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Abstract

Neurons must faithfully encode signals that can vary over many orders of magnitude
despite having only limited dynamic ranges. For a correlated signal, this dynamic range con-
straint can be relieved by subtracting away components of the signal that can be predicted
from the past, a strategy known as predictive coding, that relies on learning the input statis-
tics. However, the statistics of input natural signals can also vary over very short time scales
e.g., following saccades across a visual scene. To maintain a reduced transmission cost to
signals with rapidly varying statistics, neuronal circuits implementing predictive coding must
also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory
neurons have shown such adaptations within 100 ms of an input change. Here, we show
first that linear neurons connected in a feedback inhibitory circuit can implement predictive
coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory
circuit allows it to automatically adapt and approximate the performance of an optimal linear
predictive coding network, over a wide range of inputs, while keeping its underlying tempo-
ral and synaptic properties unchanged. We demonstrate that the resulting changes to the
linearized temporal filters of this nonlinear network match the fast adaptations observed
experimentally in different sensory modalities, in different vertebrate species. Therefore, the
nonlinear feedback inhibitory network can provide automatic adaptation to fast varying sig-
nals, maintaining the dynamic range necessary for accurate neuronal transmission of natu-
ral inputs.

Author Summary

An animal exploring a natural scene receives sensory inputs that vary, rapidly, over many
orders of magnitude. Neurons must transmit these inputs faithfully despite both their lim-
ited dynamic range and relatively slow adaptation time scales. One well-accepted strategy
for transmitting signals through limited dynamic range channels—predictive coding-trans-
mits only components of the signal that cannot be predicted from the past. Predictive
coding algorithms respond maximally to unexpected inputs, making them appealing in
describing sensory transmission. However, recent experimental evidence has shown that
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neuronal circuits adapt quickly, to respond optimally following rapid input changes. Here,
we reconcile the predictive coding algorithm with this automatic adaptation, by introduc-
ing a fixed nonlinearity into a predictive coding circuit. The resulting network automati-
cally “adapts” its linearized response to different inputs. Indeed, it approximates the
performance of an optimal linear circuit implementing predictive coding, without having
to vary its internal parameters. Further, adding this nonlinearity to the predictive coding
circuit still allows the input to be compressed losslessly, allowing for additional down-
stream manipulations. Finally, we demonstrate that the nonlinear circuit dynamics match
responses in both auditory and visual neurons. Therefore, we believe that this nonlinear
circuit may be a general circuit motif that can be applied in different neural circuits, when-
ever it is necessary to provide an automatic improvement in the quality of the transmitted
signal, for a fast varying input distribution.

Introduction

Early sensory processing faces the challenge of communicating sensory inputs with large
dynamic range to the rest of the brain using neurons with limited dynamic range [1-6]. In elec-
trical engineering, such challenges are met by compressing the inputs using predictive coding
[7-11]. Given this, Srinivasan et al. conjectured that the early visual systems of both vertebrates
and invertebrates may also implement predictive coding [12]. More recently, predictive coding
has also been conjectured to function in cortical visual and auditory processing, and attention
[13-16].

A predictive coding circuit attempts to reduce the dynamic range of an input by subtracting
a prediction of the current input value-based on past input values-from the actual current
input value, and then transmitting only the difference, i.e. the prediction error (Fig 1). Such a
strategy only works if the prediction is good, which requires the existence of stationary (pre-
dictable) correlations within the input, and the ability of the algorithm to adapt to them. For
example, the optimal linear prediction-error filter, that minimizes the relative power of the
transmission, depends on the signal-to-noise ratio (SNR) of the inputs [7-9]. Indeed, in the
invertebrate visual system, Srinivasan et al. observed adaptations to the prediction-error filter
in response to changes in the input SNR [12].
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Fig 1. Lossless compression via predictive coding. Feedforward (a) and feedback (b) predictive coding circuits (as in Eq (1)), showing the circuit
structure necessary for reconstructing the input. (c) Lossless reconstruction (black dots) of an input (blue) from the transmitted output of a predictive coding
circuit (red). The mean power up to each point in time (solid bars) for the input (blue) and transmission (red) demonstrates the reduction in the mean
transmitted power via predictive coding.

doi:10.1371/journal.pcbi.1004315.g001
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This adaptation of the response filters of a neuron to changing input properties has been
explored in the literature [2,3,12,17-21]. This includes the predictive coding formulation intro-
duced by Srinivasan et al. [12], which was also extended to the vertebrate visual system [20].
Indeed, Hosoya et al. [20] demonstrated that predictive coding can explain changes to the
response filters of retinal ganglion cells, for adaptations on the time scale of seconds. Other
authors [22-24] alternatively postulated that sensory systems must whiten input signals. They
showed that varying response filters to whiten the input signals, for different inputs, also
matches the observed changes in neurons’ responses.

However, the adaptation of early sensory processing circuits must also be very fast, since the
input statistics often vary rapidly, e.g. across a saccade [2,3,25], or during movements within a
complex auditory environment [26]. Many of the adaptations that have been proposed in the
literature vary the biophysical properties of neurons; hence, they are thought to occur at a
slower time scale than the speed at which input changes occur. Nevertheless, experimental
measurements of the linear filters of sensory neurons have shown that they do indeed change
rapidly-often as fast as can be experimentally measured [27,28]. Therefore, to maintain opti-
mality, linear response filters in models of sensory coding must adapt to changes in the input
signal statistics—including the input SNR-rapidly, following each input change, yet prior to the
next change.

How can a linear filter change at a high rate in response to changes in its input statistics?
The addition of a time-invariant nonlinearity can allow the construction of a circuit that
“instantaneously adapts” its linearized responses to input changes [28,29]. However, it is not
clear if such a circuit exists, and how to construct it. Previous work on the effect of static non-
linearities on neurons has focused mostly on the possible computational functions of a spiking
nonlinearity on the output of a single neuron [29-32], or a multiplicative nonlinearity within a
motion detecting circuit [33].

Here, we demonstrate that a network of leaky integrator neurons, with a threshold nonline-
arity, is, indeed, able to achieve automatic adaptation to changes in the ratio of the predictable
component of an input to its unpredictable component. Since noise is, by definition, unpredict-
able, one specific case of this would be sudden changes to the input SNR. We first show that,
for certain stimulus ensembles, linear leaky integrator neurons can implement linear predictive
coding through both a feedback and a feedforward inhibitory circuit. We find the parameters
that allow these networks to minimize the output dynamic range. Comparing these implemen-
tations, we find that the structure of the adaptation in the feedback inhibitory circuit lends itself
to the construction of an automatically adapting filter. Specifically, the addition of a biologi-
cally-plausible threshold nonlinearity to the feedback inhibitory circuit allows it to approxi-
mate the performance of the optimal linear filter over a range of input SNRs.

We compare the responses of a nonlinear predictive coding circuit to available experimental
results. The instantaneous changes to the linearized filter of the nonlinear circuit match the fast
changes measured to the linear filters of neurons in different sensory modalities, in response to
rapid input changes. Hence, our results support the nonlinear feedback inhibitory circuit as a
circuit implementation of predictive coding that models the response of early processing in
various sensory modalities, facilitating the transmission of rapidly varying, high dynamic range
inputs, through slow, low dynamic range neurons.

Results
Predictive Coding Framework

In the field of adaptive signal processing, predictive coding algorithms have commonly been
used for signal compression [7,10,34], including in the transmission of telecommunications
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signals (e.g. in the GSM standard) [35,36] and in video compression [37-39]. These algorithms
compute a prediction of the current input based on previous values of the input, and then sub-
tract it away from the actual current input (Fig 1A and 1B). If the signal possesses some statisti-
cal structure, an accurate prediction can be made and the output transmission will have a
smaller power than the input (Fig 1C and 1D) [7-11].

