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The outbreak and rapid spread of coronavirus disease 2019 (COVID-19) has had a huge impact on the
lives and safety of people around the world. Chest CT is considered an effective tool for the diagnosis
and follow-up of COVID-19. For faster examination, automatic COVID-19 diagnostic techniques using
deep learning on CT images have received increasing attention. However, the number and category of
existing datasets for COVID-19 diagnosis that can be used for training are limited, and the number of ini-
tial COVID-19 samples is much smaller than the normal’s, which leads to the problem of class imbalance.
It makes the classification algorithms difficult to learn the discriminative boundaries since the data of
some classes are rich while others are scarce. Therefore, training robust deep neural networks with
imbalanced data is a fundamental challenging but important task in the diagnosis of COVID-19. In this
paper, we create a challenging clinical dataset (named COVID19-Diag) with category diversity and pro-
pose a novel imbalanced data classification method using deep supervised learning with a self-
adaptive auxiliary loss (DSN-SAAL) for COVID-19 diagnosis. The loss function considers both the effects
of data overlap between CT slices and possible noisy labels in clinical datasets on a multi-scale, deep
supervised network framework by integrating the effective number of samples and a weighting regular-
ization item. The learning process jointly and automatically optimizes all parameters over the deep
supervised network, making our model generally applicable to a wide range of datasets. Extensive exper-
iments are conducted on COVID19-Diag and three public COVID-19 diagnosis datasets. The results show
that our DSN-SAAL outperforms the state-of-the-art methods and is effective for the diagnosis of COVID-
19 in varying degrees of data imbalance.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The coronavirus disease 2019 (COVID-19) is spreading all over
the world and is a serious threat to human life and health. By 2
May 2021, the cumulative number of confirmed cases around the
world was close to 153million, with nearly 3.2 million deaths. Rev-
erse Transcription-Polymerase Chain Reaction (RT-PCR) test is con-
sidered as the gold standard of confirming COVID-19 patients,
which needs 4–6 h to obtain the results and tends to be inadequate
in many areas where the disease is severe [1]. In clinical diagnosis,
as easily available imaging equipment, chest CT provides huge
assistance to clinicians when characteristic manifestations such
as ground glass opacity (GGO) or bilateral patchy shadows in CT
scans were observed [2]. However, the rapidly increasing demand
for medical imaging reading has brought a heavy burden to clini-
cians. Meanwhile, due to the complexity of medical imaging, the
long and tedious reading of medical imaging may cause misinter-
pretation and misjudgment to clinicians.

In recent years, the explosion of all kinds of data has made con-
volutional neural networks (CNNs) achieve great success in many
fields such as computer vision [3,4]. Similarly, CNNs have been
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shown to be effective in assisting in the diagnosis of COVID-19.
However, due to the fact that CNNs is a data-driven approach, this
means high demand for data. On the one hand, the number and
size of datasets available for COVID-19 diagnosis are limited. More-
over, most datasets are used to distinguish COVID-19 from non-
COVID-19, that is, the diversity of classes is limited, so the trained
models do not have good migration ability. On the other hand, in
clinical practice, like most medical image datasets, the original
COVID-19 samples are much smaller than the normal ones, so
there are different degrees of imbalance between target and
non-target samples. The problem of data imbalance means that
some classes in the training set have much more samples
than others [5], which makes it challenging to build a well-
performed classifier. The classification algorithms are often forced
to be biased towards the majority classes and neglect the minority
classes, resulting in low classification accuracy. Therefore, it is
essential to study the diagnosis of COVID-19 based on imbalanced
data.

In general, two categories of approaches have been proposed to
tackle the data imbalance problem, i.e., data-level methods and
algorithm-level methods [5]. To make the distribution balanced
in the data-level, the prior distribution is either modified by
under-sampling the majority classes, or over-sampling the minor-
ity classes, or a combination of both [6]. It is well known that
under-sampling might discard useful information, but medical
image datasets are usually smaller and under-sampling side effects
are more obvious, so over-sampling is preferred in most methods.
For example, Xu et al. expanded the number of minority classes by
3 times to balance the majority class so as to weaken the influence
of the imbalance of different image types [7]. Gozes et al. used
image rotations, horizontal flips, and cropping to overcome the
limited numbers of COVID-19 cases [8]. However, over-sampling
often makes the training procedure computationally burdensome
by increasing the size of training data. Besides, simple forms of
over-sampling such as random replication only increase the num-
ber of images without increasing the diversity of features, and the
models are susceptible to overfitting when using over-sampling.
Thus, this paper focuses on the algorithm-level method.

While most existing algorithm-level approaches attempt to
affect the loss functions by considering more prior information
for the minority class, including the class-to-class separability [9]
and the sample distribution of the raw datasets. However, the
learning of the prior distribution of data for different classes is
not automatic and the model parameters need to be adjusted man-
ually. Furthermore, data overlap due to similarity between CT
slices and possible mislabeling by clinicians may further degrade
model performance.

To address the above problems, in this paper we construct a
challenging COVID-19 diagnosis clinical dataset (named

COVID19-Diag), and propose a novel Deep Supervised Network

with a Self-Adaptive Auxiliary Loss (DSN-SAAL) for COVID-19 diag-
nosis with imbalanced CT images. Our COVID19-Diag is collected
from different models of a hospital, including three categories of
normal, bacterial pneumonia, and COVID-19. Although bacterial
pneumonia and COVID-19 have their own characteristics in image
performance, they also have a large part of overlapping character-
istics. Therefore, our dataset has a certain diversity, which is more
challenging than the binary dataset. Moreover, the data scale is rel-
atively large, which is reflected in the number of cases and the
number of CT slices. Our DSN-SAAL is used as a deep learning
method to solve the problem of COVID-19 diagnosis with imbal-
anced CT images. With several new proposed techniques, DSN-
SAAL can effectively learn the features for the samples of both
majority classes and minority classes. Specifically, we first present
a novel deep supervised learning framework for multi-scale feature
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learning for image classification. Then, we introduce an effective
self-adaptive auxiliary loss for automatically learning the data dis-
tributions of both majority and minority classes. The loss function
considers the data overlap by measuring the effective number of
samples for reweighting the cross entropy (CE) loss. Meanwhile,
a reverse cross entropy (RCE) as a regularization term is further
proposed to handle incorrect labels. DSN-SAAL is self-adaptive
since all model parameters are learned through the network auto-
matically, and thus can be applied to various datasets. To verify the
effectiveness of our proposed method, we conduct extensive
experiments on our COVID19-Diag and three public COVID-19
diagnosis datasets. The experimental results demonstrate that
our method outperforms the state-of-the-art approaches on both
balanced and imbalanced datasets and is effective for the diagnosis
of COVID-19.

