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Abstract
Background: We have explored the potential prefrontal hemodynamic biomarkers to 
characterize subjects with Traumatic Brain Injury (TBI) by employing the multivariate 
machine learning approach and introducing a novel task- related hemodynamic response 
detection followed by a heuristic search for optimum set of hemodynamic features. To 
achieve this goal, the hemodynamic response from a group of 31 healthy controls and 
30 chronic TBI subjects were recorded as they performed a complexity task.
Methods: To determine the optimum hemodynamic features, we considered 11 fea-
tures and their combinations in characterizing TBI subjects. We investigated the sig-
nificance of the features by utilizing a machine learning classification algorithm to 
score all the possible combinations of features according to their predictive power.
Results and Conclusions: The identified optimum feature elements resulted in classifi-
cation accuracy, sensitivity, and specificity of 85%, 85%, and 84%, respectively. Clas-
sification improvement was achieved for TBI subject classification through feature 
combination. It signified the major advantage of the multivariate analysis over the 
commonly used univariate analysis suggesting that the features that are individually 
irrelevant in characterizing the data may become relevant when used in combination. 
We also conducted a spatio- temporal classification to identify regions within the pre-
frontal cortex (PFC) that contribute in distinguishing between TBI and healthy sub-
jects. As expected, Brodmann areas (BA) 10 within the PFC were isolated as the region 
that healthy subjects (unlike subjects with TBI), showed major hemodynamic activity 
in response to the High Complexity task. Overall, our results indicate that identified 
temporal and spatio- temporal features from PFC’s hemodynamic activity are promis-
ing biomarkers in classifying subjects with TBI.
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1  | INTRODUCTION

Executive function involves various complex cognitive processes, 
such as solving novel problems, generating strategies or sequenc-
ing complex actions (Elliott, 2003). Executive dysfunction in sub-
jects with Traumatic Brain Injury (TBI) has been reported in (Gioia & 
Isquith, 2004; McDonald, Flashman, & Saykin, 2002) and is believed 
to be related to a dysfunctional prefrontal cortex (PFC) or disrup-
tion in the connection of the frontal lobes and other parts of the 
brain (McDonald et al., 2002). Poor performance within the PFC of 
TBI patients, independent of frontal parenchymal lesions, has been 
reported by researchers (Cazalis et al., 2006; Langfitt et al., 1986; 
Levin, 1982; Vilkki, 1992).

Advancement made in functional neuroimaging provide tools 
needed for the sensitive assessment of functional abnormalities fol-
lowing TBI in various brain regions, including the PFC. In particular, 
functional magnetic resonance imaging (fMRI) of the blood- oxygen- 
level- dependent (BOLD) signal (Heeger & Ress, 2002), which 
depicts blood oxygenation changes followed by localized neuronal 
activity, has been widely used to characterize the spatio- temporal 
pattern of brain regional activity in individuals with TBI (McAllister 
et al., 1999) (McAllister et al., 2001) (Cazalis et al., 2006; Scheibel 
et al., 2003).

Although fMRI has traditionally been the modality of choice to 
study brain function of individuals with TBI, it is relatively expensive, 
and is permanently sited (Amyot et al., 2012). Less expensive and 
more portable functional neuroimaging modalities such as function-
al near- infrared spectroscopy (fNIRS) (Villringer and Chance 1997; 
Amyot et al., 2012; Bunce et al. 2013) have been utilized less to study 
brain function of individuals with TBI. Similar to its fMRI counterpart, 
fNIRS is capable of capturing local hemodynamic changes over the 
execution of a functional task. However, compared to fMRI, fNIRS 
offers lower spatial resolution and provides higher temporal reso-
lution. fNIRS measures continuous change in chromophores in the 
blood, by sending near- infrared- range light (usually of 700–1000 nm 
wavelength) through light- emitters and detect the diffused reflect-
ing light after interacting with brain tissue by the detectors that are 
placed a few centimeters away from the emitters. Oxygenated hemo-
globin (HbO) and deoxygenated hemoglobin (HbR) are the targeted 
chromophores measured by fNIRS. HbO and HbR signals are formed 
through successive measurements made over a time interval of an 
experiment.

There are only a few studies that have utilized fNIRS to evalu-
ate cerebral oxygenation and blood volume alterations during the 
execution of functional tasks in patients after TBI (Bhambhani, 
Maikala, Farag, & Rowland, 2006; Hibino et al., 2013; Merzagora, 
Izzetoglu, Onaral, & Schultheis, 2014; Merzagora, Schultheis, Onaral, 
& Izzetoglu, 2011). These studies have employed very small sample 
sizes, various cognitive stimuli, and different analytical techniques 
(Bhambhani et al., 2006) used fNIRS to investigate cerebral hemo-
dynamic alterations in the prefrontal cortex in 25 subjects with TBI 
and 13 healthy control subjects while they performed the handgrip 

contractions task. It was reported that subjects with TBI demon-
strated a significantly lower increase in oxygenation in both left and 
right dorsolateral prefrontal cortex (DLPFC; Bhambhani et al., 2006). 
Merzagora et al. (2011) examined the differences in the prefrontal 
hemodynamic activity of 5 TBI subjects and 11 healthy controls 
and reported significant lower mean HbO values for the subjects 
with TBI in comparison to healthy control subjects while perform-
ing an attenion- based task, and suggested that fNIRS could be used 
to monitor the rehabilitation procedure for the patients with TBI 
(Merzagora et al., 2011). Hibino et al., (2013) conducted a study on 
9 TBI and 47 healthy subjects to investigate differences between the 
two populations by analyzing the HbO changes captured from frontal 
to temporal cortices in response to 9 different cognitive rehabilita-
tion tasks. They documented higher HbO changes for TBI compared 
to healthy control patients in the medial frontal region and higher left 
frontal HbO changes were reported for healthy controls in majority 
of the cognitive tasks (Hibino et al., 2013). Merzagora et al. (2014) 
investigated fNIRS to understand working memory subcomponents 
for 6 TBI and 11 healthy controls and compared the maximum hemo-
dynamic response between the two populations. It was reported that 
TBI subjects’ largest hemodynamic response was significantly higher 
than the healthy control subjects while performing a working mem-
ory task, in particular in the left DPFC. Overall, significant hemody-
namic response differences between TBI and healthy control in the 
PFC (or its subcomponents) have been reported in all the studies 
discussed above.