In a general predictive coding algorithm, acting on an input time series {f;}, the prediction
can be constructed in two ways: (1) from past values of the input signal, or (2) from past values
of the transmitted output of the algorithm. In (1), the algorithm is entirely feedforward (Fig
1A). In contrast, in (2), the algorithm is feedback (Fig 1B). In each case, we can write the algo-
rithm as:

Pt :ﬁ - Cfeedforward(ﬁfhf;f?? o ) or pt :ft - Cfeedbuck(ptfﬂptf% N ) (1)

where p; is the transmitted signal and the predictions (computed either linearly or nonlinearly)
are C(-).

A crucial property of predictive coding algorithms is that they transmit information loss-
lessly. Specifically, their function is to transmit all the input that they receive including both
signal and noise. This is unlike many other algorithms commonly used in neuroscience, which
separate signal from noise. Indeed, as structured in Eq (1) and assuming that there is no com-
munication noise in the transmission process, the output of a predictive coding network can be
used to reconstruct the entire input, losslessly (Fig 1) [8,11]. Further, this is independent of the
linear or nonlinear way in which the prediction is computed (S1 Text). This property is impor-
tant in our identification of an optimal predictive coding algorithm.

To formulate this optimization problem, we define:

1. A class of allowable predictive coding algorithms, within which to identify an optimal
algorithm

2. An input ensemble over which the algorithm is optimized.

3. An optimization metric to measure the algorithm’s performance

Optimizing a Linear Predictive Coding Algorithm

We start by defining the class of linear predictive coding algorithms—predictive coding algo-
rithms in which the prediction is a linear combination of the past inputs:

po=f= Y wf @)

We have written this in the feedforward implementation. However, since the equation is lin-
ear, this results in no loss of generality; it can be rewritten recursively to obtain the feedback
case.

Eq (2) describes a predictive encoding constructed by a class of linear temporal filters,
which vary in the way in which they compute the prediction. Each such temporal filter is
defined by its set of parameters, {w;}, causally, for all time steps, i, counting backwards through
time. We now define the input ensemble, and optimization metric with which we can identify a
specific temporal filter (i.e. specific set of parameters {w;}) that is optimal.
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Naturalistic Subset of Inputs

Ideally, one would like to find the optimal filter over the space of natural images. However,
given the complexity of this space, we chose to use a subset of such inputs. Natural image
amplitudes are distributed, over time, with a power law distribution over temporal frequencies
[40]. It is possible to decompose such an input (up to some high frequency roll-off) into a sum
of several exponentially correlated components, each with a different time constant [41,42].
Therefore, we chose an input composed of one such exponentially correlated signal (with a
single time constant, 7,), combined with uncorrelated noise, combined at a particular SNR, o

(Methods):
| o /1
.ft_ 1+G"t+ 1+O_c’t (3)

This input provides the ensemble over which we can identify an optimal linear predictive
coding filter. We believe that this subset of inputs is naturalistic, since it should be possible to
combine several input subsets (constructed with different time constants) to generalize back to
the space of natural images.

Assessing Performance of Predictive Coding

The final part of the formulation of the optimization problem is a performance metric against
which to optimize the filter. Since the goal of applying predictive coding is to reduce the
dynamic range required to transmit a signal, a natural measure of performance would be the
degree of reduction in the power of the transmitted signal, relative to the input power. We term
this the network gain, defined as:

@)

Transmitted Power 4=

Input Power ! )
>0
i=1

Network Gain =

for p; as defined in Eq (2), and f; as defined in Eq (3).

Ideally, any metric of performance, for a compression algorithm, would include both the
degree of compression, and a measure of the information lost due to the compression, e.g.
reconstruction error. However, as introduced above, predictive coding algorithms encode
inputs losslessly. Hence, any reconstruction error is necessarily zero (Fig 1C). Therefore, we
can measure the performance of different predictive coding algorithms just by using the net-
work gain, and we now solve for the optimal linear temporal filter that minimizes this gain
over the input ensemble.

Optimal Linear Predictive Coding Filter

Finding the linear filter that minimizes the network gain is a specific example of a common
optimization in the adaptive signal processing literature [7-9], but the specific derivation that
we utilize is detailed in S1 Text.

Briefly, we compute the power of the filter by transforming Eq (2) into the frequency
domain, and then compute the output power by applying the transformed transfer function to
the autocorrelation function of the input. We then solve for the optimal values over the set of
w; by differentiation. The solution is a function of the two parameters that characterize the
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input ensemble, the time constant (z,) and SNR (0):

w; = (B (1=A)) (5)

where

_D(l+o 2D e —1) = (=11 +0)
P . J(1+0)+ /(8 2)//:( o -naser

It is important to note that:
« Bis dependent only on the correlation time constant of the signal component
« A is dependent both on the signal, and the SNR

Plotting each of these variables, for some values of the input parameters, provides their qual-
itative structure. First, § varies from 0 to 1, as the correlation time constant of the signal
increases (Fig 2A). Second, for each fixed f3, A varies from 0 to 1, as the SNR increases (Fig
2B). This quantitative value of A varies with B, but the increase from 0 to 1 always holds,
qualitatively.

Substituting Eq (5) back into Eq (2), we can write down the linear predictive coding filter
that minimizes the power of the transmitted signal:

e e O MRS o)

An interesting property of the optimal linear predictive coding algorithm is its structure in
the high noise, low signal regime (i.e. low SNR in Fig 2B). In that regime, A" — 0. Hence, the
prediction approaches 0, and p, — f;. Initially, this might seem counterintuitive, since the pre-
dictive coding network is transmitting the entire, noisy input to downstream circuits. However,
any prediction of an uncorrelated input will, on average, increase the power of the transmitted
output. Therefore, sending out no prediction does indeed minimize the network gain.

Further intuition about the values of the parameters is most useful when applied to specific
implementations of this algorithm. Therefore, we first show that it is possible to implement Eq
(7) using a circuit of linear leaky integrator neurons.

05} P

0.1 1 10 100
Signal Time Constant (ts) —> SNR (6) —>

Fig 2. Parameters of the optimized linear predictive coding algorithm. (a) 8 = 8(z) (b) A" = A"(B, 0): Eq
(6) for two values of .

doi:10.1371/journal.pcbi.1004315.9002
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Implementing Optimal Filter with Linear Neurons

A simple model of a biological neuron is a leaky integrator (S1 Fig) [43,44], whose voltage
response (v) is modeled by an exponential low pass filter (Methods):

o ¢]
— i input
v =5 e ®)
T

where the time constant of the filter, 7,,, is the membrane time constant, and g is the synaptic
conductance (measured as a fraction of the membrane conductance).

Comparing Eq (8) to Eq (7), we see that the optimal linear predictive coding filter can be
implemented by a combination of two leaky integrator neurons, with different time constants.
First, in the limit of 7,, — 0, Eq (8) implies that v, o V" Therefore, the first term in Eq(7)
can be implemented by a neuron with a short time constant. Second, the subtracted prediction
in Eq (7) is simply an exponential weight on the past inputs and, hence, can also be imple-
mented by a neuron with a specific time constant.

This structure can be implemented with different circuits, and we explore both feedforward
and feedback two-neuron circuit implementations of the predictive coding algorithm.