Overall, the key contributions of this paper can be summarized
as follows:

� We propose a novel deep supervised learning model with self-
adaptive auxiliary loss, called DSN-SAAL, for the diagnosis of
COVID-19 based on CT scans with the problem of data
imbalance.
� We design a self-adaptive auxiliary loss, which considers both
data overlap between CT slices and possible noisy labels during
data collection for imbalanced data classification.
� We create a new COVID-19 diagnosis dataset (named COVID19-
Diag) consisting of 6982 CT slices from 225 clinical cases in
three categories: COVID-19, normal, and bacterial pneumonia.
Extensive experiments are conducted on this dataset to verify
the effectiveness of our DSN-SAAL in varying degrees of
imbalance.
� We evaluate DSN-SAAL on three additional publicly available
COVID-19 datasets. The results show that DSN-SAAL outper-
forms the state-of-the-art methods and can achieve significant
performance on generalization ability.

2. Related work

2.1. COVID-19 diagnosis studies on CT scans

There has been plenty of studies on the diagnosis of COVID-19
on medical images (such as CT scans) using traditional machine
learning methods or deep learning methods since the outbreak of
COVID-19. Shi et al. first used a VB-Net to segment COVID-19 infec-
tion regions and then trained a random forest model with some
hand-crafted features for the diagnosis [10]. He et al. combined
self-supervised deep learning with transfer learning and proposed
a Self-Trans approach, which can achieve high diagnosis accuracy
of COVID-19 with limited training data [11]. Ying et al. proposed
a deep learning-based CT diagnosis system called DeepPneumonia
to identify patients with COVID-19 [12]. Li et al. proposed the
Transfer-CheXNet which used the pre-trained network CheXNet
for the COVID-19 classification task to better help the parameter
learning of small and medium-sized datasets in the target task
[13]. Gunraj et al. introduced a deep convolutional neural network
architecture named COVIDNet-CT, which explored a machine-
driven method for the diagnosis of COVID-19 from CT images
[14]. Besides, there are some methods to diagnose COVID-19 by
deep learning based on the extraction of regions of interest (ROIs).
For example, Chen et al. trained a UNet++ to segment COVID-19
related lesions to help the diagnosis of COVID-19 [15]. Jin et al. pro-
posed a CNN to segment the lung and then identify slices of COVID-
19 cases [16]. In [7], a deep learning model based on V-Net is firstly
designed to segment the infection regions, and a ResNet-18 net-
work is then used to diagnose COVID-19.



Table 1
The number of samples of each class in the datasets with CT scans.

Literature Samples

Wang et al. [18] 325 COVID-19
740 Viral pneumonia

He et al. [11] 349 COVID-19
397 non-COVID-19

Soares et al. [19] 1252 COVID-19
1229 non-COVID-19

Xu et al. [7] 219 COVID-19
224 Influenza-A
175 Normal

Ying et al. [12] 777 COVID-19
505 Bacterial pneumonia
708 Normal

Gunraj et al. [14] 21395 COVID-19
36856 Common pneumonia
45758 Normal
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Three dimensional (3D) models have also been applied to
address the diagnosis of COVID-19. Considering the high cost of
manual labeling of COVID-19, Wang et al. proposed a 3D Deep
CNN (DeCoVNET) for the detection of weakly labeled COVID-19
[17]. However, the number of positive and negative samples used
in these studies mentioned above are approximately equal, that
is, the data is relatively balanced. Moreover, Wang et al. collected
1065 CT images, including 325 images of COVID-19 cases and
740 images of typical viral pneumonia, to train their deep learning
model [18]. The raw data was somewhat imbalanced, but they
used 160 images from both classes for training, which means the
training data was absolutely balanced. The data compositions of
part of the researches mentioned above are shown in Table 1.

Although these studies achieved good results in their own data-
sets, they did not take into account the impact of imbalanced data
in the clinical diagnosis of COVID-19. In most cases, the number of
open COVID-19 samples from CT scans are much less than that of
normal samples. However, the COVID-19 characteristics obtained
from the models trained with these imbalanced samples are often
inadequate, which easily leads to a poor diagnosis of COVID-19.
Moreover, the robustness of the model may not be good enough
to be applied to other scenarios of COVID-19 diagnosis. Therefore,
it is necessary to study the diagnosis of COVID-19 based on imbal-
anced data, which is more suitable for clinical practice.
2.2. Data-imbalanced loss

Since data-level methods consume more additional resources
and are not stable in execution, this paper focuses on algorithm-
level methods. Among them, the design of the loss function is
the main embodiment of algorithm-level methods.

Generally, there are two main categories of loss functions for
solving the data imbalance problem. The first one is a single form
such as hinge loss, soft-max loss, Euclidean loss, and contrastive
loss [20]. The other attempts to improve those methods, including
class-balanced loss [21], focal loss [22], and cost-sensitive CE loss
[9]. These methods adopt the weighted term based on CE [23],
which makes the decision boundary of the classifier be biased to
minority classes.

Due to the limited performance of these loss functions in real-
izing the identifiability of feature space, recent studies have begun
to explore better combinations of multiple loss functions to solve
the data imbalance problem. Inspired by the symmetric KL-
divergence, Wang et al. [24] proposed a symmetric cross entropy
to address the under learning problem of minority classes and
the overfitting problem of noisy labels. Zhang et al. [25] and Deng
et al. [26] proposed the combination of CE and center loss or range
loss to concurrently enforce intra-class compactness and inter-
class separability.

Nevertheless, the existing combined loss functions are mostly
limited to the adjustment of hyper-parameters and do not have
good generalization because they cannot judge the degree of action
between multiple items. Recently, Shu et al. proposed a new meta-
learning method, called Meta-Weight-Net [27], which adaptively
extracts sample weights to ensure robust deep learning in the case
of training data biases. In particular, considering that different
depths of the network can learn diverse expressions of characteris-
tics, the supervised role of loss functions should be various in dif-
ferent stages of the network, which is reflected in the extent of
partiality for minority classes in solving the problem of data imbal-
ance. Our approach considers these issues simultaneously and con-
structs an adaptive auxiliary loss in the deep supervised network
to effectively combine the learning degree of different types of
characteristics in each stage of the network, so as to promote the
feature learning of minority classes in the network.
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3. Method

In this section, we present our method in detail, including the
image preprocessing, the DSN-SAAL architecture, self-adaptive
auxiliary loss, and the parameter optimization algorithm. The over-
all flowchart of the proposed method is shown in Fig. 1.