The common methodology in the majority of the aforementioned 
studies (except for the work by Merzagora et al. (2014)) for compar-
ing the hemodynamic responses between the two populations is the 
univariate statistical analysis where a single feature from the hemo-
dynamic signal is utilized to investigate the difference between the 
TBI and healthy subjects by conducting a statistical testing. Although 
this is a valid approach to study the differences between TBI and 
healthy control populations, it does not fully exploit the potential 
hemodynamic features that may act as TBI’s functional biomarkers. 
The approach of single-  hemodynamic feature analysis, while capa-
ble of signifying a difference between the TBI and healthy subjects, 
is incapable of providing a general model to classify a new (unseen) 
subject to the TBI or healthy population. A complementary approach 
to the traditional methodology is the multivariate machine learning 
techniques (Bishop, 2006). In particular, supervised ML methods 
have been vastly used to differentiate task- specific or resting- state 
brain activity in brain–- computer interface (BCI; Lotte, Congedo, 
Lécuyer, Lamarche, & Arnaldi, 2007) applications and infrequently to 
classify healthy subjects from individuals with a neurological disor-
ders (Ahmadlou, Adeli, & Adeli, 2010; Bosl, Tierney, Tager- Flusberg, 
& Nelson, 2011; Rizk- Jackson et al., 2011; Stahl, Pickles, Elsabbagh, 
Johnson, & Team, 2012; Woon, Cichocki, Vialatte, & Musha, 2007). In 
the context of TBI studies using hemodynamic response, multivariate 
machine learning techniques can provide a measure of ranking dif-
ferent hemodynamic features according to their contribution in dis-
tinguishing TBI from healthy subjects and also enables classification 
of subjects according to their hemodynamic features. Conversely, 
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feature combination through a machine learning classification meth-
od in which TBI and healthy subjects are characterized by multidi-
mensional feature sets enables exploration of potential biomarkers in 
combination with each other. In this approach, the goal is to identify 
the feature space in which TBI and healthy subjects are character-
ized with maximum intrapopulation similarity and minimum inter-
population similarity. Various heuristic feature extraction techniques 
attempting to construct single or multi- dimensional feature spaces 
from the hemodynamic signal to classify brain activity for the Brain–
Computer Interface (BCI) applications have been proposed (Coyle, 
Ward, Markham, & McDarby, 2004; Fazli et al., 2012; Hai, Cuong, 
Khoa, & Van Toi, 2013; Holper & Wolf, 2011; Luu & Chau, 2009; 
Naito, Michioka, Ozawa, Kiguchi, & Kanazawa, 2007; Power, Falk, 
& Chau, 2010; Power, Kushki, & Chau, 2011; Sitaram et al., 2007; 
Stangl, Bauernfeind, Kurzmann, Scherer, & Neuper, 2013). However, 
few studies have attempted to identify the most efficient set of fea-
tures from subjects of a population with purportedly distinctive brain 
activity to provide a unique characterization for the population (here 
TBI population). Selecting the optimum feature elements from a set 
of hemodynamic features is not a trivial problem. For instance, it has 
been shown that single features that may seem irrelevant in a single 
feature analysis can prove relevant in combination with other fea-
tures (Domingos, 2012). Therefore, the full inherent biomarkers of 
the TBI subjects’ hemodynamic signal may be determined by identi-
fying the set of features that optimally characterizes the population.

The objective of this study is to identify the potential prefrontal 
hemodynamic TBI biomarkers that contribute in characterizing TBI 
subjects at the individual level through a multivariate feature selec-
tion technique. Employing the multivariate analysis instead of the 
commonly used univariate analysis was motivated by the findings 
in (Guyon & Elisseeff, 2003) that the features that are individually 
irrelevant in characterizing the classes may become relevant when 
used in combination. Furthermore, the multivariate machine learn-
ing techniques are sensitive to spatial distribution and subtle effects 
in the brain that would be undetectable using the univariate group 
analysis methods as the focus in these methods is on gross differ-
ences at group level. To identify the potential hemodynamic TBI bio-
markers, hemodynamic response from a group of healthy and chronic 
TBI subjects while performing an event- related complexity task is 
captured. We propose a procedure to identify only the trials with 
elicited hemodynamic responses and reject the trials with artifactu-
al hemodynamic responses by imposing certain restrictions on the 
HbO and HbR signals. The average HbO and HbR signal are obtained 
by averaging the remaining trials. For every subject, a set of hemo-
dynamic features from the average trials is obtained. The optimum 
set of functional biomarkers is obtained by employing the wrapper 
feature subset selection method (Guyon & Elisseeff, 2003) from 
the extracted features. Wrapper feature selection method utilizes 
machine learning classification algorithm to score different subsets 
of the hemodynamic features with respect to their predictive power. 
Finally, the accuracy of the identified biomarkers in characterizing 
the TBI population is evaluated by employing different classification 
techniques.

2  | METHODS

2.1 | Participants

Seventy subjects participated in the two IRB- approved studies 
(NCT01797549 and NIH 07N0139) from which data from nine sub-
jects were not used in this analysis. Data from these subjects were 
excluded from the study either due to the problems in data collec-
tion or major motion or detector artifacts. Details of the procedure to 
identify subjects with major artifactual data are explained in the pre-
processing section. Final number of subjects available for analysis was 
61, 31 healthy controls (17 male and 14 female) and 30 TBI subjects 
(24 male and six female). Table 1 illustrates the demographic for all the 
TBI and healthy participants in this study.

All TBI subjects fulfilled inclusion/exclusion criteria of 
NCT01797549, “Detection of Hemodynamic Changes in TBI Population 
With Functional Near Infrared Spectroscopy”, adults between 18 and 
55 years of age who suffered a moderate or severe TBI, by DoD crite-
ria, that is a head injury associated with Glasgow Coma Score between 
3 and 12, loss of consciousness >30 min, alteration of consciousness 
or post- traumatic amnesia >24 hr, or TBI- related abnormality on neu-
roimaging (CT or MRI). All except one (examined at 2 months after 
injury) were tested over 6 months after injury with the median interval 
from TBI to NIRS testing as listed in Table 1. Twenty- four TBI subjects 
(80%) reported persistent TBI symptoms by DSM- IV criteria for post- 
concussive symptoms, including cognitive symptoms (full neuropsy-
chological testing data was not collected); six (20%) of the 30 were 
asymptomatic and fully recovered from their TBI at the time of NIRS 
testing. Twenty- six (86%) TBI subjects are right- handed, and 4 (14%) 
left- handed, consistent with norms.

Thirteen TBI subjects received either inpatient or outpatient TBI 
rehabilitation after their acute hospitalization for their injury. The type 
and duration of their therapy reflected the severity of their injury and 
symptoms during the subacute period after their injury. Only 1 TBI 
subject was still receiving rehabilitative services at the time of enroll-
ment in the study, a 28- year- old who suffered a severe TBI 8.5 years 
prior to enrollment in NCT01797549.

