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Abstract 14 

 15 

A crucial goal in brain-machine interfacing is long-term stability of neural decoding performance, ideally 16 

without regular retraining. Here we demonstrate stable neural decoding over several years in two 17 

human participants, achieved by latent subspace alignment of multi-unit intracortical recordings in 18 

posterior parietal cortex. These results can be practically applied to significantly expand the longevity 19 

and generalizability of future movement decoding devices. 20 

  21 
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Main Text 22 

 23 

Brain-machine interfaces (BMIs) decode neural activity to reproduce the user’s intention and assist 24 

individuals with physical and neurological disabilities. In motor BMIs, the user commonly imagines or 25 

attempts to make a movement, and the corresponding recorded neural activity is decoded to guide 26 

movement in the intended direction, either on a computer or a prosthetic 1,2. BMIs can use neural 27 

signals acquired at different spatial and temporal resolution, but these have tradeoffs in performance 28 

and stability. Whereas single- or multi-unit recordings provide the highest information content, these 29 

recordings suffer from non-stationarity – different individual neurons are recorded from day to day or 30 

even morning to afternoon3,4. This variation is caused by several factors, including movement of the 31 

electrodes, changes in the electrode-tissue interface, and degradation of the electrodes. Thus, as the 32 

neural features used to train the decoder change, the performance of the BMI degrades over time. As 33 

BMIs are implanted for increasingly long durations 5,6 the longitudinal stability of intracortically recorded 34 

neural activity is a central challenge to the practical utility of BMI devices. Currently, long-term use of 35 

BMI devices is only possible when users perform frequent retraining, often several times in a single day, 36 

to maintain desired performance. In addition to being time consuming, frequent retraining may not be 37 

possible in some use cases, for example in degenerative diseases (e.g., ALS/MND – amyotrophic lateral 38 

sclerosis/motor neuron disease) where the loss of function over time may eventually prevent the 39 

performance of training tasks.    40 

 41 

Although different neurons from the same population are being recorded, the lower-dimensional 42 

subspaces of the neural dynamics may remain relatively stable 7,8; we investigate this intriguing 43 

possibility in the context of BMI decoding. Alternative neural signals such as the local field potential 44 

have been observed to be more stable over time 9,10; however, the tradeoff is a reduction in information 45 
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content compared to single unit activity, which ultimately limits decoding performance. Therefore, the 46 

most promising solution currently being investigated is to use ‘latent signals’ for BMIs. Latent signals are 47 

derived from low-dimensional subspaces of the original high-dimensional single- or multi-unit (MUA) 48 

neural activity, and they have been shown to preserve information content while minimizing non-49 

stationarity 11–15. Most stable latent spaces have so far been identified and validated primarily in 50 

longitudinal recordings of non-human primate primary sensorimotor cortices. In this paper, we 51 

investigate the potential of these latent signals for BMI control in two human participants, for whom 52 

neural signals were recorded in higher order cortical areas over several years 16,17. Specifically, we 53 

demonstrate that the neural subspace of imagined reaches in a center-out task remained remarkably 54 

stable in posterior parietal cortex. 55 

 56 

Data were collected on 143 and 73 unique days, aggregated over a total period of 1106 and 871 days, 57 

for participant 1 1 and 2 18, respectively. Participant 1 attempted reaches in 4 directions while MUA was 58 

recorded from Brodmann Area 5 (BA5) and the Anterior Intraparietal Area (AIP). Participant 2 attempted 59 

reaches in 8 directions while MUA was recorded from the junction of the postcentral and intraparietal 60 

sulcus (PC-IP) (Fig. 1A). We use only the ‘training’ trials for longitudinal analysis, without any decoder 61 

present, to ensure the data were directly comparable from day-to-day 19. During these trials, 62 

participants imagined moving their arm to follow the movement of an on-screen cursor. To process the 63 

neural data, we adapted methods established in non-human primates 12. First a latent signal for each 64 

day on which the experiment occurred is calculated by performing Principal Component Analysis (PCA) 7 65 

on all trials that day. The latent signal is then aligned for all pairs of days using Canonical Correlation 66 