3.1. Image preprocessing

It is well known that the images obtained by different types of
CT machines are different. For example, the CT scans in some
cases do not have cylindrical scan boundaries. Besides, in the
whole CT image, other parts except the lung parenchyma are
not effective for the diagnosis of COVID-19. Therefore, we adopt
some preprocessing operations before the training of our model.
First of all, we adjust the window level (WL) and window width
(WW) of all clinical CT images to be consistent (WL: �400, WW:
1500). Then, we normalize them linearly to [0, 255] to fit into the
digital image format. After that, some morphological operations
are used to extract the area of lung parenchyma as following.
(1) We use binarization to obtain the binarized images with pixel
value equals 170. (2) The unrelated regions are removed by ero-
sion, dilation, floodfill, and other operations to obtain the largest
connected regions. (3) We adopt the convex hull operation to cre-
ate the mask of the lung parenchyma and then multiply them by
the images before binarization to obtain the final regions of lung
parenchyma, which are used as the input images for model train-
ing [28].

3.2. DSN-SAAL

In general, the shallow layers of CNNs contain more local
information, while the deep layers contribute more abstract infor-
mation. As the number of network layers increases, the influence
of the shallow layers on the deep layer decreases gradually. Thus,
in the process of image analysis using deep learning methods, the
effective combination of shallow and deep information is con-
ducive to the full learning of the features including minority
and majority classes. To comprehensively extract the multi-scale
feature information of an image, we propose a deep supervised
network by considering several stages in the network architec-
ture. Fig. 2 illustrates the proposed network, which is extended
from the VGG-16 network [29] with five stages. Each stage con-
tains several convolutional layers with a 3 � 3 filter. Different
stages are connected by a 2 � 2 max pooling layer. For the richer



Fig. 1. Overview of the proposed COVID-19 diagnosis method.
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convolutional features [30], we add a 21 � 1 � 1 convolution
operation after each intermediate convolutional layer, and fuse
these features with a 1 � 1 convolution operation in each stage
[31]. In our architecture, each convolutional layer is closely fol-
lowed by batch normalization (BN), which can effectively acceler-
ate the convergence of the networks and improve the stability of
training. Finally, an adaptive average pooling layer is used to
modify the size of the feature map in each stage to 7 � 7, and
then the classification is performed by a fully connected layer.
The sum of all six losses, including the final classification loss
of the VGG-16 network, is set as the final loss under deep super-
vised learning.

In particular, given a sample vector x with class label y, where
y 2 1; . . . ;n; . . . ;Cf g and C is the number of the classes, the loss of
the architecture can be represented by

‘ x; yð Þ ¼
XN
i¼1

‘i x; yð Þ þ ‘final x; yð Þ ð1Þ

where ‘i is the loss of the ith auxiliary classifier, ‘final is the final loss
of the network, and N is the number of auxiliary losses. Since ‘i and
‘final are set as the same form, Eq. (1) can be rewritten as

‘ x; yð Þ ¼
XNþ1
i¼1

‘i x; yð Þ ð2Þ

which is used to minimize the difference between the network pre-
diction and the ground-truth. Its optimization objective is

arg min
x;yð Þ

‘ x; yð Þ ð3Þ

As shown in Eq. (3), ‘i can be set as a suitable surrogate loss, such as
cross entropy. In this study, we design a self-adaptive auxiliary loss
as ‘ x; yð Þ.

3.3. Self-adaptive auxiliary loss

A novel self-adaptive auxiliary loss is proposed to help the
training with imbalanced data by introducing a self-adaptive fac-
tor, which reflects the feature distribution and emphasizes minor-
ity classes. It is measured as the ratio of the effective number of
samples to the total number of samples with a weighting regular-
ization item, which is used for addressing the problem of noisy
labels. Both of them are based on the cross entropy, as introduced
below.

3.3.1. Cross entropy
The cross entropy for measuring the divergence between the

output and ground-truth in the label space is computed by

‘CE ¼ �
XC
n¼1

q njxð Þ logp njxð Þ ð4Þ
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Assuming x; yf g is an input-label pair, the ground-truth distribution
over labels for sample x is in the term of q njxð Þ, and it satisfiesPC

n¼1q njxð Þ ¼ 1. The inputs are transformed into a feature space
representation with models and produces a set of probabilities as
the output p njxð Þ via the Softmax function.

The cross entropy cannot solve the data imbalance problem in
classification, since it treats minority classes in the same way as
majority ones, resulting in the trained model biased towards
majority classes. We further use the following techniques to
address the problem.

3.3.2. Effective number of samples
We first leverage a novel theory proposed by [21] which argues

that the sum of information from all samples in the dataset cannot
be measured by the total number of samples. Particularly in med-
ical images, such as CT scans, multiple images can be obtained after
one CT scan of the same patient. On the one hand, because the
slices are very similar to each other, especially in thin-slice scan-
ning, where the slice thickness is only 1 mm, there is a great deal
of overlap between the features provided by each image. On the
other hand, each slice cannot be easily discarded to avoid the loss
of information. Thus, the data overlap can be measured by the
effective number of samples as follows:

E ¼ 1� akn

1� a
� � nð Þ( )C

n¼1
ð5Þ

where a is the effective sample factor to measure the ratio of the
effective number of samples, and kn is the number of samples in

kth class. In fact, a is used to control the rate of increase of the effec-
tive number of samples when kn increases. In our model, a is
updated in the network as a learnable parameter. After random ini-
tialization, a is activated and modified by Sigmoid function as an
effective sample factor. The detailed process of parameter optimiza-
tion is described in Section 3.4. As shown in Eq. (5), there is asymp-
totic property that E nð Þ ¼ 1 if a ¼ 0, which means there is only one
valid sample of the class and all other samples of the class provide
the same features. And E nð Þ ! kn if a! 1, it can be obtained from L
’Hopital’s rule that:

lim
a!1

E ¼ lim
a!1

1� akn

1� a ¼ lim
a!1

�knakn�1

�1 ¼ kn ð6Þ

The number of valid samples of the class is approximately equal to
the total number of samples of the class, that is, the features pro-
vided by each sample are different and valid. We skip the detailed
proof here, as it has been given in [21].