TABLE  1 Demographic and clinical characteristics of the study 
population

 TBI (n = 30) HC (n = 31)

Age (years), mean ± STD 37.8 ± 11.6 30.8 ± 8.06

Gender, % male 80.0 58.06

Education (years) 15 17.2

Time since TBI (months), 
median, IQR

21.5, 13–41

Road traffic incident, % 50

LOC >30 min, % 40

Days in ICU, median ± IQR 3, 1–8

Received Rehabilitation, % 43

TBI, traumatic brain injury.
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2.2 | Experimental design

An event- related paradigm in which subjects are required to evaluate 
the complexity of certain daily life activities was chosen for this study. 
The paradigm was originally designed and implemented in an fMRI 
experiment by Krueger et al. (2009) and has been shown to engage 
the PFC. Complexity task is selected for this study as it is known to 
engage the executive function that is impaired in the subjects with 
TBI (Paré, Rabin, Fogel, & Pépin, 2009; Stuss, van Reekum, & Murphy, 
2000).

In this paradigm, subjects were exposed to two classes of condi-
tions: An experimental condition or the Complexity task and a control 
condition or the Font task. Stimulus presentation was controlled by 
the E- prime software package (Psychology Software Tools, Inc., http://
www.pstnet.com/eprime.cfm). Participants were first trained with 
a separate set of stimuli to familiarize them with the experiment. At 
the beginning of each trial, instructions describing the type of task 
(Complexity or Font) and the name of a daily- life activity, for exam-
ple, “stirring a cup of coffee” was displayed on a computer monitor for 
4 s. For the complexity task, participants were asked to make a binary 
decision as to whether the activity name displayed corresponded to 
an activity with low complexity, for example, “stirring a cup of coffee” 
or an activity with high complexity, for example, “planning a wedding”, 
using a two- button response pad. For the Font task, participants were 
asked to decide whether the instructions and the activity name shown 
represented the same or different fonts. Participants were prompted 
to respond as quickly and accurately as possible. A trial lasted for 5 s 
as the stimulus was presented for 4 s and was followed by 1 s after the 
stimulus disappeared. Trials were separated by a randomly assigned jit-
tered interstimulus interval of varied interval of 5–7 s. 33 Font and 66 
Complexity trials were randomly arranged within a 15- min period of 
fNIRS data collection. Figure 1 visualizes the experimental paradigm 
and the corresponding durations of the tasks.

The hemodynamic response changes were recorded with a contin-
uous wave fNIRS device with four light sources and 10 detectors (fNIR 
Devices LLC, Potomac, MD, USA). The distance between each source/
detector pair was 2.5 cm. The configuration of probes for this device 
is denoted in Fig. 2. The lights were emitted from each source at two 
different wavelengths of 730 nm and 850 nm. The light sources were 
activated in sequence for collecting measurements from 16 different 
channels that spanned the forehead at 2 Hz.

2.3 | Preprocessing

The raw intensity data measured at two wavelengths was normalized 
for all channel sites to compute the relative change by dividing each 

value of the intensity signal by the mean of the baseline signal. The 
intensity- normalized data was then used to calculate the change in 
optical density (delta- optical density). Delta- optical density was com-
puted for each wavelength as the negative logarithm of normalized 
intensity. For every subject, a differential pathlength factor (DPF) was 
calculated as the variable of age and the wavelength following the for-
mula obtained in (Scholkmann & Wolf, 2013). Using the DPF values, 
the delta- optical density was converted to changes in HbO and HbR, 
using the modified Beer–Lambert law (Delpy et al., 1988). HbO and 
HbR signals were low- pass- filtered using butterworth IIR frequency 
filter of order 10 with a cut- off frequency 0.1 Hz. The filtered data 
was then detrended using the piecewise linear detrending to remove 
linear trends in the data. Trials corresponding to the High complex-
ity stimulus were considered for this study. Trials were extracted by 
considering 11 s post- stimulus onset. We considered 3 s after the trial 
ends, as it has been shown that a full hemodynamic change occurs 
over a 10–12 s period, after the stimulus is presented (Izzetoglu et al., 
2005). To decrease the effect of motion artifacts or major detector 
artifacts during the data collection and also increase the relevance 
of the hemodynamic response to the presented stimulus, certain 
restrictions were imposed on the extracted trials. In an elicited trial, 
decrease in HbR signal is expected to be accompanied by an increase 
in HbO signal in the activated area (Plichta et al., 2006). Therefore, 
corresponding to every stimulus only trials in which HbO and HbR 
are negatively correlated were considered. Furthermore, to guarantee 
that the selected trials encompass brain hemodynamic activity elicited 
by the presented stimulus, trials in which HbO signal was (on average) 
larger than HbR were considered (see Results section). Finally, trials 
with negative HbO values were discarded from the analysis. HbO and 
HbR data corresponding to the High complexity trials were then block 
averaged across the remaining trials for every channel.

2.4 | Feature extraction

As previously stated, the majority of the TBI fNIRS studies have 
attempted to construct a small feature space (feature spaces with 1 or 
2 elements) to investigate the difference in the TBI and healthy popu-
lations. We address this issue by extracting 11 time-  and frequency- 
domain features and investigating their potential to be employed for 
characterizing the TBI and healthy subjects. We identify the optimum 
feature space for distinguishing TBI and healthy subjects by employ-
ing a features selection method in the next section.

Typically, the average HbO signal obtained in response to an 
eliciting stimulus embodies a positive deflection representing the 
activation in the channel that we refer to as the activity curve. 
The activity curve is the curve embodied in the HbO signal that 

F IGURE  1 Experimental paradigm for the functional near infrared spectroscopy (fNIRS) data collection. Every trial lasted 5 s and was 
separated by a randomly assigned jittered interstimulus interval of varied interval of 5–7 s

http://www.pstnet.com/eprime.cfm
http://www.pstnet.com/eprime.cfm


     |  e00541 (5 of 14)Karamzadeh et al.

is formed by an increase in oxygenation and its return to the same 
level of oxygenation. Depending on the nature of the features, they 
are extracted from the entire average HbO or the activity curve as 
follows:

1. Mean value of the HbO signal (HM),
2. Variance of the HbO signal (HV),
3. Left slope of the activity curve (CSL),
4. Right slope of the activity curve (CSR)
5. Kurtosis value of the HbO signal (HK),
6. Skewness value of the HbO signal (HS),
7. Area under the activity curve (CA),
8. Full width half maximum of the activity curve (CF),
9. Peak amplitude of the activity curve (CP),
10. Activity start time (CAS),
11. Discrete Fourier Transform (DFT) Coefficients of the HbO signal 

(HDFT)