Feedforward and Feedback Implementations

The feedforward and feedback implementations of predictive coding (Fig 3) are each character-
ized by two parameters: the time constant of the interneuron (feedforward: &; feedback: &) and
the loop gain (feedforward: I'; feedback: I), i.e. the gain of input through the interneuron rela-
tive to direct input. For each network, the two parameters may take different values to imple-
ment the optimal linear predictive filter (that minimizes network gain for the given input
statistics). To derive these values, we first construct a recursive analytical form for each net-
work’s dynamics, following the flow of information around the circuit, and adding a time step
delay at the synapses leading into the interneuron (as diagrammed in Fig 3) (Methods).

a
ft Synaptic
Transmission

delay
o

1 Dynamics (from

1 leaky integration)
1

Pt ! P

Fig 3. Schematic neural networks implementing predictive coding, through feedforward (a) or
feedback (b) inhibition. Networks’ parameters are: (a) Feedforward: 3, I (b) Feedback: a, T. In both circuits,
the unit that outputs p; is termed the principal cell, and the unit that outputs n; the interneuron. There are two
synapses onto each interneuron: (1) its external input and (2) a representation of its internal dynamics (right
of the dashed line). We can describe its internal dynamics in this way because the interneuron is a leaky
integrator, i.e. its internal dynamics (Eq (8)) are an infinite sum of past outputs, discounted at each time step
by a fixed multiplier. Therefore, they can be represented by a delayed input across a synapse, with a
multiplicative discounting factor, as in (a) and (b).

doi:10.1371/journal.pcbi.1004315.9003
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The recursive dynamics of the feedforward circuit (Fig 3A) are:

{nt =a(n_, +Tf_,)
p: :ft —n

©)

where the interneuron’s time constant is characterized by a discounting factor, & = e™'/* < 1,
that discounts the voltage from the past time step by a fixed multiple, and the feedforward gain

through the loop is r (Fig 3A). Solving this recursion, we get (S1 Text):
pt:ﬁ_f‘.z&i t—i (10)
i=1

Comparing Eq (10) to Eq (7), the feedforward inhibitory network will implement the opti-
mal linear prediction filter if

a=p1—-A) and T =A"/(1-A") (11)

For the feedback inhibitory network (Fig 3B), we can identify and solve a similar pair of
recursive equations (Methods). This gives us:

p=fim o e (=T (12)

where the interneuron’s discounting factor is & and the feedback gain is I'. Comparing Eq (12)
to Eq (7), the feedback inhibitory network will implement the optimal linear prediction filter
if:

o= and T =A" (13)
Summarizing the dependence of the optimal network parameters on the input statistics

(from Eqs (11) and (13)) makes explicit the differences between the feedforward and feedback
models in their adaptation to input changes:

Interneuron discounting factor Gain

- — . _A* = A*(B(zs),0
Feedforward O((‘L'S, 0) - ﬁ(’rs) (1 A (ﬁ(’rs)7 6)) F(TS, O') = %
Feedback a(ts) = Blzs) I'(z5, 0) = N'(B(zs), 0)

doi:10.1371/journal.pcbi.1004315.t001

Although the resulting linear prediction-error filter changes in the same way for both cir-
cuits, the mechanistic difference between the circuits places different demands on the interneu-
rons. For example, consider the changes in response to increasing input SNR (o), for a fixed
correlation of the signal component (7). For the feedforward network, I" increases without
bound, while & approaches 0. In contrast, for the feedback network, I" approaches 1 (Fig 2B),
while o remains fixed to 5. Therefore, whereas in the feedforward network both the gain and
the interneuron time constant must vary to maintain optimality, in the feedback network, only
the feedback gain must vary.

Focusing on the interneuron discounting factor, in the feedforward case, the interneuron
gets progressively faster as noise increases, as if the interneuron is reducing the time over
which it averages the signal to obtain a prediction, given cleaner inputs (with less noise). How-
ever, in the feedback case, the interneuron averages over the same time scale, perhaps to
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provide a matched filter to select the specific correlated signal. This emphasizes the different
roles for the interneuron within each circuit.

Further, this difference suggests that the feedback network may lend itself more readily to
the construction of an automatically adapting nonlinear network-to respond to rapidly varying
input SNR. One can imagine changing the output from one component of a circuit using a
nonlinearity, as is necessary for adaptation of the feedback network. However, it would seem to
be quite difficult to vary the time constant of a neuron, a cellular property, using a nonlinearity,
as is necessary for adaptation of the feedforward network. Therefore, we now explore the con-
struction of such a nonlinear feedback circuit.

Constructing a Nonlinear Circuit that Automatically Adapts to Changes in
Input SNR

As introduced earlier, a nonlinearity can allow an invariant circuit to automatically change its
linearized response to varying inputs [29-33]. Here, we consider the automatic adaptation of a
feedback circuit to rapid changes of the input SNR by introducing such a nonlinearity. In the
following sections, we demonstrate that its performance is close to optimal.

Our analysis of the optimal linear feedback circuit shows that as ¢ varies from 0 (pure noise)
to oo (pure signal), the feedback gain, I', must increase from 0 to 1. Therefore, to automatically
match the optimal filter over a range of input SNRs, the nonlinearity in the feedback inhibitory
circuit must increase the strength of the output from the interneuron onto the principal neuron
as the noise decreases (and vice versa).

Since inputs of different SNR are integrated differentially by the interneuron, we define the
shape necessary for the static nonlinearity. Integrating uncorrelated noise is equivalent to a
random walk. In contrast, integrating a correlated signal is equivalent to a biased random walk.
Hence, on average, the output of a leaky integrator neuron, from an input with greater corre-
lated component (i.e. higher SNR), will be larger in amplitude. Therefore, any automatic adapt-
ing nonlinearity-applied to the output of the feedback interneuron-must push the gain
towards 0 for small output amplitudes, and pull the gain towards 1 for large output amplitudes.

a b Inc.Thresh. (8) ¢ 2 . .
R(V) _ -
A R(v) ¢ 18} - T r=17
t _
7 7
y y 16} P
""""""""""""""""""""""""""" / v
! < L7
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, © |
Y & 12
~ r=0 g
,,,,,,,,,,,,,,,,, ) 5 'C -
% 0.8} /
\') = /
12 3 4 061 ,
04t 7
’ /
02K/7
 / zZ
Pt % n' 2 n
7 A
®

Fig 4. Rectification nonlinearity and its effect on the feedback inhibitory circuit. (a) Rectification nonlinearity (black), with threshold at v = 1. Linearized
responses in color (cyan: min; magenta: max). (b) Nonlinear feedback inhibitory network. The nonlinearity (inset) is applied to the interneuron’s output.
Nonlinearities with increasing thresholds are colored (green: min; red: max) (Methods). (c) Network gain at different input frequencies (note: the frequency
space is in Z-space, i.e. defined with respect to the fixed time step of the network). The three colored curves are the nonlinear network response curves
(computed using describing function analysis, colored as in (b)) (Methods). The dotted lines provide extreme parameter values for the linear network: T =0,1.

doi:10.1371/journal.pcbi.1004315.9004
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One simple piecewise linear nonlinearity satisfies this requirement: the threshold or rectilin-
ear nonlinearity, which increases linearly, from a fixed threshold (Fig 4A and 4B; Methods). In
response to increasing input amplitudes, the linearized feedback gain of the nonlinear circuit
increases from a gain of 0, for small inputs (below the threshold), to a gain of 1, for large inputs
(colored lines in Fig 4A). This precisely matches the range over which I' must vary, as the SNR
of the input changes to minimize the network gain.

Also termed a dead-zone nonlinearity by engineers [45], the rectification nonlinearity is bio-
logically plausible. The nonlinearity (Fig 4B) needs to respond symmetrically around 0, i.e. to
both positive and negative inputs. This is biologically unreasonable for any one neuron. How-
ever, such a nonlinearity can be constructed by using a pair of neurons, with each receiving
half the inputs (a single sign), and having oppositely signed output connections. The rectifica-
tion can then be implemented through half-wave rectification of each of the neurons’ outputs,
either through the neurons’ spiking thresholds, or through the minimum voltage required to
release a vesicle [43,44].

Therefore, a feedback inhibitory circuit with a rectification nonlinearity applied to the feed-
back interneuron (Fig 4B) seems to be a plausible candidate to perform automatic adaptation,
and approximate the minimal network gain, across a range of input SNRs in real neural cir-
cuits. To confirm this, we first demonstrate that the nonlinear feedback inhibitory network
does, indeed, change its responses as the input properties change, and that the resulting net-
work gain has the qualitative structure necessary for automatic adaptation.