Different from previous methods weighting the loss by the
inverse of the number of samples of the class, we set the weight
as the inverse of En, which can obtain better performance. Consid-
ering the effective number of samples, the formulation of loss can
be defined by
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‘DCE ¼ �
XC
n¼1

1� a
1� akn

q njxð Þ log p njxð Þ ð7Þ
2 https://github.com/MLMIP/COVID19-Diag
3.3.3. Regularization
In clinical datasets, mislabeling is a problem that can easily

occur, such as labeling other pneumonia as COVID-19, which is
mainly reflected in the fact that COVID-19 shares some common
characteristics with other pneumonia caused by similar viruses.
Meanwhile, in a group of CT slices, not every slice has the discrim-
inative characteristics of COVID-19, which leads to a poor general-
ization of the models learned by mislabeling. In the context of
noisy labels, some samples’ labels are incorrect, namely q njxð Þ does
not represent the true class distribution. Instead, p njxð Þ can reflect
the true distribution to some extent. Inspired by the study in [24],
we utilize p njxð Þ as the ground-truth and q njxð Þ as the class prob-
ability of the outputs, referring as the reverse cross entropy. The
reverse cross entropy for the sample x is computed as follows:

‘RCE ¼ �
XC
n¼1

p njxð Þ log q njxð Þ ð8Þ

Same as the ‘DCE, we use the inverse of En as the weight by

‘DRCE ¼ �
XC
n¼1

1� a
1� akn

p njxð Þ log q njxð Þ ð9Þ

When labels are one-hot, computational problems might exist as
the distribution q njxð Þ ¼ 0. To solve this problem, we set
log 0 ¼ A, where A is a certain constant and it satisfies A < 0 [24].
This approach uses less bias into the model at finite number of
points like q njxð Þ ¼ 0, but no bias at q njxð Þ ¼ 1.

Since ‘DRCE and ‘DCE play different roles in calculating the differ-
ence between the prediction and the ground-truth, a hyper-
parameter b is used to balance them. Due to the difference of the
ground-truth between ‘DRCE and ‘DCE, the sample size of each class
corresponding to the ground-truth is also discrepant, which is
the same as the effective number of samples. While the process
of reconstructing the RCE label is not feasible, b can help to adjust
it with the network accordingly.

3.3.4. The proposed loss function
Based on the above presentation, the proposed self-adaptive

auxiliary loss can be formulated by combining Eqs. (7) and (9) as
follows:

‘SAAL ¼ �
XC
n¼1

1�a
1�akn q njxð Þ logp njxð Þ

�b
XC
n¼1

1�a
1�akn p njxð Þ log q njxð Þ

ð10Þ

The first term on the right of Eq. (10) is the cross entropy weighted
by the effective number of samples, and the second term is the
reverse cross entropy weighted by the effective sample number as
the regularization term. a and b are the hyper-parameters, which
can be learned automatically through the network. The proposed
self-adaptive auxiliary loss can learn the data distributions of both
majority and minority classes by considering the effective number
of samples to reweight the cross entropy loss and introducing a
reverse cross entropy as a regularization term to handle incorrect
labels.

3.4. Parameter optimization

Our goal is to jointly learn the network weight h and the hyper-
parameters a and b. As shown in Eq. (10), a and b represent the
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effective sample factor and weight of ‘DRCE respectively. ‘DRCE is
based on cross entropy changing the position of p njxð Þ and q njxð Þ
in form. Given the case of noise labels, the prediction p njxð Þ of
the network can reflect the distribution of original data more than
the ground-truth q njxð Þ. Since the output in different stages have
different levels of reflection to data distribution, we set up a set
of weighted item b in the different stages. Different with b, the
value of a is not related to the training process. It is the effective
number of samples distribution reflecting the original data, so we
only set it as a single parameter. For both types of parameters,
we use the stochastic gradient descent with the back-
propagation of error to update them. The whole iterative optimiza-
tion process for the parameters is shown in Algorithm 1.

Algorithm 1 Iterative Optimization for Parameters ðh, a, bÞ
Input: Training set x; yð Þ, Maximum epochs Með Þ, Number of

batches B, Learning rate c, Self-adaptive auxiliary loss L
Output: ðh�;a�; b�Þ
1: Net  deep supervised network
2: h a pretrained model of ImageNet is used on the
backbone network and random initialization is used on the
auxiliary chain

3: b1; . . . ; b6;af g  random initialization
4: out  0, loss 0
5: for e 2 1;Me½ � do
6: for b 2 1;B½ � do
7: for i 2 1;6½ � do
8: outi  forward x; y;Net; hð Þ
9: losti  L outi; y;Net; hð Þ
10: loss ¼ lossþ losti
11: end for
12: gradb  backward loss;Net; h;a; bð Þ
13: h�;a�; b�  update Net; h;a; b; gradb; cð Þ
14: h;a; b h�;a�; b�

15: end for
16: end for
17: return h�;a�; b�

In the experiments, we transfer the parameters a and b to
1= 1þ e�að Þ and 1= 1þ e�bð Þ respectively, since they can increase
the corresponding loss to a large value potentially. During the
training of the network, the loss can make the training procedure
unstable and lead to the non-convergence of the loss function.
Therefore, we introduce the form of exponential function to com-
press the weight to 0;1½ Þ.

4. Experimental protocol

In this section, we describe the details of our COVID-19-Diag
dataset and three publicly available datasets including the
COVIDx-CT [14], COVID19-CT [11], and SARS-CoV-2 CT-scan [19]
datasets, as well as evaluation metrics and implementation details.

4.1. Data

4.1.1. Our COVID19-Diag dataset
In this study, we create a new COVID-19 dataset, named

COVID19-Diag, which consists of 69 CT volumes of COVID-19, 95
CT volumes of normal cases, and 62 CT volumes of bacterial pneu-
monia from the First Hospital of Changsha2. The CT volumes of all
the cases are performed on a CT scanner as SIEMENS or GE MEDICAL

https://github.com/MLMIP/COVID19-Diag


Fig. 2. The architecture of the proposed deep supervised network with self-adaptive auxiliary loss.

Table 2
Dataset split of our COVID19-Diag.

Item Class Training Testing

Cases COVID-19 43 18
Normal 67 28
Bacterial Pneumonia 48 21

Images COVID-19 1256 513
Normal 2674 1150
Bacterial Pneumonia 980 409
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SYSTEMS with 5 mm of slice thickness and 512 � 512 of the matrix.
We extract 1769, 3824, 1389 two dimensional (2D) CT axial slices
from COVID-19, normal cases, and bacterial pneumonia respectively,
in which the number of slices selected for each CT scan ranges from
2 to 54. A training set and a test set are randomly divided by cases
with a ratio of 7 to 3. The size of the images are set to
1 � 224 � 224 to accommodate the input of our model. The statistics
of the dataset are shown in Table 2. It is worth mentioning that in
the process of collecting and constructing our COVID19-Diag dataset,
we do not deliberately enlarge the imbalance ratio of the number of
samples in each category, but the problem of data imbalance has a
great impact on the process of using data-driven deep learning
methods to the diagnosis of COVID-19. In order to further verify
the classification performance of our method for imbalanced data,
we adopt different proportions of COVID-19 images for experiments,
as shown in Section 5.3.