Figure 3 visualizes the HbO signal and the extracted features. Two 
slope values for the slope features. Left slope is computed between 
the points corresponding to the peak of the activity curve and where 
the activity curve starts and the right slope is computed between the 
points corresponding to the peak of the activity curve and where the 
activity ends. Furthermore, DFT provides a projection for the HbO signal 

with N data points in the time domain into the frequency domain by the 
following:

where cn coefficients are a sequence of complex numbers that repre-
sents the amplitudes and shifts of a decomposition of the signal into 
sinusoid functions. HbO(k) is the value of the HbO time series at time 
k. Keeping a few coefficients and discarding the rest that provides a 
rough sketch for the original HbO signal is a common time series fea-
ture extraction technique (Mörchen, 2003). For this study, we kept 
the three coefficients corresponding to the very low- frequency oscil-
lations (VFLO) and low- frequency oscillations (LFOs) ranging from 
0.01 to 0.1 Hz. The VFLO and LFOs from the cerebral hemodynam-
ics are shown to be associated with the spontaneous response and 
functional stimulation of the brain, respectively (Obrig et al., 2000). 
Furthermore, this range of frequency is known to be related to the 
cerebral autoregulation (Anderson et al., 2014; Chernomordik et al., 
2016; Kainerstorfer, Sassaroli, Hallacoglu, Pierro, & Fantini, 2014; Liu 
et al., 2015) which is the specific intrinsic ability to maintain constant 
cerebral blood flow over a range of blood pressure and is known to be 
disturbed or absent in 49–87% of patients with TBI (Rangel- Castilla, 
Gasco, Nauta, Okonkwo, & Robertson, 2008). All the other features 
result in one single value and are as follows:

Mean (HM): average signal value.
Variance (HV): measure of HbO signal spread. The variance formu-

la for HbO signal with n data points as follows:

where HM is the average of the HbO signal and HbOi is the ith data 
point of the HbO signal.

Skewness (HS): measure of the asymmetry of signal values around 
its mean relative to a normal distribution. If the HbO signal is symmet-
rically distributed, then HS will be 0.

(1)cn=
∑N−1

k=0
HbO(k)exp(

−2�ikn

N
), n=0,…N−1,

(2)HV=
1

n

∑n

i=1

(

HbOi−HM
)2

,

F IGURE  2 The functional near- infrared spectroscopy (fNIRS) 
channel scheme. It is composed of 4 sources and 10 detectors, which 
form 16 source/detector pairs separated by 2.5 cm. The sensor pad is 
positioned on the subject’s forehead

F IGURE  3 Visualizing the HbO signal 
(in red), activity curve and a number of 
hemodynamic features extracted in this 
study. The activity curve is a positive 
deflection representing the activation 
embodied in the HbO signal. The 
activity curve is formed by oxygenation’s 
increase and its returns to same level of 
oxygenation
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Kurtosis (HK): measure of the degree of peakedness of a distribu-
tion of signal values relative to a normal distribution.

Activity start time (CAS): represents the time instant after stimu-
lus onset when the oxygenation value in the HbO starts to increase 
toward its peak’s amplitude.

Full Width at Half Maximum (FWHM): is commonly used to mea-
sure the width of a peak on a curve. As is illustrated in Fig. 3, the 
FWHM (“CF” in this study) value is obtained by computing the dis-
tance between points on the curve at which the values is half of the 
activity curve’s amplitude.

2.5 | Feature selection and pattern classification

To determine the optimal feature set (optimal combination of the 
aforementioned hemodynamic features) that enables distinguishing 
TBI subjects from the healthy subjects with the highest accuracy, we 
employed the wrapper feature selection method (Guyon & Elisseeff, 
2003). Wrapper utilizes the machine learning classifier (popular pre-
dictors include decision trees, linear discriminant analysis, support 
vector machines and etc.) as a black box to rank different subsets of 
the features according to their predictive power. Wrapper addresses 
the problem of variable selection effectively in comparison to other 
techniques, as it is independent from the selected predictor and it can 
search the space of all feature combinations. To employ the wrapper 
method, one needs to define the classifier, a method of evaluating the 
performance of the predictor, and method of searching the feature 
space (Guyon & Elisseeff, 2003). In the wrapper method, a feature set 
is fed to the classifier and its performance is scored and the feature set 
with the highest rank, is selected as the optimal feature set.

In this study, due to the relatively small size of the feature space, an 
exhaustive search in the set of all the feature combinations was per-
formed and for every possible combination of the feature sets a clas-
sification experiment was run. The Decision Tree (Breiman, Friedman, 
Stone, & Olshen, 1984) was utilized as the classifiers to evaluate dif-
ferent feature sets; 70% of the subjects (from TBI and health pop-
ulations) were randomly selected for training purposes and the rest 
considered for testing purposes.

2.6 | Classification evaluation

The TBI group was labeled as the positive class and the healthy group 
as the negative class. Generally, to assess the classification perfor-
mance, evaluation indices are developed based on counting the num-
ber of TP, TN, FP, FN where,

1. True Positive (TP) – A subject belongs to the TBI population 
and is classified correctly as a TBI subject.

2. True Negative (TN) – A subject that belongs to the healthy popula-
tion and is classified correctly as a healthy subject

3. False Positive (FP) – A subject that belongs to the healthy popula-
tion and is classified incorrectly as a TBI subject.

4. False Negative (FN) – A subject that belongs to the TBI population 
and is classified incorrectly as a healthy subject.

Since the number of TBI and healthy subjects are comparable (33 TBI 
and 34 healthy subjects), the common metric of accuracy that weights TP 
and TN equally is appropriate for this classification problem (Satyasree 
& Murthy, 2013). The generalization performance of every classification 
experiment is assessed by random subsampling in which the process of 
randomly partitioning subjects into training and testing sets and execut-
ing the classification is repeated several times (1000 times in this study) 
and the average accuracy value of the 1000 classifications is considered 
as the overall classification evaluation index. For every classification 
experiment, the classification performance was evaluated and averaged 
across all the experiments. We report the average accuracy, specifici-
ty, and sensitivity which are the common metrics used for evaluating 
the classification performance for the class balanced problems (Tan, 
Steinbach, & Kumar, 2006). A dataset is class balanced if the classes are 
approximately equally represented. As it was discussed in the participant 
section, the dataset in this study is a balanced class dataset as it is com-
posed (after the preprocessing) of 31 healthy and 30 TBI subjects.

The overall accuracy, specificity, and sensitivity values are deter-
mined by averaging the accuracy, specificity, and sensitivity values 
computed for every run of the random subsampling procedure.

Accuracy, specify, and sensitivity are computed as follows:

Sensitivity and specificity suggest how accurate the TBI and healthy 
subjects are detected through the classification procedure, respec-
tively. In addition, once the optimum feature set is determined, we 
employ two more classification algorithms namely, Linear Discriminant 
Analysis (LDA; Welling, 2005), and Support Vector Machines (SVM; 
Suykens & Vandewalle, 1999) to evaluate their performance in distin-
guishing between the TBI and healthy subjects.