Qualitative Understanding of Nonlinear Network Dynamics

To understand the operation of the nonlinear feedback circuit (Fig 4B), independent of the spe-
cific value of the threshold, it is convenient to consider its network gain in the frequency
domain (Fig 4C). This will provide intuition for the circuits’ response to inputs with different
degrees of predictability. Indeed, since low frequency inputs change slowly, they are predict-
able. In contrast, high frequency inputs (near the Nyquist frequency) are unpredictable and,
therefore, for the purposes of the feedback circuit equivalent to noise. The optimal linear feed-
back circuit for each of these input regimes differs. For low frequency (predictable) inputs, the
optimal linear feedback circuit would set the feedback gain to 1. In contrast, for high frequency
(unpredictable) inputs, the optimal linear feedback circuit should set the feedback gain to 0.

We observe that, without changing any parameters, each nonlinear network (with a specific
threshold) shows network gains that approach those of the I" = 1 linear network for low fre-
quency inputs, and those of the I" = 0 linear network for high frequency inputs (Fig 4C, dotted
lines show the performance of the two linear networks). This suggests that the rectilinear feed-
back inhibitory circuit approaches the optimal performance in different regimes of activity,
without internal adaptation, i.e. performance of the form necessary for automatic adaptation.
Further, the performance is qualitatively independent of the precise value of the threshold, sug-
gesting-as introduced above-the dynamically changing performance is a general property of
the shape of the rectilinear nonlinearity.

We now demonstrate that this qualitative understanding is also supported quantitatively,
for fast varying input statistics: comparing the performance of the nonlinear feedback network
against that of optimal linear networks.

Quantitative Performance of Nonlinear vs. Linear Circuits

To compare the quantitative performance of the nonlinear and the linear circuits in the regime
where input properties change too fast to allow for parameter adaptation, we define a class of
non-stationary inputs. Each such input-termed a mixture-is composed of two components
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with different SNRs, mixed in time, such that there is one component for a fixed amount of
time, and then the second component for the same amount of time. In this way, we are model-
ling the response of the circuit to an input with a rapid change from one SNR to another, as
opposed to a single input, with a fixed SNR.

Within this input regime, we compare the nonlinear network to two different types of linear
networks:

o Type 1: The linear network that obtains the minimal network gain over the specific mixture
of two SNR inputs, i.e. the minimal network gain for a non-adapting linear predictive coding
network.

o Type 2: The linear network that has sufficient time to adapt separately to optimally transmit
each component of the mixture, i.e. this network has the minimal network gain for any linear
predictive coding network (over this specific input mixture).

We demonstrate (Fig 5C and 5D) that the nonlinear network (red curves) both: (i) outper-
forms the type 1 linear network (blue curves), and (ii) approximates the performance of the
type 2 linear network (dashed black curves).

In more detail, the response of both the linear and nonlinear networks to a mixture of two
input components (Fig 5A) is simulated, and the network gain computed (summarized in Fig
5B). By varying the network parameters, we find the network which minimizes the gain for the
specific mixture (Methods).

To robustly test the performance of the nonlinear circuit, we simulated its response to a
mixture composed of components that are as distinct as possible. Therefore, we chose the first
component of the mixture to be pure, predictable, correlated signal, and the second component
to be unpredictable. As defined earlier, the correlated component is exponentially correlated
with a fixed time constant. For the unpredictable component of the mixture, we utilize one of
two inputs: (1) input at the Nyquist frequency, or (2) Gaussian white noise. Both these inputs
are—for the purposes of a nonlinear predictive coding circuit with a non-zero time constant in
the feedback neuron-unpredictable. Since the input mixture transitions from one extreme
SNR to another, it should provide a strong test of the ability of a fixed nonlinear circuit to
respond to a range of input SNRs.

We first show that the best linear network of type 1 is outperformed by the nonlinear net-
work (Fig 5C, and green region in Fig 5E). Indeed, when the unpredictable component of the
mixture was composed of input at the Nyquist frequency, the improvement of the nonlinear
network over the type 1 linear network was particularly large (30-40%) (Fig 5D). When the
unpredictable component of the mixture was modelled by the more biologically realistic white
noise stimulus, the improvement was smaller, but it was still approx. 20% (Fig 5F).

It is important to note that the linear network of type 1 against which we compare the non-
linear network’s performance has the minimal network gain of any such network. We could
have used a linear network adapted to the first component of the mixture, and then measured
its performance over both components. This would be a natural model for the case where a net-
work was adapted to some input statistic, which changed rapidly, and the network had had
insufficient time to adapt to the new statistic. However, the type 1 linear network outperforms
any such linear network. Therefore, it provides a strong baseline against which to compare the
performance of the nonlinear network.

Our results show that the nonlinear network’s improvement over the type 1 linear network
persists even if (a) the unpredictable component has larger average amplitude than the predictable
(correlated) component (Fig 5C-5F), or if (b) the fraction of non-stationarity within the input is
low (S2 Fig). In both cases, the greatest relative improvement occurs when the uncorrelated
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doi:10.1371/journal.pcbi.1004315.9005

component is comparatively smaller (either in amplitude or time) than the correlated component.
However, the improvement persists over a wide range of input mixtures. Therefore, mixtures of
noisy inputs with cleaner ones can be dealt with automatically-and effectively-by the nonlinear
network, independent of either the amplitudes of each component, or the amount of each compo-
nent within the mixture (modelling the sampling distribution over the environment).
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Continuing beyond the improvement over type 1 networks, we next observe that the perfor-
mance of the nonlinear network approximates the performance of the type 2 linear network
(Fig 5C and diagonal hashed region in Fig 5E). The type 2 linear network is allowed to adapt
independently to each component of the mixture. Therefore, its performance is the lowest pos-
sible network gain, for any linear predictive coding algorithm-assuming sufficient time to
adapt to each new input SNR. The observation that the nonlinear network is able to approxi-
mate the type 2 linear performance-despite having a fixed set of network parameters—for a
range of input mixtures (with different input signal distributions), is precisely the desired,
quantitative, demonstration of automatic adaptation.

Given this, we explore the potential role of nonlinear feedback inhibitory networks in real
sensory systems.

Comparison with Biological Experiments

Classical experiments, such as the seminal work of J. D. Victor in cat retinal ganglion cells [17],
have shown that the adaptation of neural responses to varying input stimuli occurs nonlinearly.
However, these observations do not directly assess the presence of an automatically adapting
circuit since, classically, the neuronal responses were measured after the input had been intro-
duced stably, for some time. Therefore, any observed nonlinear adaptation can be explained by
the presence of a second, nonlinear estimate of the input statistics, whose output is then, sec-
ondarily, used to adapt the measured linear neural response properties. Such a mechanism
would have a delay but, given the experimental time scale, such a delay was not constrained.
Nevertheless, simulating the responses of the nonlinear feedback inhibitory network shows
that its responses do agree qualitatively with the classically observed nonlinear experiments

(S3 Fig).

To test specifically for the presence of automatic adaptation, experiments must constrain
the speed of the change of the neuronal response function: an automatically adapting circuit
will respond to a change in the input structure with an adaptive change, on the timescales of
neuronal dynamics. Experimental evidence demonstrating these fast changes to neuronal
responses has been found, recently, both in the salamander visual system [21,27] (Fig 6A and
6B) and in the auditory centers of the avian brain [28] (Fig 7A-7C). Therefore, these changes
appear to be a general property of sensory systems. We demonstrate that these experimental
changes match the expected changes in the response filters, within the nonlinear network.

Baccus and Meister [27] found that the linear filters of retinal ganglion cells (RGCs)
changed as fast as could be experimentally measured-within 200ms of a sudden input change.
Further, as the mean input contrast is increased, the filter shifts its maximum weights onto
inputs from the more recent past (Fig 6A and 6B) [27].

To match the qualitative structure of the observed temporal filter, with a smooth increase
from zero to the first peak, we make two biologically reasonable changes to the nonlinear
model (Methods, S4 Fig).