Fig. 3 shows the samples of the three classes from the dataset.
The images we collected come from various positions in CT scans
of the lungs, and each section contains different sizes of lung
regions. We can find that some images such as the last column
in bacterial pneumonia and COVID-19 samples have focal areas
but are not obvious. There are also similar features between bacte-
rial pneumonia and COVID-19 such as the first and second column,
both of which have GGO. Therefore, our dataset is challenging and
Fig. 3. Samples of normal (top row), bacterial pneum
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representative for the diagnosis of COVID-19 and can be well used
to verify the classification performance of the algorithm.
4.1.2. Public COVID-19 diagnosis datasets
To verify the generalization ability of the proposed method in

the diagnosis of COVID-19, three additional public challenging
datasets are used. Among them, the first is the COVIDx-CT dataset
[14], which is derived from CT imaging data collected by the China
National Center for Bioinformation comprising 104,009 images
across 1,489 patient cases. The COVIDx-CT dataset contains
21395 COVID-19 (NCP) slices (12520 for training, 4529 for valida-
tion, and 4346 for testing), 36856 Common pneumonia (CP) slices
(22061 for training, 7400 for validation, and 7395 for testing), and
onia (middle row), and COVID-19 (bottom row).



3 https://github.com/sovrasov/flops-counter.pytorch
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45758 Normal slices (27201 for training, 9107 for validation, and
9450 for testing). The COVIDx-CT dataset is currently the largest
dataset used for the diagnosis of COVID-19 with two-
dimensional slices, which contains three categories and has a cer-
tain diversity.

The second is the COVID19-CT dataset [11], which contains 349
COVID-19 images (191 for training, 60 for validation, and 98 for
testing) and 397 non-COVID-19 images (234 for training, 58 for
validation, and 105 for testing). The COVID19-CT dataset was col-
lected from some articles about COVID-19 diagnosis on medRxiv
and bioRxiv services. The data volume is relatively small, and there
is a large difference between these images since they come from
different sources. Therefore, this dataset has certain challenges
and research value.

The last is the SARS-CoV-2 CT-scan dataset [19], which is the
clinical dataset from a hospital including 1252 for positive novel
coronavirus infection and 1229 for patients non-infected, where
80% of images is used for training and the remaining is for valida-
tion. For a fair comparison, we apply fivefold cross-validation to
report the results on the SARS-CoV-2 CT-scan dataset.

4.2. Evaluation metrics

We use the overall classification accuracy (ACC), F1-score, and
G-mean as the main evaluation metrics, where the F1-score and
G-mean are important indexes to evaluate the problem of data
imbalance. In addition, the area under the ROC curve (AUC), Sensi-
tivity (SEN), Specificity (SPE), and Precision(PRE) are required to
evaluate the corresponding datasets to be consistent with other
methods. These metrics are defined by Eqs. (11)–(16), respectively.

ACC ¼ Right
All

ð11Þ

F1� score ¼ 2 � PRE � SEN
PREþ SEN

ð12Þ

G�mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEN � SPE
p

ð13Þ

SEN ¼ TP
TP þ FN

ð14Þ

SPE ¼ TN
TN þ FP

ð15Þ

PRE ¼ TP
TP þ FP

ð16Þ

where the Right and All represent the number of correctly classified
samples and total samples, respectively. TP; TN; FP, and FN are cor-
responding to true positives, true negatives, false positives, and
false negatives, respectively.

4.3. Implementation details

We use our proposed deep supervised network to learn the dis-
criminative feature representations for the image classification
task (see Fig. 2 for details). The backbone of the network is consists
of a VGG-16 network with batch normalization layers. We initial-
ize them using pre-trained models on ImageNet [32], which is of
great significance for the improvement of the convergence and
performance of the model with the help of parameters trained
under a large dataset [33]. Like the other layers of the network,
random initialization of the weights and biases are adopted.

In the experiments, we construct a baseline CNN for comparison
using the VGG-16 with batch normalization but without the adap-
tive auxiliary loss for network training. Similarly, we use the pre-
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trained model on ImageNet to initialize the weights and biases of
the baseline, and cross entropy is adopted as the loss to help the
network convergence. We calculate the confidence intervals,
including the mean and standard deviation, when conducting
experiments on our COVID19-Diag dataset. Each value is a compre-
hensive evaluation of the results of 10 experiments.

For the COVIDx-CT, COVID19-CT, and SARS-CoV-2 CT-scan
datasets, because the size of the images is various and not suit-
able for the input of the network, we resize them to
3 � 224 � 224 using the bilinear interpolation, respectively.
The output of the network depends on the number of categories
in each dataset. Stochastic gradient descent (SGD) with a momen-
tum 0.9 and weight decay 5� 10�4 are adopted as the optimizer.
The learning rate is initialized as 0.001 and divided by 10 every
40 epochs (120 epochs in total). We implement our model based
on PyTorch 1.3.0, and all experiments are performed on an NVI-
DIA GeForce RTX 2080Ti 11G.
5. Results

5.1. Overall performance on Our COVID19-Diag dataset

In order to verify the performance of DSN-SAAL on our
COVID19-Diag dataset, we compare our method with some com-
mon used classification models with CE including VGG-16 [29],
ResNet-50 [34], DenseNet-169 [35], MobileNet-V2 [36], and
ResNeXt-50 [37]. As seen from Table 3, DSN-SAAL outperforms
all competing methods in all evaluation metrics, and it improves
the ACC, F1-score, and G-mean by 5.3–8.4%, 7.6–12.5%, and 5.2–
8.7%, respectively when compared with other models. The ROC
curves of all models are shown in Fig. 4. We can observe that the
red curve of DSN-SAAL is clearly above all the other curves.

To evaluate the effectiveness of our DSN-SAAL, we have also
reproduced three works (i.e., Self-Trans [11], Transfer-CheXNet
[13], and Meta-Weight-Net [27]) for automatic diagnosis of
COVID-19, as shown in Table 3. The codes for all of them are pub-
licly available. For a fair comparison, the settings of the parameters
remain the same in accordance with the relevant official codes. We
only adjust the input of the model to single-channel images, so as
to adapt to our COVID19-Diag dataset. As to the Meta-Weight-Net,
we have made some modifications according to its main architec-
ture and add some convolutional layers and sub-sampling layers to
adapt to the 224 � 224 input. The size of the final output feature
map is 7 � 7. From Table 3, we can see that our DSN-SAAL achieves
high performance in the diagnosis of COVID-19 and outperforms
the competing methods in all metrics.

5.2. Ablation study on DSN-SAAL

To better validate the role of each component of our model in
the diagnosis of COVID-19, we design a set of ablation experiments,
including a deep supervised network (DSN) and a self-adaptive
auxiliary loss (SAAL) study.