3  | RESULTS

3.1 | Trial/Channel removal

The three criterions discussed in the preprocessing section were 
applied on every single trial. A channel for which more than 80% or 
more of the trials were discarded was not considered for analysis. 
Subjects for which all the channel data were rejected were also dis-
carded from the study. Six subjects (three TBI and three healthy sub-
jects) were discarded from the analysis by applying the trial- removal 
preprocessing step. The remaining channels for every subject con-
tained only trials that were the most representative for hemodynamic 
activation in response to the High complexity task. Figure 4, illustrates 
the distribution of the retained channels across all the subjects after 
the trial/channel removal step. As it can be seen, the difference in 
the distribution of the retained channels between the two populations 

(3)Accuracy=
TP + TN

TP + TN + FP + FN

(4)Sensitivity=
TP

TP + FN

(5)Specifity=
TN

TN + FP
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is clear. For the TBI subjects, a smaller number of subjects shared a 
common channel and the channel sites with elicited activity data were 
diffusely distributed. However, the majority of the healthy subjects 
shared similar channels. In particular, in the TBI population, more than 
half of the subjects shared only channel 16 and the rest of the chan-
nels were distributed among different subsets of subjects. However, 
in the healthy population except for channel 16, all other channels 
were shared among more than half of the subjects. The feature extrac-
tion and classification procedures in the sections below are performed 
merely on the channels for which the hemodynamic signal is kept.

3.2 | Temporal feature extraction/classification

Temporal features were extracted from every channel of the subjects. 
For every subject, these features were averaged across all the chan-
nels to obtain the subjects’ representative feature set. All the pos-
sible combinations of the generated features were considered for 
distinguishing the TBI from the healthy subjects using the Decision 
Tree classification algorithm. Table 2 illustrates the accuracy, specific-
ity (accuracy of classifying healthy subjects correctly), and sensitivity 
(accuracy of classifying TBI subjects correctly) for the single- feature 
classification. As it can be observed in the table, the largest accuracy 
is obtained for the feature space constructed by the left slope of the 

activity curve (CSL) variable with an accuracy of 65%. Poor classifica-
tion performance was obtained for the remaining features. Although 
these variables seem to be irrelevant to the task of classifying TBI 
from the healthy subjects once used for single variable classifica-
tion, they were not discarded in search for the optimal feature set. 
Findings in (Domingos, 2012) indicate that an irrelevant single variable 
in two class classification may be relevant once used in combination 
with other features. Therefore, we evaluated the classification perfor-
mance among all the possible combinations of the generated features 
of different sizes (2047 potential feature sets for 11 features). Table 3 
shows the classification performance for the optimum feature sets of 
different sizes. The optimum classification performance is obtained 
for the feature space constructed by the triple feature set of [CA, 
HDFT, CF] with the average classification accuracy of 85%. Sensitivity 
and specificity values computed for the corresponding classification 
suggest that TBI and healthy subjects are classified with accuracies 
of 85% and 84%, respectively. This finding suggests that on average, 
26 TBI subjects (out of 30) and 26 healthy subjects (out of 31) are 
correctly identified for the feature space constructed by [CA, HDFT, 
CF]. It can also be observed in Table 3 that comparable classification 
performance is obtained for the optimum feature sets of size 4 and 5. 
Hence, it seems safe to conclude that the feature space constructed 
by these five hemodynamic elements (CA, HDFT, CF, CSL, and CSR) 

F IGURE  4 Channel distribution for the healthy and traumatic brain injury (TBI) populations after the channel/trial removal step is illustrated. 
For the TBI subjects, less number of subjects shares a common channel, whereas for majority of the healthy subjects share similar channels are 
kept. In the TBI population, more than half of the subjects share only channel 16. However, in healthy population except for channel 16, all the 
other channels are shared among more than half of the subjects

TABLE  2 Accuracy, specificity (accuracy of classifying healthy subjects correctly), and sensitivity (accuracy of classifying traumatic brain 
injury [TBI] subject correctly) of the classification experiments for the feature space constructed using one feature element. Accuracy, 
specificity, and sensitivity were computed by averaging their values over the 1000 classification experiments (random subsampling procedure). 
The largest accuracy value is obtained for the feature space constructed by the left slope of the activity curve (CSL) variable. Overall, the 
accuracy of correctly identifying the TBI subjects (sensitivity) is larger than the accuracy of correctly detecting the healthy subjects for feature 
set of any size

Feature

HM HV HK HS CSL CSR CA CF CP CAS HDFT

Accuracy (%) 38 ± 9 57 ± 9 55 ± 9 55 ± 10 65 ± 10 57 ± 10 39 ± 10 57 ± 10 45 ± 10 58 ± 9 59 ± 10

Specificity (%) 38 ± 19 61 ± 18 56 ± 19 55 ± 19 61 ± 18 61 ± 19 39 ± 18 58 ± 18 42 ± 20 57 ± 16 58 ± 18

Sensitivity (%) 42 ± 19 55 ± 17 56 ± 17 60 ± 19 71 ± 18 54 ± 18 42 ± 18 55 ± 19 49 ± 19 62 ± 18 61 ± 18
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provide the most accurate distinction between the TBI and healthy 
subjects. Furthermore, a comparison between the sensitivity and 
specificity for the classifications with optimum feature sets (feature 
sets of size 3, 4, and 5) indicates that the TBI subjects are identified 
with marginally higher accuracy. The high sensitivity values signify the 
potential relevance of these five hemodynamic features to be used as 
biomarkers for subjects with TBI.

In Fig. 5, Receiver Operating Characteristics (ROC) curve for 
the Decision Tree classifier in the feature space constructed by the 

optimum feature set is illustrated. An ROC curve illustrates the perfor-
mance of the obtained classification model for the optimum feature 
set by visualizing the trade- off between the sensitivity and the spec-
ificity. The area under the curve (AUC) quantifies the overall ability 
of the classifier to distinguish between the TBI and the healthy sub-
jects. An ideal classifier has an AUC of 1 and a random classifier has an 
AUC of 0.5. Therefore, the larger the AUC, the better the performance 
of the classifier in separating the TBI subjects from the healthy sub-
jects. Specificity and sensitivity values at each point of the graph are 
obtained by averaging the corresponding values across the 1000 run 
of the random subsampling procedure. The AUC of 0.85 obtained for 
the constructed model in the optimum feature space signifies the high 
accuracy for the classification model.

It is worth noting that the classification performance for the fea-
tures of the optimal set: CA, HDFT, CF, CSL, and CSR in Table 2 sug-
gests that 65% of accuracy (accuracy value obtained for CSL) is the 
optimal obtained performance if these features are used for the single 
variable classification. However, the feature space formed by combin-
ing these features improved the classification performance. In partic-
ular, presence of the variable “CA” in the optimal feature set verifies 
that variables with poor performance in separating the subjects for 
single feature classification can improve the classification if used in 
combination with other features. On the contrary, a few variables with 
relatively larger accuracy values (e.g., HV) for single feature classifica-
tion are not improving the classification performance in combination 
with other features. These observations verify the significance of per-
forming multi- feature analysis.