Analysis (CCA) 20. A Linear Discriminant Analysis (LDA) was used to classify the target locations (Fig. 1B). 67 

An LDA model was trained using data from Day N and tested within day (N on N) using leave one out 68 

cross validation (LOOCV). This analysis was then repeated for every possible pair of training day N and 69 
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testing day M. Further materials and methods information can be found in the ‘Methods’ section of this 70 

manuscript. 71 

 72 

When decoding the MUA signal, we observe good decoding accuracy (Fig. 2A, MUA – red) within the 73 

same day, but this accuracy quickly degrades as the number of days between training and testing day 74 

increases (Fig. 2A, MUA – black). Intriguingly, aligned latent neural activity space substantially improves 75 

the accuracy (Fig. 2A, Latent). In particular, across all pairs of days, the decoding performance that can 76 

be achieved is higher from the latent signal (mean±SD, AIP: 51.2±8.38%, BA5: 63.7±12.0% and PCIP: 77 

45.8±8.63%) than that achieved with MUA (mean±SD, AIP: 35.4±11.1%, BA5: 34.6±12.1% and PCIP: 78 

25.5±11.8%) (all differences p<0.001, Wilcoxon Sign Rank test, Bonferroni corrected) (Fig. 2B). Further, 79 

the across-day training produces a comparable performance compared to within-day using aligned 80 

latent data. Across all recording electrode arrays, the correlation between performance and time 81 

between the pairs is smaller for latent signals (AIP r = -0.066, BA5 r = 0.020, PCIP = -0.033, Pearson’s 82 

linear correlation coefficient) than for MUA (AIP r = -0.12, BA5 r = -0.30 PCIP r = -0.29, Pearson’s linear 83 

correlation coefficient). To summarize these results, we calculate the ratio of performance between all 84 

the within-day models and all the across-day models for latent and MUA activity. A ratio of 1 represents 85 

a comparable result, a value greater than one would mean that across-day pairs performed better than 86 

within-day pairs and vice versa for values below 1 (Fig. 2C). Here we see that in all cases the ratio of 87 

latent signals is higher than MUA demonstrating the aligned latent signal across days has significantly 88 

increased stability compared to the MUA activity (p<0.001, Wilcoxon signed rank test, Bonferroni 89 

corrected. Participant 1 N = 20449, Participant 2 N = 5329). 90 

 91 

In this task, the participants were not required to learn anything novel, so we do not expect neural 92 

activity changes related to learning. However, the repetitive nature of the task and the amount of time 93 
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spent performing it may still alter the brain activity representing the task over time. To investigate the 94 

way in which the task is represented in the latent signal over time, we calculated the Principal Subspace 95 

Angle (PSA) 21,22 between all pairs of days (Fig. 3A). This angle reflects the magnitude to which the 96 

subspaces in the pair must be rotated to be maximally correlated, which is one way to measure the 97 

extent to which CCA rotates the latent neural data to align day pairs 23. A smaller PSA indicates a more 98 

similar representation between pairs. We computed the first PSA in participant 1 only, who had two 99 

arrays in different functional areas. We controlled for changes in the health of the array, which were not 100 

significantly different for the two arrays over time (see Methods Fig. 1C). We divided up the data into 101 

early and late periods (Methods Fig. 1A), where late was defined as the resumption of the experiment 102 

after a significant break (akin to a ‘washout’ in the familiarity of the task). Over all pairs of days, the 103 

variability in PSA in BA5 was smaller than for AIP (Fig. 3B left column). We then focused on close pairs of 104 

days within the early and late phases of data collection, those with a difference of only up to 10 days 105 

(Fig. 3B right column). Interestingly, after the break in the experiment, we find a significant difference in 106 

the representation of the data across these relatively close day pairs in only area AIP and not area BA5 107 