We consider four commonly used CNNs including VGG-16,
ResNet-50, DenseNet-169, and ResNeXt-50, which are staged or
modular and suitable for joining the auxiliary supervised chain.
The comparison results between baseline and DSN are shown in
Table 4. The results show that ACC, F1-score, and G-mean are sig-
nificantly improved compared with the baseline after the addition
of auxiliary supervision chain in the network, while the number of
parameters is only slightly increased, not more than 0.1 M (Flops-
counter.pytorch3). We believe that a slight increase in the number of
parameters is acceptable compared to a large increase in the

https://github.com/sovrasov/flops-counter.pytorch


Table 3
Performance comparison of DSN-SAAL with other classification models on our
COVID19-Diag dataset. The best results are highlighted in bold.

Model ACC F1-score G-mean

VGG-16 [29] 0.836 � 0.013 0.748 � 0.018 0.849 � 0.008
ResNet-50 [34] 0.837 � 0.009 0.763 � 0.017 0.838 � 0.017
DenseNet-169 [35] 0.844 � 0.002 0.767 � 0.004 0.862 � 0.001
MobileNet-V2 [36] 0.867 � 0.008 0.797 � 0.010 0.873 � 0.008
ResNeXt-50 [37] 0.846 � 0.012 0.765 � 0.017 0.850 � 0.007
Self-Trans [11] 0.909 � 0.016 0.866 � 0.017 0.896 � 0.020
Transfer-CheXNet [13] 0.899 � 0.015 0.848 � 0.017 0.885 � 0.018
Meta-Weight-Net [27] 0.888 � 0.005 0.825 � 0.009 0.868 � 0.016
DSN-SAAL (Proposed) 0.920 � 0.004 0.873 � 0.007 0.925 � 0.006

Fig. 4. The ROC curves of our DSN-SAAL and some popular models.

Table 5
Performance comparison of VGG-16 with different loss functions to solve the data
imbalance on our COVID19-Diag dataset.

Method ACC F1-score G-mean

CE 0.836 ± 0.013 0.748 ± 0.018 0.849 ± 0.008
Focal Loss [22] 0.851 ± 0.007 0.766 ± 0.011 0.855 ± 0.008
CB Loss [21] 0.861 ± 0.005 0.782 ± 0.007 0.868 ± 0.006
SCE [24] 0.856 ± 0.014 0.804 ± 0.014 0.885 ± 0.010
SAAL (Proposed) 0.875 ± 0.005 0.832 ± 0.014 0.890 ± 0.010
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diagnosis result. We can conclude that the performance of deep neu-
ral networks can be effectively improved by adding auxiliary
supervision.

Moreover, it can be seen that it is more beneficial to increase
the depth supervision mechanism on the shallow and simple layer
network than the deep layer network, because the complex net-
work structure has the learning ability of different layer character-
istics to a certain extent.

The comparison results of our SAAL and some other loss func-
tions are shown in Table 5. From the results, we can observe that
SAAL outperforms other loss functions by providing more accurate
diagnosis performance on the COVID19-Diag dataset. Especially for
the F1-score, our results increase even higher than other loss func-
tions, showing the learning effect of SAAL on the features of each
category. Furthermore, when DSN and SAAL are used in VGG-16,
the ACC result is 0.920 � 0.004, F1-score is 0.873 � 0.007, and G-
mean is 0.925�0.006, all of which are higher than either of them
alone, reflecting the advantages of DSN-SAAL. In summary, our
Table 4
Performance comparison of whether to add auxiliary supervision in classification models

Model Method ACC

VGG-16 Baseline 0.836 ± 0.013
DSN 0.894 ± 0.004

ResNet-50 Baseline 0.837 ± 0.009
DSN 0.862 ± 0.007

DenseNet-169 Baseline 0.844 ± 0.002
DSN 0.868 ± 0.009

ResNeXt-50 Baseline 0.846 ± 0.012
DSN 0.887 ± 0.007
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DSN-SAAL effectively integrates the shallow and deep information
through the auxiliary supervision, which promotes the feature
learning of the model. Besides, SAAL makes the model pay more
attention to the learning of the minority classes, thus effectively
solving the problem of data imbalance.

5.3. Evaluation on data imbalance problem

To further demonstrate the effectiveness of our model on the
data imbalance problem, we increase the imbalance ratio of our
COVID19-Diag dataset for comparison. Our goal is to get better
results with a small number of COVID-19 samples, and thus we
reduce the samples of the target class as COVID-19 to 25%, 10%,
5%, and 1% respectively, to evaluate our model against the base-
line. The results are shown in Table 6. In order to better evaluate
the classification results of the target class and non-target classes,
sensitivity and specificity are used. In particular, we record
changes in sensitivity at different levels of deletion with the sam-
ples of COVID-19 compared to the standard distribution in brack-
ets. We observe that all indicators decline when the sample size
of the target class decreases. Especially for F1-score and G-mean,
which are the comprehensive indicators focusing on the learning
of each class, show a large decline. However, our DSN-SAAL still
has some advantages compared to baseline. With the increase of
the imbalance ratio, the decline in sensitivity of DSN-SAAL is
slower than that of baseline. Besides, the specificity is slightly
improved. Fig. 5 shows the confusion matrix obtained by different
degrees of imbalance ratios for the COVID-19 samples separately.
Overall, the results show that our DSN-SAAL can effectively main-
tain the classification accuracy of minority classes without affect-
ing the feature learning of majority classes.

5.4. Samples analysis and visualization of CAM

The studies reported that the pulmonary abnormalities on
COVID-19 CT scans include bilateral and subpleural GGO, bron-
chovascular thickening, air space consolidation, traction
bronchiectasis, pleural effusion, and crazy paving appearance.
However, there are some overlaps between the biological charac-
teristics of COVID-19 and other pneumonia in CT slices, such as
GGO, space consolidation, and frantic pavement, which are com-
mon findings of COVID-19 and bacterial pneumonia on CT images.
on our COVID19-Diag dataset.

F1-score G-mean Params

0.748 ± 0.018 0.849 ± 0.008 134.28 M
0.830 ± 0.010 0.901 ± 0.004 134.32 M

0.763 ± 0.017 0.838 ± 0.017 23.51 M
0.790 ± 0.017 0.865 ± 0.009 23.59 M

0.767 ± 0.004 0.862 ± 0.001 12.48 M
0.792 ± 0.017 0.872 ± 0.011 12.49 M

0.765 ± 0.017 0.850 ± 0.007 22.98 M
0.819 ± 0.011 0.888 ± 0.006 23.06 M
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Besides, for some patients with mild disease in the early stage,
there is no obvious lesion area in the CT slices, which is easy to
cause false negative in the diagnosis process and cannot effectively
prevent the progression of the disease. These conditions will affect
the diagnosis of COVID-19.