For the optimal features set of [CA, HDFT, CF], we attempted to 
evaluate the performance of other commonly used classifiers and 
provide a comparison with the Decision Tree performance. In Table 4, 
the result of classifying TBI and healthy subjects in the feature space 
constructed by [CA, HDFT, CF] using the LDA and SVM (using the 

TABLE  3 Classification measure obtained using the optimum feature sets of sizes 2–11 is presented. Accuracy, specificity, and sensitivity 
were computed by averaging their values over the 1000 classification experiments (random subsampling procedure). The optimum feature sets 
are selected from all the potential feature combinations of a certain size. Among all the combinations of features for a certain size, the one with 
the highest accuracy value is selected as the optimum feature set. The optimum classification performance is obtained for the feature space 
constructed by the triple of 3 features of “activity curve slopes (CS)”, “HbO kurtosis (HK)”, and “activity starting time (CAS)” resulted in the best 
separation between the traumatic brain injury (TBI) and healthy subjects. Comparison between the specificity and sensitivity indicates that in all 
the cases, sensitivity has been superior to the specificity meaning TBI subjects have been classified with higher accuracy

Size of the feature  
set combinations Feature set with highest Accuracy Accuracy (%) Specificity (%) Sensitivity (%) 

2 [CA,HDFT] 81 ± 9 79 ± 15 82 ± 14

3 [CA,HDFT,CF] 85 ± 13 84 ± 16 85 ± 17

4 [CA,HDFT,CSL,CSR] 83 ± 14 83 ± 18 84 ± 18

5 [CA,HDFT,CSL,CSR,CF] 83 ± 14 83 ± 17 84 ± 18

6 [CA,HDFT,CSL,CSR,CF,CP] 78 ± 13 77 ± 18 80 ± 18

7 [HV,HS,HK,CA, CAS,CF,HDFT] 70 ± 13 67 ± 19 75 ± 18

8 [HV,HS,HK,CA, CAS,CF,HDFT,CSL] 70 ± 14 67 ± 20 74 ± 19

9 [HV,HS,HK,CA, CAS,CF,HDFT,CSL,CP] 67 ± 11 64 ± 19 70 ± 19

10 [HV,HS,HK,CA, CAS,CF,HDFT,CSL,CP,CSR] 67 ± 13 64 ± 19 71 ± 19

11 [HV,HS,HK,CA,CAS,CF,HDFT,CSL,CP,CSR,HM] 63 ± 11 60 ± 19 67 ± 17

F IGURE  5 ROC curve for the classifying subjects into 
traumatic brain injury (TBI) and healthy groups, in the feature space 
constructed by the optimum feature set [CA, HDFT, CF]. Specificity 
and sensitivity values at each point of the graph are obtained by 
averaging the corresponding values across the 1000 run of the 
random subsampling procedure. Area under the curve of 0.85 is 
obtained for the constructed model, which signifies the high accuracy 
of the constructed classification model
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polynomial kernel) is illustrated. As results in Table 3 indicates, classi-
fication of TBI and healthy subjects using the Decision Tree algorithm 
outperforms the two other techniques.

3.3 | Temporal feature extraction/classification 
without rejecting trials/channels

In this section, the efficacy of our proposed preprocessing step of 
imposing constraints on the selected trials is evaluated. As discussed 
in the Methods section, trial/channel rejection step is proposed to 
identify the trials with meaningful HbO and HbR. Therefore, to evalu-
ate the efficacy of the proposed technique, we repeated the entire 
classification procedure without imposing any of the constraints that 
were introduced (see Methods section). This was done to reject arti-
factual trials and provide a comparison between the results of this 
process, which are shown in Table 2. However, to be able to provide 
a fair comparison, the six subjects that were discarded through the 
trial/channel rejection in the previous section, were not considered 
for the current classification experiments. Table 5, illustrates the opti-
mal feature sets identified through the wrapper method (see Methods 
section) and the corresponding classification performance measures.

Comparing classification performance in Tables 3 and 5 suggests 
that the trial/channel rejection has significantly improved the classifi-
cation performance. This difference in the classification performance 
implies that trials in which HbO and HbR negatively correlated and 
average HbO is higher than average HbR contains hemodynamic 
response- related to brain activation elicited by the stimulus.

3.4 | Spatio- temporal feature extraction

In addition to the temporal classification, a spatio- temporal feature 
extraction and classification procedure was also considered to iden-
tify the features that enable distinguishing TBI subjects from healthy. 
In the spatio- temporal classification, unlike the temporal classifica-
tion approach, the extracted features for a subject were not averaged 
across all the channels. Therefore, for a single feature there were at 
most 16 different feature values (some of the channels may have been 
discarded from the study, see Methods section) associated to the dif-
ferent channels. The decision tree algorithm was employed to classify 
the subjects in this spatio- temporal feature space constructed by con-
sidering the feature for every classification experiment. Decision tree 
seemed feasible for this classification task as the spatio- temporal fea-
ture sets for the subjects contained missing values (for the discarded 
channels) and decision tree is known to be capable of handling the 
missing values (Safavian & Landgrebe, 1991). Table 6, tabulates the 
result of this approach, for all the extracted features.

As it can be observed in Table 6, the largest spatio- temporal classi-
fication performances were obtained for the HS, CP, CSL, CA, and HV 
variables. Although, these classification experiments for the spatio- 
temporal features do not provide significant distinction between TBI 
and healthy subjects, they outperform the obtained accuracy values 
for the corresponding single- feature temporal classification (shown 
in Table 2). In Fig. 6, the average activity maps for the CSL, and HV 
for the healthy and TBI subjects are illustrated. The activity map for 
a spatio- temporal feature associated to a population is obtained by 

TABLE  4 Classifying traumatic brain injury (TBI) and healthy 
subjects by characterizing subjects in the features space defined by 
the identified optimal feature set [CA,HDFT,CF] using three different 
classifiers. Decision Tree classifier outperformed LDA and SVM 
classifiers

Classifier 
Accuracy 
(%)

Specificity 
(%) 

Sensitivity 
(%) 

Decision Tree 85 ± 13 84 ± 16 85 ± 17

Linear discriminant 
analysis (LDA)

64 ± 10 61 ± 17 72 ± 17

Support vector machine 
(SVM)

65 ± 9 55 ± 16 76 ± 14

TABLE  5 Feature sets with the largest accuracy values were selected from all the potential feature combinations of different sizes. HbO and 
HbR signals have been averaged across all the trials without applying the trial/channel rejection procedure on the signals