(p<0.001, Wilcoxon Signed Rank Test). This finding indicates a more stable intrinsic representation of 108 

reaching in area BA5 than AIP. 109 

 110 

Here we have demonstrated the stable representation of neural activity in subspaces of human 111 

intracortical recordings over several years. This result validates methods of aligning latent spaces 112 

developed in non-human primates during actual reaching 12,24,25, here applied successfully in imagined 113 

reaches by humans. Furthermore, we have extended the finding of stable subspaces beyond the primary 114 

sensorimotor cortices into higher-order association areas in humans. The aligned latent signal performs 115 

best in decoding overall in each site, but the magnitude of the improvement reduces as the recordings 116 

come from more cognitive brain regions. We see the same effect in the PSA, where the variability in 117 
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representation increased in the more cognitive brain region. We hypothesize that this trend is due to an 118 

increased flexibility in neuronal processing facilitating higher order/conceptual aspects of reaches (in 119 

AIP) compared to a more fundamentally engrained processing in the lower order sensorimotor control 120 

of a limb (in BA5). 121 

 122 

There are few human intracortical BMI datasets available to validate the performance of latent signals 123 

over substantial periods of time in the same task. Participants enrolled in intracortical clinical trials are 124 

typically encouraged to perform a much broader range of tasks, with each requiring little to no training. 125 

Consequently, far fewer trials are available for any specific experimental paradigm. Chronic experiments 126 

exploring the human cortex offer a unique opportunity to study various changes in neural circuits over 127 

extended periods of time. Based on our results, we encourage the design of future studies to facilitate 128 

longitudinal task data collection and data collection from cortical sites beyond the traditionally used 129 

primary motor and sensory cortices. As we show here, these data allow the identification and validation 130 

of stable neural features which enable the long-term use of BMIs without the need for retraining, thus 131 

paving the way for BMIs to be used in many more cases; by individuals who lose the ability to retrain 132 

due to degenerative condition, or those who suffer injuries that preclude electrode implants in primary 133 

sensorimotor cortex. With the identification of such robust features, one promising direction for future 134 

work may be to enable the development of generalized BMIs that can be trained on data from 135 

individuals other than the eventual intended user 26. 136 

 137 

 138 

  139 
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Figures 140 

 141 

 142 

 143 

Figure 1. Methods. A) The neural signal was recorded on all days of the task using the same 144 

microelectrode arrays (Blackrock Neurotech). Arrays were implanted in the Anterior Intraparietal Area 145 

(AIP) and Brodmann Area 5 (BA5) of participant 1, and the junction of the postcentral and intraparietal 146 

sulcus (PC-IP) in participant 2. B) Data were arranged in a tensor of multi-unit activity (MUA) on each 147 

channel, of each trial completed during the duration of the study. All trials within a day were grouped 148 

and a pair of days was selected for further analysis (e.g., day N or M). For each day, the latent neural 149 

data was calculated using principal component analysis (PCA). The latent data were aligned by canonical 150 

correlation analysis (CCA), and the magnitude of the alignment was calculated as the principal subspace 151 

angle (PSA). 152 

 153 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.05.547767doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547767
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 8 of 16 
 

 154 

 155 

Figure 2. Classification decoder accuracy for two human participants. A) Left column: the performance 156 

of the LDA classifier using the raw multi-unit activity (MUA) from the brain regions AIP (top), BA5 and 157 

PCIP (bottom). The red line shows the classification accuracy when the data from the same day (N on N) 158 

is used for training and testing with leave-one-out cross validation. The black line shows the 159 

classification accuracy when data from session day N is used for testing, but training is always performed 160 

on data from a single day (in this example day 1). Shading shows the standard deviation, dotted line 161 

shows the chance level for classifications. Right column: the same analysis as the left column but using 162 

the latent aligned data. B) The decoding accuracy of every pair of days for MUA and Latent activity. C) 163 