Fig. 6 shows some samples that are diagnosed using our model.
Figs. 6a and b are the slices where bacterial pneumonia samples
are diagnosed as normal. It can be seen that there is no obvious
lesion area, especially for samples like Fig. 6b, which is located at
the top or bottom of the CT scans. The pulmonary parenchyma area
itself is very small, but the lesion features cannot be ignored, which
becomes a difficulty in model learning. For Figs. 6c and d, the bac-
terial pneumonia samples are diagnosed as COVID-19. The lesions
of bacterial pneumonia appeared on the periphery of the slices,
which is similar to the characteristics of the COVID-19 samples
and is more prone to misclassification. Slices as shown in Figs. 6e
and f indicate that the samples of COVID-19 are judged to normal.
It can be seen that the features of the lesions in both of them are
not obvious, and even appear to be very similar to pulmonary
blood vessels. Figs. 6g and h represent the samples of the
COVID-19 that are determined to be bacterial pneumonia. Simi-
larly, the samples of the COVID-19 show similar characteristics
with bacterial pneumonia. Especially for Fig. 6h, the lung parench-
yma shows a large area of low-density GGO and is difficult to
distinguish.

The results also show that our model has higher sensitivity in
the diagnosis of COVID-19, which also indicates that the model
has fewer false negatives and is less likely to be misdiagnosed.
Although the deep learning model can distinguish COVID-19 from
bacterial pneumonia and normal cases to a certain extent, the
model is limited by the diversity and class imbalance of the train-
ing data, and our work is trying to solve these problems.

As shown in Fig. 7, the class activation mapping (CAM) [38] is
used to visualize the attention regions on our COVID19-Diag data-
set for VGG-16 with CE and DSN-SAAL. This can be obtained by the
convolutional layer at the end of the models. As seen from the first
and fifth columns, the raw images of the lesion area are not obvi-
ous, VGG-16 can not accurately distinguish between pulmonary
vessels and lesion areas, resulting in a large area of the red area
covering the pulmonary area. While our method can notice them
more accurately. As shown in the second and fourth columns, we
find that our method can better separate the lung lobes from the
background and find the GGO more precisely. For a challenging
sample as the third and sixth columns, DSN-SAAL can still distin-
guish the lung parenchyma and lesion areas to obtain more accu-
rate results than VGG-16.

5.5. Evaluation on public COVID-19 diagnosis datasets

To verify the generalization of DSN-SAAL, we conduct compar-
ative experiments on other three publicly available COVID-19
datasets. We use the data division which is mentioned in Sec-
tion 4.1, and the results are shown in Tables 7–9. For each dataset,
we compare our method with the state-of-the-art approaches, and
the results of the comparison methods in the tables are all from the
original papers.

For the COVIDx-CT dataset, we first conduct experiments under
the original data distribution and compare them with relevant
methods. It can be seen that our DSN-SAAL performs better than
the other two approaches in terms of the overall accuracy and
the SEN and PRE of the three categories. COVIDNet-CT [14] is the
method proposed in conjunction with the original COVIDx-CT
dataset, and the VisionPro [39] is deep learning software that has
been widely used in various fields from factory automation to life
science. As the COVIDx-CT dataset itself has a large number of
slices, the samples in the three categories are relatively rich for



Fig. 5. Confusion matrix for DSN-SAAL on our COVID19-Diag dataset. Fig. 5a–d are the results with 25%, 10%, 5% and 1% of COVID-19 samples respectively.

Fig. 6. Examples of the diagnostic results obtained using our DSN-SAAL.
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the classification tasks, so the three methods can all get good
results on this dataset, as shown in the first part of Table 7.

In order to better verify the effectiveness of our DSN-SAAL, we
extract 1000 CT slices from each of the three categories of training
sets for training, that is, only about 5% of the original training set is
used for training, and the test set is kept unchanged for a fair eval-
uation. The samples taken are consistent with that in reference
[40]. As shown in the second part of Table 7, COVID-CT-MaskNet
[40], Two Stage Model [41], Lightweight Model [42], and One Shot
Model [43] all adopted a two-stage learning strategy. First, the rel-
evant regions of interest (ROI) containing GGO and consolidation
shadows were obtained from the images by detection and segmen-
tation methods, and then each category was distinguished by a
classification network. From Table 7, we can observe that our
241
DSN-SAAL outperforms the state-of-the-art approaches and can
still maintain a high degree of differentiation for each category
even when the dataset is greatly reduced. Besides, our DSN-SAAL
is a single-stage network, which makes the training process more
convenient than a multi-stage model.

For the COVID19-CT dataset, as shown in Table 8, it can be seen
that although the AUC value of our DSN-SAAL is slightly lower than
that of Self-Trans, it still ranks 2nd, and our results in ACC and F1-
score are higher than that of Self-Trans. It is worth mentioning
that, for Self-Trans, 1000 additional unlabeled CT slices from the
Lung Nodule Analysis (LUNA) database were trained with the
pre-trained model on the ImageNet dataset, and then the
COVID19-CT dataset was trained on the obtained model to com-
plete the final classification task. However, our method does not



Table 7
Comparison with the state-of-the-art methods on the COVIDx-CT dataset.

Section Method ACC SEN (Normal/CP/NCP) PRE (Normal/CP/NCP)

Stand.split COVIDNet-CT [14] 0.9911 1.0000/0.9904/0.9731 0.9940/0.9844/0.9969
VisionPro [39] 0.9960 0.9992/0.9922/0.9959 0.9962/0.9966/0.9947
DSN-SAAL (Proposed) 0.9987 1.0000/0.9977/0.9977 0.9983/0.9988/0.9995

5% of training set COVID-CT-Mask-Net [40] 0.9166 0.9110/0.9162/0.9080 0.9433/0.8708/0.9475
Two Stage Model [41] 0.9564 0.9691/0.9506/0.9388 0.9766/0.9300/0.9588
Lightweight Model [42] 0.9395 0.9698/0.9163/0.9135 –
One Shot Model [43] – 0.9927/0.9813/0.9574 –
COVIDNet-CT [14] 0.9757 –/–/0.9249 –
DSN-SAAL (Proposed) 0.9891 0.9998/0.9831/0.9758 0.9870/0.9867/0.9976

Table 8
Comparison with the state-of-the-art methods on the COVID19-CT dataset.