1. We introduce an additional neuron with a non-zero time constant, prior to the principal
neuron (S4B Fig) (modelling the upstream circuitry as a low pass filter, a first-order
approximation).

2. We added a time constant to the principal neuron (S4C Fig) (since no real neuron can have
a time constant of 0).

This modified network produces a smoothly varying temporal filter (with zero weight at
t = 0) that can be compared to experiment (Methods). These two (biologically reasonable)
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doi:10.1371/journal.pcbi.1004315.9006

changes are actually necessary; subsets of this model, with fewer neurons, or fewer time con-
stants, won’t result in a smooth temporal filter (Methods).

Given this model, we demonstrate that the resulting response filter for the nonlinear feed-
back network shifts in the same direction as that measured by Baccus and Meister [27], in
response to sudden input mean changes (Fig 5C). For example, the filter shifts towards more
recent inputs (i.e. speeds up) in response to a sudden increase in input amplitude. This qualita-
tive agreement between the change in the response filter introduced automatically by the non-
linear feedback network, and the responses of the RGCs, suggests that a nonlinear circuit could
underlie the observed fast adaptation.

Mante et al. [21] also showed a rapid shift of the linear impulse response function for neu-
rons in the lateral geniculate nucleus (LGN). Their observed change (Figures 3 and 4 in [21])
has the same qualitative structure as that observed by Baccus and Meister [27] (Fig 6B), but is
observed in response to both changing input contrast and changing input luminance. Since the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004315 August 6, 2015 14/24



@' PLOS COMPUTATIONAL
NZJ ' BIOLOGY Automatic Neural Circuit Adaptation to Fast Input Changes

a ~ 30db d
o Increasing = Increasing =
o Input Amp. 3
2 - 2
%_ — =
€ 60 db g—
< <
5 0P ST A o 5
X £
= =
£ £
S S
4
—40 -20 0 =
Time (msec) Time (msec)
b € s
= Pos/Neg o
a
=) g
< :.'. °® ° 8 ® L]
2 T ef e, 1
I ’ 2
Low Mean Input
Input amplitude —-
C _ fo0p
- [ [ ]
3 10? 18 [ °
g 10|
c ~N
g ==
[T
S 10’ 2 3
T 1077 e
10’ 10°
) 10’
Low mean input 0

Input amplitude —>~

Fig 7. Response filters of zebra finch auditory neurons ((a), adapted from [28]) compared to
theoretically simulated response filters of a nonlinear feedback inhibitory circuit (d). (a-c) Adapted
from [28]. (a) Linear response filters for a single neuron stimulated with inputs of different mean sound
amplitudes (colored to match (d)). (b) Ratio of the total positive to total negative component of neuronal filters
is computed for an input with high mean amplitude, and an input with low mean amplitude. Each circle shows
these values for a different recorded neuron (one example being (a)). The colored circle is derived from the
simulated response filters of the principal cell of the nonlinear circuit (d). It uses the ratio of the total positive to
total negative component of the simulated filters (plotted in (e)) at the highest input amplitude (red), and the
lowest input amplitude (cyan). (c) The BMF (freq. of the peak of the Fourier transform of the linear response
filters) for a high mean input, and a low mean input (for different neurons, one example being (a)). The colored
circle is derived from the simulated responses of the principal cell of the nonlinear network (d). It uses the
BMFs (shown in (f)) of the simulated filters at the highest input amplitude (red) and the lowest input amplitude
(cyan). (d) Linear filters estimated to best approximate the response of the principal cell of the nonlinear
circuit to white noise stimuli of different amplitudes (Methods). Curves colored to match (a). (e) The ratio of
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doi:10.1371/journal.pcbi.1004315.9007

shift in the filter due to the nonlinear feedback inhibitory network is independent of the spe-
cific input, the nonlinear network is able to model the observed filter changes in the LGN.

This independence on the precise input also allows the automatic adaptation of the nonlin-
ear feedback inhibitory network to generalize to non-visual sensory modalities. Nagel and
Doupe [28] measured changes to the linear filters of auditory neurons in the zebra finch fore-
brain, which occurred rapidly, within 100ms of changes to the input auditory stimuli (Fig 7A).
They quantitatively characterized these changes:
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1. In response to increasing input amplitude, the first peak of the temporal filter decreased in
amplitude, and the first valley increased in amplitude. Therefore, there was a decrease in the
ratio of total positive response of the filter to total negative response, when the input ampli-
tude changes from high to low (points below the diagonal in Fig 7B).

2. The shift in the location of the peaks can be characterized by the change in the peak fre-
quency response of the filter (best mean frequency, BMF). Therefore, comparing high to
low amplitude inputs, the authors identified an increase in the BMF (points above the diago-
nal in Fig 7C).

We demonstrate, through simulating the responses of the nonlinear feedback circuit (Fig
7D) that the shift in the filter responses agrees qualitatively with the shift in the measured linear
responses (Fig 7A). Indeed, as the amplitude increases, one observes not only a shift in the loca-
tions of the extrema, but also the addition of a second peak, following the valley, at the highest
amplitudes. Further, each of the changes to the filters measured by Nagel and Doupe [28] are a
natural property of the nonlinear circuit:

1. The positive/negative ratio of the simulated filter of the nonlinear network decreases as
the input amplitude increases (Fig 7E). Further, the simulated ratio at high and low input
amplitudes agrees quantitatively with Nagel and Doupe’s measurements (colored circle in
Fig 7B).

2. The BMF of the simulated temporal filters of the nonlinear network increases for increasing
input amplitudes (Fig 7F). Further, the value of the BMF for the simulated filters at high vs.
low input amplitudes agrees quantitatively with the experimental measurements (colored
circle in Fig 7C).

This suggests that a nonlinear feedback circuit could underlie the observed fast adaptation
in the zebra finch auditory forebrain.

Importantly, the changes to the response filters of the nonlinear predictive coding network
are a general property of the network, and not a function of the specific parameters chosen.
Indeed, it is possible to demonstrate analytically that a nonlinear model of neurons with just
two time constants, assuming only that the time constant of the interneuron is longer than that
of the principal neuron, already shows a shift of its single extremum towards the more recent
past (as input amplitudes increase) (S1 Text). Therefore, the rectified feedback inhibitory cir-
cuit design automatically lends itself to fast changes of the response filters of the output neuron,
matching the observed fast adaptations in many different neural circuits.

Discussion

Neuronal circuits must transmit input signals which vary, rapidly, by multiple orders of magni-
tude [2,3,25,26], through neuron channels that have limited dynamic ranges and slow response
times [1-5]. This results in two computational challenges: transmitting signals with minimal
power, and responding to rapid changes in the input statistics. We demonstrated that an opti-
mal predictive coding algorithm, that reduces the transmission power of a correlated signal
(and thereby ameliorates the first challenge), can be implemented with linear leaky integrator
neurons using either feedback or feedforward inhibition. Inclusion of a static nonlinearity in
the feedback inhibition circuit allows it to approximate the performance of the optimal linear
predictive filter, for a range of input SNRs, while keeping its circuit parameters unchanged.
Such a circuit, therefore, helps to address the second challenge. Indeed, we showed that the
nonlinear feedback inhibitory network’s responses are in agreement with experimentally mea-
sured rapid changes to neuronal response functions in different sensory modalities [21,27,28].
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Our analysis distinguishing the feedforward and feedback implementations of the algorithm
demonstrated the importance of the neural implementation in developing intuition about an
algorithm. For example, in the feedforward inhibitory circuit, it was possible for predictive cod-
ing to be implemented by a neuron with a short time constant, for large SNR inputs. However,
in the feedback circuit, the predictive neuron is matched to the properties of the signal compo-
nent, and independent of the SNR. Therefore, each implementation may have differing proper-
ties, which may each prove differently useful.