Size of the feature  
set combinations Feature set with highest accuracy value Accuracy (%) Specificity (%) Sensitivity (%) 

1 [CSR] 57 ± 10 51 ± 19 62 ± 20

2 [CSR,HS] 62 ± 11 58 ± 19 58 ± 19

3 [HM,HV,CA] 58 ± 13 52 ± 22 64 ± 20

4 [CP,HM,CSL,CF] 57 ± 11 54 ± 21 62 ± 18

5 [CP,HM,CSR,HK,CAS] 57 ± 12 57 ± 20 57 ± 19

6 [CP,HM,HV,CSL,CA,CF] 59 ± 14 57 ± 21 61 ± 19

7 [CP,HM,CSL,CSR,CAS,CA,CF] 58 ± 12 56 ± 18 61 ± 19

8 [CP,HM,CSL,CSR, HK,CAS,CA,CF] 55 ± 13 55 ± 19 57 ± 20

9 [CP,HM,HV,CSL,CSR,HK,CAS,CA,CF] 54 ± 12 54 ± 19 56 ± 11

10 [CP,HM,HV,CSL,CSR,HS,HK,CAS,CA,CF] 51 ± 10 49 ± 19 53 ± 19

11 [CP,HM,HV,CSL,CSR,HK,CAS,CA,CF,HDFT] 46 ± 10 44 ± 18 49 ± 19
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averaging every channel’s feature value across all the subjects (i.e., 
subjects from the corresponding population).

Distinctive spatial distribution for the HV feature is observed 
between the two populations. For the TBI population, the larger HV 
values are located at multiple locations with the largest in the right 
hemisphere, whereas for the healthy population the largest HV is con-
centrated in the left hemisphere within the Brodmann area 10 (BA 10; 
Ramnani & Owen, 2004). Furthermore, healthy subjects on average 

show a larger HV value for the HbO signal that indicates that the oxy-
genation signal has shown higher variation in the healthy subjects. Since, 
HbO signals are obtained from trials that indicate hemodynamic activa-
tion (see Methods section), it is safe to conclude that the HbO signal in 
response to the High Complexity task for the healthy subjects shows 
a larger variation and is spatially less diffuse than for the TBI subjects.

The left slope of the HbO signal’s activity curve (defined as CSL in 
the Methods section) at a certain location describes the rate by which 

TABLE  6 Accuracy, specificity (accuracy of classifying healthy subjects correctly), and sensitivity (accuracy of classifying traumatic brain 
injury [TBI] subject correctly) for the spatio- temporal classification. Similar to the single feature temporal classification, HbO variance (HV) and 
activity curve’s left slope (CSL) resulted in relatively larger classification accuracy. However, single variable spatio- temporal classification 
outperformed single variable temporal classification. Similar to temporal classification, the accuracy of correctly identifying the TBI subjects 
(sensitivity) is consistently larger than the accuracy of correctly detecting the healthy subjects

Feature

HM HV HK HS CSL CSR CA CF CP CAS

Accuracy (%) 68 ± 11 70 ± 9 65 ± 13 72 ± 11 71 ± 10 68 ± 10 70 ± 10 65 ± 12 72 ± 10 65 ± 11

Specificity (%) 66 ± 18 68 ± 18 58 ± 21 71 ± 20 74 ± 117 67 ± 17 67 ± 18 65 ± 20 68 ± 17 61 ± 17

Sensitivity (%) 72 ± 18 73 ± 17 74 ± 18 75 ± 14 74 ± 18 70 ± 17 75 ± 17 66 ± 17 77 ± 16 72 ± 17

F IGURE  6 The average activity maps for the CSL and HV features for the healthy (A) and traumatic brain injury (TBI) (B) subjects are 
illustrated. The activity map for a spatio- temporal feature associated to a population is obtained by averaging every subjects’ (from the 
corresponding population) spatio- temporal feature set. For the traumatic brain injury (TBI) population, the larger HV values are located 
at multiple locations with largest on the right hemisphere, whereas for the healthy population the largest HV is concentrated on the left 
hemisphere of the Brodmann area 10 (BA 10). Furthermore, healthy subjects on average show larger HV values for the HbO signal that indicates 
oxygenation signal has shown higher variation in the healthy subjects. The HbO signal in response to the High Complexity task for the healthy 
subjects shows larger variation and is spatially less diffuse than for the TBI subjects. Considering the activity map for healthy subjects, largest 
CSL values cover the left frontopolar of the BA 10. A comparison of healthy and TBI subjects’ CSL activity map reveals that healthy subjects have 
shown larger CSL values in response to the High complexity task at all the sites of functional near- infrared spectroscopy (fNIRS) data collection
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HbO’s activity curve has started to increase toward its peak. Similar to 
the findings for the HV, the largest CSL values for the healthy subjects 
cover the left frontopolar area of BA 10.

3.5 | Task load effects (i.e., parametric effects) 
in distinguishing traumatic brain injury from 
healthy population

As discussed in the Methods section, subjects in this study performed 
three loads of complexity task, Font, Low Complexity and High 
Complexity. In this section, we attempt to explore the parametric 
effects on the performance of the population classification procedure. 
To this end, the feature space from the identified optimal features was 
constructed for the Font and Low complexity tasks in a similar way 
it was constructed for the High complexity task. The Decision Tree 
algorithm was for classification as well. Table 7, illustrates the clas-
sification performance obtained for each task load. Results in Table 7 
suggest that the as the task complexity decreases the classification 
performance also decreases. In other words, the difference between 
TBI and healthy subjects hemodynamic response is more prominent, 
while performing the task with higher loads.

4  | DISCUSSION

We attempted to identify the prefrontal hemodynamic biomarkers 
that provide the optimum distinction between the TBI and healthy 
subjects by a multivariate feature combination and temporal and 
spatio- temporal classification approaches. To this end, we presented 
a novel approach for identifying single- trial hemodynamic responses 
that encompass task- related hemodynamic activity by imposing cer-
tain restrictions on a signal’s statistical characteristic followed by a 
hemodynamic feature extraction procedure. To determine the opti-
mum biomarkers from the extracted hemodynamic features, we 
investigated the effectiveness of the 11 extracted features from sub-
jects’ prefrontal hemodynamic response in separating TBI and healthy 
subjects. The extracted features were employed for two types of clas-
sifications, namely, temporal and spatio- temporal classification.