Method ACC F1-score AUC

VGG-16 [29] 0.76 0.76 0.82
ResNet-50 [34] 0.80 0.81 0.88
DenseNet-169 [35] 0.83 0.81 0.87
Self-Trans [11] 0.86 0.85 0.94
Contrastive-COVIDNet [44] 0.79 0.79 0.85
Transfer-CheXNet [13] 0.87 0.86 0.75
Cross-Datasets Analysis [45] 0.88 0.86 0.91
DSN-SAAL (Proposed) 0.87 0.86 0.91

Fig. 7. Visualization of raw images with COVID-19 (the first row), the input images (the second row), and CAMs obtained by VGG-16 with CE (the third row) and our DSN-
SAAL (the fourth row).
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use additional data for training. In addition, our ACC value is
slightly lower than Cross-datasets Analysis [45], but we get the
highest F1-score. Furthermore, we can find that our DSN-SAAL sig-
nificantly outperforms the existing methods including Cross-
datasets Analysis [45] in each index, when conducting experiments
on the SARS-CoV-2 CT-scan dataset (see Table 9). It effectively ver-
ifies that our DSN-SAAL has better generalization performance
than the state-of-the-art methods.
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We further conduct experiments on another dataset, i.e., SARS-
CoV-2 CT-scan. Table 9 shows the comparison of results between
DSN-SAAL and a series of classical traditional machine learning
methods and existing deep learning models. Among them, xDNN
combined deep neural networks with prototype learning, aiming
to propose an interpretable deep learning model for the automatic
diagnosis of COVID-19. MAD-DBM [46] used a deep bidirectional
long short-term memory network with a mixture density network
model as a real-time COVID-19 diagnostic system. It can be found
from Table 9 that DSN-SAAL is still superior to other popular tradi-
tional machine learning and deep learning methods in each evalu-
ation index, which effectively verifies the performance of our
model.

6. Discussion

Deep learning has proven to be an effective tool for assisting the
diagnosis of COVID-19 due to its rapid and accurate characteristics.
However, data volume and diversity have a profound impact on the
performance of deep learning models [49] (see Table 6). On the one
hand, there are relatively few public datasets available on the diag-



Table 9
Comparison with the state-of-the-art methods on the SARS-CoV-2 CT-scan dataset.

Method ACC F1-score AUC PRE SEN

AdaBoost 0.9516 0.9514 0.9519 0.9363 0.9671
Decision Tree 0.7944 0.7984 0.7951 0.7681 0.8313
AlexNet [47] 0.9375 0.9361 0.9368 0.9498 0.9228
VGG-16 [29] 0.9496 0.9497 0.9496 0.9402 0.9543
GoogleNet [48] 0.9173 0.9182 0.9179 0.9020 0.9350
ResNet [34] 0.9496 0.9503 0.9498 0.9300 0.9715
xDNN [19] 0.9738 0.9731 0.9736 0.9916 0.9553
Contrastive-COVIDNet [44] 0.9083 0.9087 0.9624 0.9575 0.8589
Cross-Datasets Analysis [45] 0.9889 – – 0.9920 0.9880
MADE-DBM [46] 0.9837 0.9814 0.9832 0.9874 0.9887
DSN-SAAL (Proposed) 0.9943 0.9944 0.9995 0.9952 0.9936
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nosis of COVID-19, most of which are intended to distinguish
between normal and COVID-19. Although CT scan images of
COVID-19 are distinctly different from normal images, there are
many commonmanifestations with other pneumonia. On the other
hand, the sample size of the original target class is much smaller
than that of the non-target class. In the diagnosis of COVID-19,
there are often few COVID-19 targets, which leads to the problem
of data imbalance, but the clinical need to distinguish them effec-
tively. However, most of the existing deep learning methods for
diagnosing COVID-19 did not consider the problem of data imbal-
ance or simply amplify the data through affine transformation, and
the diversity of samples did not increase. Taking the problems
mentioned above into account, we first collected and created a cat-
egory diversity dataset for COVID-19 diagnosis. Second, we pro-
posed a novel method called DSN-SAAL, which can better
distinguish COVID-19 from normal and bacterial pneumonia in
the case of data imbalance.

The image features learned by the network at different stages
are diverse and need to be effectively utilized. In this paper, we
integrated shallow features and deep features through auxiliary
supervision to promote the simultaneous learning of minority
and majority class features. Furthermore, considering the similar-
ity between different slices of CT scans and the possible mislabel-
ing of clinical data, we designed an adaptive auxiliary loss for
supervision, which is effectively combined with the deep supervi-
sion network to promote the learning of minority class features.
Tables 4 and 5 show the advantages of deep supervision network
and adaptive auxiliary loss over baseline, respectively. The results
illustrated in Table 3 and Fig. 4 also show that our method has
great advantages when compared to popular deep learning models.

To fully demonstrate the superiority of our method under the
imbalance problem, we designed a series of comparison experi-
ments under the imbalanced ratio (see Table 6). It can be seen that
our method has better stability than the baseline in the case of an
increased imbalance ratio. We also show the confusion matrix of
different proportions of COVID-19 samples (see Fig. 5). It can be
found that with the decrease of COVID-19 samples, the perfor-
mance of our model decreases correspondingly. However, it is
worth mentioning that when the COVID-19 samples are 1% of
the original ones, that is, only 13 samples are used for training at
this time, our model still has a certain recognition ability of the
COVID-19 in the same test set. To verify the generalization ability
of our model, some experiments were conducted on other three
public COVID-19 diagnosis datasets. The results as shown in Tables
7–9 verified the superiority of the proposed method. Besides, CAMs
showed that our model can focus on the pulmonary parenchymal
areas to further find relevant lesion areas more accurately, even
if the lesion area is not obvious (see Fig. 7).

Although we have demonstrated that our model performed well
in the COVID-19 diagnosis, there are still some limitations. First,
the COVID19-Diag dataset is limited. Compared with existing
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COVID-19 diagnostic datasets, our COVID19-Diag has some advan-
tages in data volume, but it is still not enough, which will have a
certain impact on the training of deep learning models. We plan
to evaluate our method using additional CT scans from more cen-
ters in the future. Second, our method only focuses on the identifi-
cation of COVID-19 and does not quantify the lesion area for
analyzing the severity to help clinicians make further diagnoses.
Thus, we are going to look at that to help with monitoring and
treatment in future research. We also plan to replicate our model
on the open source deep learning platform paddle.
7. Conclusion

In this paper, we create a challenging clinical dataset named
COVID19-Diag and propose a novel deep supervised learning using
self-adaptive auxiliary loss for COVID-19 diagnosis from imbal-
anced CT images. We first present a novel deep supervised network
for multi-scale feature learning of imbalanced data (i.e., the equiv-
alence learning of majority and minority classes). Then, we pro-
pose an efficient self-adaptive auxiliary loss by considering the
effective number of samples and the regularization item with an
RCE. Our method can be applied to different datasets since all
model parameters are automatically learned through the network
iteration.

Finally, the results on our COVID19-Diag and three publicly
available COVID-19 diagnosis datasets show that using a convolu-
tional neural network without any data amplification can effec-
tively identify COVID-19 from imbalanced CT images.
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