This work also demonstrates the necessity of studying inputs with rapidly varying statistics,
to understand the different constraints they place on circuit implementations of an algorithm.
Both the feedforward and feedback circuits can implement optimal linear predictive coding-
when the input is statistically stationary. However, by analyzing the responses of the two differ-
ent implementations to non-stationary inputs, we found that the feedback implementation
provides a natural way to approximate an optimal response, through the addition of a circuit
nonlinearity. In contrast, the alternative, feedforward, implementation requires adaptation
of its underlying cellular properties, which would be difficult to vary through a circuit
nonlinearity.

In this report, we introduced intuition on the shape of a nonlinearity necessary to perform
automatic adaptation. Given its mathematical convenience, and biological plausibility, we
focused on the rectilinear nonlinearity. However, it is important to note that the rectification
nonlinearity is not the only nonlinearity that can satisfy the necessary structure. Indeed, any
nonlinearity with the necessary inflection point should also be able to perform an automatic
adaptation. This provides an avenue for further analysis.

Another avenue for further exploration is how to generalize our results on nonlinear predic-
tive coding networks to more complex stimuli. We found the optimal linear predictive coding
algorithm for an exponentially correlated signal with a single time constant. However, natural-
istic stimuli can be modeled as a combination of several exponentially correlated signals, with
different time constants. This suggests that to respond to a naturalistic stimulus, there should
be several predictive coding circuits, each adapted to one of the correlations within the signal.
However, how could these different predictive coding circuits be combined to respond opti-
mally overall? One possible solution may be the addition of mutually inhibitory connections
between the parallel predictive coding circuits. This circuit design should allow each neuron to
respond maximally to the input component that it was adapted for, while simultaneously
removing that input component from the remaining neurons. Hence, it might allow the net
response of the larger circuit to remain close to optimal. A similar network design has been
shown to implement predictive coding across a spatial scene (for a non time-varying stimulus)
[46]. Exploring circuits of this form, built using simpler building blocks, should prove useful in
understanding the design of more complex circuits.

Another direction to explore is the computational function of the nonlinear circuit, beyond
its linearized responses. In this work, we demonstrated that the network gain of the nonlinear
feedback network approximates that of the optimal linear network. However, this does not
imply the two networks have identical responses to stimuli. For example, the linear algorithm
amplifies high frequency inputs (flattening the output frequency distribution, for an exponen-
tially correlated signal with noise) (S5 Fig). In contrast, the nonlinear network reduces the
transmission of high frequency inputs (since they are less likely to cross the threshold). This
difference, where the nonlinear network may partially denoise the input, hints at additional,
computational functions for nonlinear networks, which should be explored further.

In general, adaptation of network dynamics, causing them to respond faster when inputs
are more salient, has been observed in different experiments [2,12,17,27,28], often as a shifting
of the linear kernels. Conceptually, this shift has been understood as the system responding
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more quickly to salient stimuli, since the relevant information can be extracted sooner [47].
Our results suggest that nonlinear feedback inhibitory circuits may provide a general neural
mechanism with which to implement such a shift, automatically. In addition, the presence of
fast adaptation in different species suggest that this mechanism may have been conserved over
evolutionary history.

Finally, one long standing goal of computational neuroscience has been to develop circuit
motifs, in a manner similar to electrical engineering. We believe that the nonlinear feedback
inhibitory network could be one such neuronal circuit motif. It performs a specific computa-
tional function without losing information, and is stable with respect to internal disturbances
(S1 Text). Hence, this nonlinear motif could be inserted into a larger computational circuit
without affecting its function, while still maintaining stability, and lowering the internal
dynamic range requirements. Further, the circuit’s structure is simple and biologically plausi-
ble. Hence, it can reasonably be implemented in many areas of the central nervous system.
Therefore, we believe that the identification of this motif should provide a useful tool in the
analysis of larger circuits in many neural systems.

Methods
Input Structure

The input used in optimizing the linear predictive coding circuit (as in Eq (3)) was composed
of an exponentially correlated signal and uncorrelated noise, combined with an SNR (of the
power of the input) of 0. In detail, the signal component of the input, s, was defined as:

(s)=0
<Stst+i> = eii/r‘ = ﬁi (14)

and the noise, &, as:

1 i=0
<gt8t+i> = (5(1) = (15)
0 i#0

Our derivation of the optimal linear predictive coding filter did not require any constraint
on the distributions (for either the signal or noise components of the input). Hence, for maxi-
mal generality, we left them unconstrained.

Leaky Integrator Neurons

The predictive coding circuits were constructed with linear leaky integrator neurons (S1 Fig).
The voltage dynamics of a single such neuron is described by:

#0) = () + S0, (1) (16)

where the synaptic conductance, g, is measured as a fraction of the cell's membrane con-
ductance. Discretizing Eq (16) in time, and solving for v, we find that the resulting neuronal
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building block is an exponential, low pass filter, with time constant 7,,,, as described in the text.

v, = f—s Z e Ty (17)

m =0

Expanding the Feedback Recursion

The steps to derive the recursive equation governing the dynamics of the feedback circuit Eq (12)
are shown. The corresponding derivation for the feedforward circuit can be found in S1 Text.

The discretized feedback circuit is described by a pair of linear, recursive equations. As
introduced in the text, we derive this pair of equations by computing the input to each cell in
the circuit (Fig 3A), and adding a delay for all inputs to the interneuron. We can ignore the cor-
responding delay onto inputs to the principal cell, because adding an additional delay to the
inputs to p,, i.e. having p, = f,_; — n,_;, would not change the structure of the recursion in Eq
(9). It would simply add an additional time step of delay to everything.

This process gives us:

b, :ft - n (18)
n,=o(n_, +Tp._,) (19)

Substituting Eq (18) into Eq (19) (at time point, t-1):
no=o-n_,+o-I- (ft—l _nt—l) :O‘(l_r)'”t—l +°"F']ct—1 (20)

Letting 7 = a(1-T"), and then substituting Eq (20), at an earlier time point, back into itself,
we get:

no=n-(-n_y+oa-T-fi)+a-T-fi,=n-n,+oa-T-(f,+n-f,) (21)

Repeating this process, we have:
”t:“'F'Z’?’1'ﬁ7,‘=ﬁ'2(0‘(1—r)) S (22)
i=1 i=1
Finally, substituting back into Eq (18) gives the expanded recursion in the text, Eq (12).

Rectilinear Nonlinearity

The equation for the rectilinear nonlinearity (also known as a dead zone nonlinearity in the
engineering literature) is as follows:

x40 x < —0
R(x) = 0 —0<x<9 (23)
x—0 0<s

Describing Function Approximation of Nonlinear Network

In Fig 3B, we present the Bode plots of both the linear and the nonlinear networks. However,
the Bode plot for the nonlinear network is, necessarily, an approximation (since the response
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of any nonlinear network is dependent on its input history). The approximation used in this
plot is obtained through Describing Function analysis [45], and is commonly used in control
theory.

In this analysis, we assume that the response of the network to a single frequency of input
(at a single amplitude) is linear for each such input. This linear model is allowed to vary with
each different frequency (and amplitudes). We compute a look-up table for the effect of the
nonlinearity by balancing the input across the nonlinear loop, for each frequency (and input
amplitude). For every single frequency input to the network, however, it is necessary to make
the assumption that the output of the network only produces a single frequency output (the
primary component of the Fourier transform). This means that describing function analysis
automatically discards any spread of the initial frequency into higher Fourier harmonics. The
resulting Bode plots are, therefore, not quantitatively correct. However, it has been well estab-
lished that describing function analysis does provide a reasonable, qualitatively correct result.

Comparison of Linear to Nonlinear Network Gains

Response of optimal linear and nonlinear networks to varying mixtures of stimuli was simu-
lated. To construct these plots, a 1:1 mixture of two input components was used. The first com-
ponent was pure exponentially correlated signal, and the second was pure noise. Further, the
amplitude of the noise component was varied (values on the x-axis of Fig 5C-5F), while the sig-
nal amplitude was kept constant at 1.