The ratio of performance between within day and across day decoding, error bars show standard 164 

deviations, stars indicate significance. 165 

 166 
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 167 

 168 

Figure 3. Principal subspace angles. A) The principal subspace angle (PSA) calculated between all pairs of 169 

days for AIP (top) and BA5 (bottom). B) Left Column: the PSA between each pair of days, colored 170 

according to the early and late period (Methods Fig 1A.) Right Column: violin plots of only the day pairs 171 

where the difference between days is 10 or less, grouped into the early and late period.  172 

 173 

  174 
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Methods 175 

 176 

All procedures were approved by the Internal Review Boards of California Institute of Technology, 177 

University of Southern California, Rancho Los Amigos National Rehabilitation Center, University of 178 

California Los Angeles and Casa Colina Hospital and Centers for Healthcare. Informed consent was 179 

obtained from all participants after the nature of the study and possible risks were explained. This work 180 

was performed as part of Clinical Trials: NCT01849822, NCT01958086, NCT01964261. 181 

 182 

Participants 183 

 184 

Participant 1 was a 32-year-old tetraplegic male at the time of implantation. He was implanted with two 185 

microelectrode arrays on 17 April 2013. The electrodes were implanted in Brodmann Area 5 (BA5) and 186 

the Anterior Intraparietal Area (AIP). He had a complete lesion of the spinal cord at cervical level C3-4, 187 

sustained 10 years earlier, with paralysis of all limbs. Participant 2 was a 59-year-old tetraplegic female 188 

at the time of implantation. She was implanted with two arrays but only one was used in this study, at 189 

the junction of the post-central and intraparietal gyrus (PC-IP) on 29 August 2014. The other array was 190 

not functional.  She had a C3-C4 spinal lesion (motor complete) sustained 7 years earlier, and retained 191 

movement and sensation in her upper trapezius, without control or sensation in her hands. During their 192 

enrollment, the participants performed many different tasks. The data for the analysis presented in this 193 

manuscript were collected on 143 and 73 unique days, over a period of 1106 and 871 days, for 194 

participant 1 and 2, respectively. 195 

 196 

Task and Data Collection 197 

 198 
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The center out task was intended to allow the participants to spatially position a cursor on a computer 199 

screen. Targets were presented one at a time on the LCD display. The LCD monitor was positioned 200 

approximately 184cm from the subject’s eyes. Stimulus presentation was controlled using the 201 

Psychophysics Toolbox for MATLAB.  During recording-only sessions, without any decoder, a circular 202 

cursor on the screen would move automatically from the center to one of either 4 (participant 1) or 8 203 

(participant 2) targets arranged radially around the center point. Following a 250ms delay relative to 204 

target onset, the cursor moved in a straight line directly to the target with an approximately bell-shaped 205 

velocity profile. Each trial lasted 3 seconds. The number of trials completed by the participants on each 206 

day during the study is shown in Methods Fig. 1A and B. Participants were asked to imagine making 207 

movements of the arm to mimic the movements observed on the screen. 208 

 209 

The NeuroPort System (Blackrock Neurotech, UT, USA), comprising the arrays and neural signal 210 

processor (NSP), has received Food and Drug Administration (FDA) clearance for <30 days of acute 211 

recordings. For this study we received FDA IDE (Investigational Device Exemption) clearance for 212 

extending the duration of the implant. The health and performance of the arrays was assessed as the 213 

mean impedance across all electrodes on each array, recorded on each day of the experiment. 214 

Impedance data is available for participant 1 only (Methods Fig. 1C). Multi-Unit Neural Activity (MUA) 215 

was amplified, digitized, and recorded at 30 kHz with the NeuroPort NSP. The threshold for calculation 216 

of MUA spikes was -3.5 * root mean squared voltage, calculated over each recording session. Data was 217 

organized into a three-dimensional tensor; The first dimension was the MUA binned into non-218 

overlapping 50ms windows. The second dimension was the number of electrodes (96 for each array). 219 