In the temporal classification, the performance of 2047 classifi-
cation experiments for every possible combination of features was 
evaluated. In every classification experiment, a distinct combination 
of the features was used to represent the subject’s hemodynamic 
data. Optimum feature elements resulted in classification accuracy, 

sensitivity, and specificity of 85%, 85%, and 84%, respectively (Table 3). 
The sensitivity value of 85% obtained for the optimal classification 
experiment suggests that TBI subjects have been successfully charac-
terized for the optimum feature set. Classification improvement that 
was achieved for the TBI subject classification through feature combi-
nation signifies the major advantage of employing multivariate analy-
sis (as opposed to the univariate analysis) suggesting that the features 
that are individually or mutually irrelevant in characterizing the data 
may become relevant when used in combination.

For the spatio- temporal classification, the performance of every 
single feature in distinguishing between the TBI and healthy subjects 
by incorporating the spatial characteristics to the feature set was eval-
uated. Optimum accuracy, sensitivity, and specificity of 72%, 75%, and 
71%, respectively, were obtained for the spatio- temporal classification 
(Table 6). The spatio- temporal classification performance in compari-
son to the temporal classification was less significant. Less accurate 
performance of the spatio- temporal classification may be explained by 
the fact that for every subject a number of channels may have been 
rejected and it causes the spatio- temporal feature set to contain sev-
eral missing values. However, for the temporal classification the aver-
age characteristics of the hemodynamic feature across the existing 
sites is considered and the missing data does not contribute in the 
classification procedure.

The selected optimum hemodynamic features set that effective-
ly characterized TBI subjects with respect to their PFC hemodynamic 
response using the temporal classification are HbO’s area under the 
curve (CA), HbO’s, DFT coefficients of the HbO signal (HDFT), activity 
curve’s full width half maximum (CF), activity curve’s left slope (CSL), 
and activity curve’s right slope (CSR). As discussed in the Methods 
section, HDFT is composed of four components of which two cor-
respond to the magnitude of the very low frequencies that are asso-
ciated to the spontaneous oscillations in cerebral oxygenation and 
the other 2 are the magnitude of low frequency between 0.07 and 
0.1 Hz. The relationship of the magnitudes of these frequencies to 
the functional stimulus for the hemodynamic signal collected from 
the visual cortex has been investigated in (Obrig et al., 2000) and they 
are shown to be altered by the stimulation. The significance of these 
frequency magnitudes in our results, which are obtained in response 
to the High Complexity task is in line with findings in (Obrig et al., 
2000) that suggests the relationship between these frequency mag-
nitudes and functional stimulus and also claims that this functional 
response is observed over the PFC and is not bounded to the visual 
cortex. Furthermore, as discussed in the Methods section, the select-
ed components of the HDFT feature are related to the cerebral auto-
regulation. The contribution of the HDFT components in separating 
TBI from healthy subjects is consistent with previous findings in which 
disturbance in the cerebral autoregulation in any degree of TBI has 
been reported (Rangel- Castilla et al., 2008).

For the spatio- temporal classification, HbO’s skewness (HS), 
activity curve peak value (CP), activity curve’s left slope (CSL), activ-
ity curve’s area under the curve (CA), and HbO signal’s variance HV 
were identified as the optimum feature elements. In Fig. 6, the spa-
tial distribution of the HV and CSL variables for the healthy and TBI 

TABLE  7 Comparison of the classification performance across 
tasks with different loads of complexity for the identified optimal 
feature set [CS, HK, CAS] using the Decision Tree classification

Task Accuracy (%)
Specificity 
(%) 

Sensitivity 
(%) 

Font 52 ± 11 52 ± 18 53 ± 19

Low complexity 59 ± 10 58 ± 17 61 ± 18

High complexity 79 ± 13 74 ± 18 84 ± 16
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populations are visualized. The spatial distribution for HV and CSL 
signified the contribution of the left hemisphere of the BA 10 in sepa-
rating the healthy subjects from the TBI for the spatio- temporal classi-
fication. Healthy subjects showed a consistent pattern of engaging this 
region in response to the High Complexity task. This finding complies 
with the reports by Amyot et al. (2012), Krueger, et al. (2009) that BA 
10 in healthy subjects is majorly activated in response to the High 
Complexity task. The HV’s spatial distribution map for the TBI sub-
ject suggests that the TBI population have very low activation values 
across the entire PFC in comparison to the healthy subjects. This find-
ing is in line with the previous study of (Sánchez- Carrión et al., 2008) 
that reported patients with TBI show a pattern of cerebral hypoacti-
vation in the right middle and superior frontal regions during working 
memory tasks.

We investigated the parametric effects of the task complexity in 
distinguishing the TBI and healthy subjects by employing the opti-
mum feature set of the temporal classification for task with different 
loads. It should be noted that the complexity of the tasks (i.e., low 
or high complexity) had been determined in advance and was not 
dependent on subject’s response. As it is shown in Table 7, the high-
er the task complexity, a greater distinction was obtained between 
the TBI and healthy subjects. This finding complies with a previous 
report for this specific functional task (Krueger, et al., 2009) in which 
distinct activation in the BA 10 for the High Complexity task was 
observed.

Overall, we successfully identified a set of hemodynamic biomark-
ers that enabled identifying and characterizing subjects with TBI from 
healthy subjects with a significant accuracy (sensitivity of 85% was 
reported in Table 3) through constructing a feature space that maxi-
mized the difference between TBI and healthy subjects. The reported 
accuracy value for the classification performance is the generalized 
accuracy that describes the likelihood of identifying a subject with TBI 
correctly, given its hemodynamic signals are characterized in the sim-
ilar feature space.

As stated before, we intended to investigate the usefulness of the 
hemodynamic features in characterizing subjects with TBI. To this end, 
the hemodynamic features were extracted from HbO signals, whereas 
the hemodynamic features could potentially be extracted from other 
types of hemodynamic signals such as HbR or total hemoglobin (HbT). 
Furthermore, for certain features such as DFT, more number of fea-
tures with employing 2N or 3N DFT could have been obtained that 
was not considered in this work. In our future studies, we will consider 
extracting hemodynamic features from other types of hemodynamic 
signals as well as more number of features with the purpose of creat-
ing larger feature space that can potentially improve classification of 
the TBI and healthy subjects.

It should be emphasized that although we showed that employing 
our proposed preprocessing step of trial/channel removal improves 
the classification performance, but it suffers from certain limitations 
and is susceptible of discarding valuable information. By applying this 
preprocessing step, channels for which 80% or more of the trials had 
been discarded were not considered for further analysis. This may 
result in discarding the majority of the trials from further analysis for 

certain channels. Furthermore, since certain channels are discarded 
from the analysis, the spatial distribution of the hemodynamic activity 
in the temporal classification can vary across subjects.

Finally, it is worth mentioning that our proposed approach of 
identifying TBI functional biomarkers using the fNIRS’s hemodynamic 
signal has the potential to become a common approach in character-
ization of subjects with neurodegenerative, neurodevelopment dis-
orders to further help clinical investigators to identify the underlying 
impairments of brain in the patient groups.
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