The response of three different networks, two linear and one nonlinear, was simulated for
each input mixture, and the network gains computed. For all three networks, the discounting
factor was matched to the time constant of the input within the signal component of the mix-
ture. Parameter variation was then used to find the optimal value of I (for the linear networks)
and both I and the threshold & (for the nonlinear network) that allowed the corresponding
network to minimize the cost function. For the type 1 linear network, I" was only optimized
once, over the entire mixture. However, for the type 2 linear network, I" was optimized twice,
for each component of the mixture, separately. Finally, for the nonlinear network, the parame-
ters were again only optimized once, over the entire mixture. The resulting network gains, and
relative % improvements are plotted in Fig 5C-5F.

Comparing Nonlinear Feedback Circuit to Experiment

It was necessary to modify the analytically-derived nonlinear feedback circuit to obtain simula-
tions that can be directly compared to the experimentally measured response filters of different
sensory neurons. The experimentally measured filters place a low weight on inputs at t = 0,
with the weight increasing to a peak, followed by a reducing oscillation between peaks and
troughs (Figs 5B and 6D). However, with the structure of the network introduced analytically
(diagrammed in S4A Fig), it is straightforward to show that the response filter of the corre-
sponding linear circuit applies a maximal weight att = 0.

Since real neurons must have a non-zero time constant, the first change that we considered
to the model, was to add a non-zero time constant to the principal neuron. However, the line-
arized response filter of this modified model still has maximal weight at t = 0. An alternative
change is to add a time constant to a neuron providing input to the two-neuron network (S4B
Fig). Since real neurons are embedded in a larger network of neurons, this is reasonable. How-
ever, again, the linearized response filter of this three-neuron model, with two non-zero time
constants, has maximal weight at t = 0. In contrast, combining both the above changes into a
single model with three neurons, all with non-zero time constants (S4C Fig), provides a model
that shows the same behavior as experimentally measured, with a low weight on inputs from
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the immediate past, increasing to a peak, followed by a decrease to a trough. This model is a
simple, biologically reasonable modification to the original predictive coding model that pro-
vides a response filter that is qualitatively similar to experiment. Therefore, we used this model
for the in silico comparisons with experiment in Figs 5 and 6.

Response Filter of Nonlinear Network for Inputs of Different Amplitude

The response of the nonlinear network, with three neurons with non-zero time constants (54
Fig), was simulated for >2000 stimulus patterns, each containing 1000 time points of uncorre-
lated white noise. The stimulus amplitude was varied by varying the standard deviation of the
sampling distribution. The linearized filter response of the nonlinear network to the inputs was
then estimated by picking a point in time, and weighting the input to the network on each trial
by the output of the network at that time point. This method is an analog of the spike-triggered
averaging (STA) algorithm utilized by experimentalists (and is only modified by the use of the
graded output values, in the absence of an output spiking neuron). The filter responses to
inputs of different amplitudes could then be compared, and appropriate parameters extracted
from the simulated curves.

Supporting Information

S1 Fig. Single compartment model of a linear neuron. Electrically, the neuron is an RC cir-
cuit, with inputs arriving as current (gsVinput)-
(TIF)

S2 Fig. % improvement in network gains for a nonlinear network (over the corresponding
linear network) while varying the fraction of the signal component to the noise component
in a two component input mixture. Both the linear and nonlinear networks are only allowed
to adapt to the mixture (and not to each individual component).

(TIF)

S3 Fig. Nonlinear responses of X-type retinal ganglion cells (adapted from [17]) compared
to simulated responses of the nonlinear feedback inhibitory circuit. (a) Firing rate of X-type
retinal ganglion cells in response to a stimulus pulse of increasing contrast; dashed lines denote
peak (cyan) and steady-state (red) responses. (b) Ratio of steady-state amplitude to peak ampli-
tude for experimental (squares) and simulated model responses (diamonds). The reduction in
the ratio, as measured experimentally, is qualitatively the same as the simulation. (c) Bode plots
of responses of retinal ganglion cells, for sinusoidal stimuli with increasing contrast (figure
adapted from [17]). As contrast increases, the peak frequency response increases in amplitude,
and shifts to higher frequencies; similarly, the phase shifts rightwards. (b) Bode plots of the
transfer function of the nonlinear predictive coding network, for increasing input contrasts
(increasing from grey to black), computed using describing function analysis (Methods, [45]).
The shifts observed are qualitatively similar to those measured experimentally (see (c)).

(TIF)

S4 Fig. Modifications to the nonlinear feedback inhibitory network to allow comparison
with experiment (Methods). (a) Nonlinear predictive coding circuit (as in Fig 4B). (1) Princi-
pal neuron; (2) Interneuron. (b) Additional neuron (3), upstream of predictive coding circuit
(with non-zero time constant,y). Model, without nonlinearity, used in analytical analysis of
shifting response filters. (c) Neuron (1) modified to include a non-zero time constant. Model
used in in silico simulations shown in Fig 6 and Fig 7.

(TIF)
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S5 Fig. Whitening effect of the optimal linear network for inputs with different SNRs. (a-¢)
Input power (blue) and the power within the optimal transfer function of the network (red) at
different frequencies. SNR decreases from (a)-(e) (f-j) Output power at each frequency
(obtained by multiplying both functions from left column). Notice the flat output power,
termed whitening. Also, notice the reduction in total transmitted power. This reduction in
power get progressively less as the fraction of predictable signal within the input reduces (i.e. as
the SNR decreases). At the extreme case, in the final row, with pure noise, the input has the
same power as the output, with no reduction of gain.

(TTF)

$1 Text. Supplementary methods and proofs.
(PDF)

Acknowledgments

AB thanks Simon Laughlin, his PhD co-supervisor, for introducing him to predictive coding,
and for helpful discussions during AB’s time in Cambridge. Also, we thank Tao Hu and other
members of the Chklovskii lab, for helpful discussions on adaptive signal processing.

Author Contributions

Conceived and designed the experiments: AB DBC. Performed the experiments: AB. Analyzed
the data: AB. Wrote the paper: AB DBC.

References

1. Attwell D, Borges S, Wu SM, Wilson M (1987) Signal clipping by the rod output synapse. Nature 328:
522-524. PMID: 3039370

2. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, et al. (2005) Do we know what the early visual
system does? J Neurosci 25: 10577—10597. PMID: 16291931
3. Rieke F, Rudd ME (2009) The challenges natural images pose for visual adaptation. Neuron 64: 605—
616. doi: 10.1016/j.neuron.2009.11.028 PMID: 20005818
4. VictorJ (1999) Temporal aspects of neural coding in the retina and lateral geniculate. Network: Compu-
tation in Neural Systems 10: R1-R66.
5. Werblin FS (1971) Adaptation in a vertebrate retina: intracellular recording in Necturus. Journal of
Neurophysiology 34:228-241. PMID: 5545938
6. Barlow HB (1961) Possible principles underlying the transformation of sensory messages. Sensory
communication: 217-234.
7. JayantNS, Noll P (1984) Digital coding of waveforms: principles and applications to speech and video.
Englewood Cliffs, N.J.: Prentice-Hall. xvi, 688 p. p.
8. Sayed AH (2008) Adaptive filters. Hoboken, N.J.: Wiley-Interscience: IEEE Press. xxx, 786 p. p.
9. Vaidyanathan PP (2007) The Theory of Linear Prediction. Synthesis Lectures on Signal Processing 2:
1-184.
10. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series, with engineering
applications. Cambridge: Technology Press of the Massachusetts Institute of Technology. ix, 163 p.
p.
11.  Widrow B, Stearns SD (1985) Adaptive signal processing. Englewood Cliffs, N.J.: Prentice-Hall. xviii,
474 p. p.
12. Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina.
Proc R Soc Lond B Biol Sci 216: 427-459. PMID: 6129637

13. Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some
extra-classical receptive-field effects. Nature neuroscience 2: 79-87. PMID: 10195184

14. Rao RP, Ballard DH (2004) Probabilistic models of attention based on iconic representations and pre-
dictive coding. Neurobiology of attention: 553-561.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004315 August 6, 2015 22/24


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004315.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004315.s006
http://www.ncbi.nlm.nih.gov/pubmed/3039370
http://www.ncbi.nlm.nih.gov/pubmed/16291931
http://dx.doi.org/10.1016/j.neuron.2009.11.028
http://www.ncbi.nlm.nih.gov/pubmed/20005818
http://www.ncbi.nlm.nih.gov/pubmed/5545938
http://www.ncbi.nlm.nih.gov/pubmed/6129637
http://www.ncbi.nlm.nih.gov/pubmed/10195184

B PLOS | Suryanonat

Automatic Neural Circuit Adaptation to Fast Input Changes

15.

