

further into the future.
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Fig. 5. 
Different strategies to impute missing data. (A) Forward-filling imputed missing values 

using the last observed value. (B) Linear-filling imputed missing values using linear 

interpolation between previous observed and next observed values. Notice that linear-filling 

did not work for months 8, 9 and 10 because there was no future observed data for linear 

interpolation, so forward filling was utilized for those timepoints. (C) Model-filling imputed 

missing values using model predictions.
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Fig. 6. 
(A) Linear state space (LSS) model. Observe the gray cell is much simpler than the 

minimalRNN (B) LSS update equations. st and gt denote categorical (i.e., diagnosis) and 

continuous variables respectively (Table 1). The input xt to each LSS cell comprised the 

diagnosis st and continuous variables gt (Eq. (10)). Like before, st was represented using 

one-hot encoding. The hidden state ht was a combination of the previous hidden state ht−1 

and the input xt (Eq. (11)). The model predicted the next month diagnosis st + 1 and 

continuous variables gt + 1 using the hidden state ht (Eqs. (12) and (13)).
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Fig. 7. 
Prediction performance as a function of the number of input timepoints in the test subjects.
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Fig. 8. 
Different ablated minimalRNN models. Ablation is done by simplifying the update 

equations.
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Fig. 9. 
Performance of the best models from each model class averaged across 20 test sets. Error 

bars show standard error across test sets. For clinical diagnosis, higher mAUC and BCA 

values indicate better performance. For ADAS-Cog13 and ventricles, lower MAE indicates 

better performance. For brevity, we denote minimalRNN as RNN. The RNN, LSS, LSTM, 

and SVM/SVR models corresponded to RNN–MF, LSS-MF, LSTM-MF, and SVM/SVR (= 

1tp) in Table 4 respectively. MinimalRNN performed the best. See Fig. S1 for all models.
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Fig. 10. 
Prediction performance broken down into six different groups: NC stable (NC-S), NC 

progressive (NC-P), MCI recovered (MCI-R), MCI stable (MCI-S), MCI progressive (MCI-

P) and AD stable (AD). The numbers in the brackets indicate the numbers of subjects in the 

respective groups. For brevity, we denote minimalRNN as RNN. The minimalRNN 

compared favorably with all baseline algorithms in almost all groups.
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Fig. 11. 
Prediction performance from Fig. 9 broken down into yearly interval up to 6 years into the 

future. For brevity, we denote minimalRNN as RNN. All algorithms became worse further 

into the future. MinimalRNN was comparable to or numerically better than all baseline 

algorithms across all years. See Fig. S2 for all models.
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Fig. 12. 
Test performance of minimalRNN model with model filling strategy (RNN-MF) using 

different numbers of input timepoints (after training with all timepoints). Results were 

averaged across 20 test sets. Even though the minimalRNN model using 1 input timepoint 

yielded numerically worse results, the differences were not significant (see Table 6).
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Table 2

Hyperparameter search space of MinimalRNN, LSS and LSTM estimated from the validation sets using 

HORD.

Hyper-parameter Range

Input dropout rate 0.0–0.5

Recurrent dropout rate 0.0–0.5

L2 weight regularization 10−7–10−5

Learning rate 10−5–10−2

Number of hidden layers 1–3

Size of hidden state 128–512
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Table 3

Hyperparameter search space of the SVM/SVR models estimated from the validation sets using HORD.

SVM SVR

Kernel Linear or RBF

Epsilon NA 10−3 – 10−0

Penalty 10−3 – 103

Gamma 10−3 – 103
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Table 5

Breakdown of subjects based on their clinical diagnoses at the last input timepoints (with observed clinical 

diagnoses) and the last timepoints (with observed clinical diagnoses).

Last timepoint

Last input timepoint NC MCI AD

NC 427 63 21

MCI 37 469 235

AD 0 4 391
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