The third dimension was the index of trials ordered chronologically from the first to last over the entire 220 

study period. 221 

 222 
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Analysis 223 

 224 

The analysis methods used in this manuscript extend the analysis of Gallego and colleagues 12 who 225 

demonstrated success in long-term decoding from primate motor cortex recordings. Data from each 226 

participant and each array was processed separately. The analysis was completed identically between all 227 

pairs of all days in which the participants completed the center out task. For the following description of 228 

the analysis two such days are represented as day M and day N. 229 

  230 

Initially the same number of trials, containing equal presentation of all targets, are taken on each day. 231 

On days with different numbers of trials, we used all the trials on the day with the fewer trials and then 232 

randomly selected the same number of trials from the other day. To ensure all the trials for a pair of 233 

days were used, the entire analysis was repeated 1000 times, each iteration using a different randomly 234 

selected set of trials. All electrodes (96) and all time bins were included for all trials. For each day this 235 

produced a (electrode x time x trials) matrix. The data was concatenated across trials and then 236 

dimensionality reduction was performed using Principal Components Analysis (PCA) (‘pca’ function, 237 

Matlab 2021b). We reduced the data to 10 dimensions, following previous analysis, but confirmed that 238 

the results did not qualitatively change using a larger range of values. The result of the PCA analysis was 239 

a (10 x time*trials) matrix. We call this the ‘latent data’. The latent data from each day in the pair was 240 

then aligned using Canonical Correlations Analysis (CCA) (‘canoncorr’ function, Matlab 2021b). This 241 

produced a (10 x time*trials) matrix. We call this the ‘aligned latent data’. The data was then split back 242 

into individual trials (10 x time x trials) and the activity in each trial (‘time’ dimension) was averaged 243 

producing a (10 x 1 x trials) matrix for each day M and N. This was then used to calculate a linear 244 

regression model for classification (‘fitlm’ function, Matlab 2021b). The aligned latent data were used as 245 

the data and the target labels for each trial were used as the model. For within day calculations of 246 
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classification accuracy a leave-one-out cross validation (LOOCV) was used to calculate classification 247 

accuracy. For calculating classification accuracy across days, the entire data from day M was used to 248 

train the LDA model, which was tested on the entire dataset from day N (and vice versa). To calculate 249 

the Principal Subspace Angle (PSA) we followed the method presented by Knyazev and colleagues 21 250 

(‘subspacea’ function, MATLAB Central File Exchange, Matlab 2021b). We present data from the first 251 

PSA, but we note the results remained qualitatively consistent when summing over all PSAs calculated 252 

from the data.  253 

We only perform the PSA analysis on participant 1 because two electrode locations were recorded. In 254 

this case AIP and BA5 control for each other in factors related to changes in electrode-tissue interface 255 

that could influence the results (see Methods Figure 1C). We assume that since this crucial metric is 256 

consistent between the two arrays analytical differences can be explained by the different 257 

neurophysiology of the regions. Since there is only the PCIP array in participant 2 we cannot make the 258 

same assumption about differences over time, as without a comparison, analytical differences may be 259 

due to changes in the electrode-tissue interface. 260 

 261 

Data availability  262 

 263 

The datasets analyzed for this manuscript will be shared upon reasonable request.  264 

 265 

Code availability  266 

 267 

All analyses were implemented using custom Matlab (The Mathworks Inc.) code. Code to replicate the 268 

main results will be shared upon reasonable request. 269 
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 270 

Methods Figure 1. Data collection. A & B) Varying numbers of trials of the same task were collected on 271 

each day. Participant 1 only – during a middle period relatively few trials of the task were performed to 272 

focus on other experiments. Data collected were split into an ‘Early’ and ‘Late’ period. C) The impedance 273 

of each array on each day experiments were collected. Impedance data are only available for participant 274 

1.   275 
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