16.

17.
18.

19.

20.

21.

22,

23.

24,

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42,

Vuust P, Ostergaard L, Pallesen KJ, Bailey C, Roepstorff A (2009) Predictive coding of music—brain
responses to rhythmic incongruity. Cortex 45: 80—-92. doi: 10.1016/j.cortex.2008.05.014 PMID:
19054506

Huang Y, Rao RPN (2011) Predictive coding. Wiley Interdisciplinary Reviews: Cognitive Science 2:
580-593.

Victor JD (1987) The dynamics of the cat retinal X cell centre. J Physiol 386:219-246. PMID: 3681707

Fairhall AL, Lewen GD, Bialek W, van Steveninck RRdR (2001) Efficiency and ambiguity in an adaptive
neural code. Nature 412: 787-792. PMID: 11518957

Shapley R, Victor J (1978) The effect of contrast on the transfer properties of cat retinal ganglion cells. J
Physiol 285:275-298. PMID: 745079

Hosoya T, Baccus SA, Meister M (2005) Dynamic predictive coding by the retina. Nature 436: 71-77.
PMID: 16001064

Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M (2005) Independence of luminance and con-
trastin natural scenes and in the early visual system. Nature Neuroscience 8: 1690-1697. PMID:
16286933

Atick JJ (2011) Could information theory provide an ecological theory of sensory processing? Network
22:4-44. doi: 10.3109/0954898X.2011.638888 PMID: 22149669

van Hateren JH (1992) A theory of maximizing sensory information. Biol Cybern 68: 23—29. PMID:
1486129

Van Hateren JH (1993) Spatiotemporal contrast sensitivity of early vision. Vision Res 33: 257-267.
PMID: 8447098

I"A"rbus AL (1967) Eye movements and vision. New York,: Plenum Press. xiii, 222 p. p.

Theunissen FE, Doupe AJ (1998) Temporal and spectral sensitivity of complex auditory neurons in the
nucleus HVc of male zebra finches. The Journal of neuroscience 18: 3786—3802. PMID: 9570809

Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry. Neuron 36: 909—
919. PMID: 12467594

Nagel KI, Doupe AJ (2006) Temporal processing and adaptation in the songbird auditory forebrain.
Neuron 51: 845-859. PMID: 16982428

Hong S, Lundstrom BN, Fairhall AL (2008) Intrinsic gain modulation and adaptive neural coding. PLoS
Comput Biol 4: e1000119. doi: 10.1371/journal.pcbi.1000119 PMID: 18636100

Famulare M, Fairhall A (2010) Feature selection in simple neurons: how coding depends on spiking
dynamics. Neural computation 22: 581-598. doi: 10.1162/neco.2009.02-09-956 PMID: 19922290

Hong S, y Arcas BA, Fairhall AL (2007) Single neuron computation: from dynamical system to feature
detector. Neural computation 19: 3133-3172. PMID: 17970648

Mease RA, Famulare M, Gjorgjieva J, Moody WJ, Fairhall AL (2013) Emergence of adaptive computa-
tion by single neurons in the developing cortex. The Journal of Neuroscience 33: 12154-12170. doi:
10.1523/JNEUROSCI.3263-12.2013 PMID: 23884925

Borst A, Flanagin VL, Sompolinsky H (2005) Adaptation without parameter change: Dynamic gain con-
trol in motion detection. Proc Natl Acad SciU S A 102: 6172-6176. PMID: 15833815

Harrison C (1952) Experiments with linear prediction in television. Bell System Technical Journal 31:
764-783.

Jarvinen K, Vainio J, Kapanen P, Honkanen T, Haavisto P, et al. GSM enhanced full rate speech
codec; 1997. IEEE. pp. 771-774.

Makhoul J (1975) Linear prediction: A tutorial review. Proceedings of the IEEE 63: 561-580.

Battista S, Casalino F, Lande C (1999) MPEG-4: a multimedia standard for the third millennium, part 1.
IEEE multimedia 6: 74-83.

Shi YQ, Sun H (1999) Image and video compression for multimedia engineering: fundamentals, algo-
rithms, and standards: CRC press.

Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H. 264/AVC video coding
standard. Circuits and Systems for Video Technology, IEEE Transactions on 13: 560-576.

Dong DW, Atick JJ (1995) Statistics of natural time-varying images. Network: Computation in Neural
Systems 6: 345-358.

Drew PJ, Abbott LF (2006) Models and properties of power-law adaptation in neural systems. J Neuro-
physiol 96: 826-833. PMID: 16641386

Hausdorff JM, Peng C (1996) Multiscaled randomness: A possible source of 1/f noise in biology. Phys
Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54: 2154—2157. PMID: 9965304

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004315 August 6, 2015 23/24


http://dx.doi.org/10.1016/j.cortex.2008.05.014
http://www.ncbi.nlm.nih.gov/pubmed/19054506
http://www.ncbi.nlm.nih.gov/pubmed/3681707
http://www.ncbi.nlm.nih.gov/pubmed/11518957
http://www.ncbi.nlm.nih.gov/pubmed/745079
http://www.ncbi.nlm.nih.gov/pubmed/16001064
http://www.ncbi.nlm.nih.gov/pubmed/16286933
http://dx.doi.org/10.3109/0954898X.2011.638888
http://www.ncbi.nlm.nih.gov/pubmed/22149669
http://www.ncbi.nlm.nih.gov/pubmed/1486129
http://www.ncbi.nlm.nih.gov/pubmed/8447098
http://www.ncbi.nlm.nih.gov/pubmed/9570809
http://www.ncbi.nlm.nih.gov/pubmed/12467594
http://www.ncbi.nlm.nih.gov/pubmed/16982428
http://dx.doi.org/10.1371/journal.pcbi.1000119
http://www.ncbi.nlm.nih.gov/pubmed/18636100
http://dx.doi.org/10.1162/neco.2009.02-09-956
http://www.ncbi.nlm.nih.gov/pubmed/19922290
http://www.ncbi.nlm.nih.gov/pubmed/17970648
http://dx.doi.org/10.1523/JNEUROSCI.3263-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23884925
http://www.ncbi.nlm.nih.gov/pubmed/15833815
http://www.ncbi.nlm.nih.gov/pubmed/16641386
http://www.ncbi.nlm.nih.gov/pubmed/9965304

@' PLOS COMPUTATIONAL
NZJ ' BIOLOGY Automatic Neural Circuit Adaptation to Fast Input Changes

43. Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of
neural systems. Cambridge, Mass.: Massachusetts Institute of Technology Press. xv, 460 p. p.

44. Koch C (1999) Biophysics of computation: information processing in single neurons. New York: Oxford
University Press. xxiii, 562 p. p.

45, Astrom KJ, Murray RM (2008) Feedback systems: an introduction for scientists and engineers. Prince-
ton: Princeton University Press. xii, 396 p. p.

46. Druckmann S, Hu T, Chklovskii DB (2012) A mechanistic model of early sensory processing based on
subtracting sparse representations. Advances in Neural Information Processing Systems. 1979—1987.

47. DeWeese M, Zador A (1998) Asymmetric Dynamics in Optimal Variance Adaptation. Neural Computa-
tion 10: 1179-1202.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004315 August 6, 2015 24/24



