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Abstract 

Background: The cattle tick is a parasite that adversely affects livestock performance in tropical areas. Although 
countries such as Australia and Brazil have developed genetic evaluations for tick resistance, these evaluations have 
not considered genotype by environment (G*E) interactions. Genetic gains could be adversely affected, since breed-
stock comparisons are environmentally dependent on the presence of G*E interactions, particularly if residual vari-
ability is also heterogeneous across environments. The objective of this study was to infer upon the existence of G*E 
interactions for tick resistance of cattle based on various models with different assumptions of genetic and residual 
variability.

Methods: Data were collected by the Delta G Connection Improvement program and included 10,673 records of tick 
counts on 4363 animals. Twelve models, including three traditional animal models (AM) and nine different hierarchi-
cal Bayesian reaction norm models (HBRNM), were investigated. One-step models that jointly estimate environmental 
covariates and reaction norms and two-step models based on previously estimated environmental covariates were 
used to infer upon G*E interactions. Model choice was based on the deviance criterion information.

Results: The best-fitting model specified heterogeneous residual variances across 10 subclasses that were bounded 
by every decile of the contemporary group (CG) estimates of tick count effects. One-step models generally had 
the highest estimated genetic variances. Heritability estimates were normally higher for HBRNM than for AM. One-
step models based on heterogeneous residual variances also usually led to higher heritability estimates. Estimates 
of repeatability varied along the environmental gradient (ranging from 0.18 to 0.45), which implies that the rela-
tive importance of additive and permanent environmental effects for tick resistance is influenced by the environ-
ment. Estimated genetic correlations decreased as the tick infestation level increased, with negative correlations 
between extreme environmental levels, i.e., between more favorable (low infestation) and harsh environments (high 
infestation).

Conclusions: HBRNM can be used to describe the presence of G*E interactions for tick resistance in Hereford and 
Braford beef cattle. The preferred model for the genetic evaluation of this population for tick counts in Brazilian cli-
mates was a one-step model that considered heteroscedastic residual variance. Reaction norm models are a power-
ful tool to identify and quantify G*E interactions and represent a promising alternative for genetic evaluation of tick 
resistance, since they are expected to lead to greater selection efficiency and genetic progress.
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Background
The cattle tick is a parasite that adversely affects beef 
cattle production in tropical areas such as Brazil. Retail 
beef markets are imposing restrictions on meat, ensuring 
that it is free of chemical residues that are perceived as 
having negative impacts on environment, public health 
and human welfare. Therefore, to remain competitive in 
foreign beef markets, Brazil must aim at complying with 
these higher standards.

To ensure market competitiveness, one strategy might 
be to increase the contribution of the Bos taurus breeds 
to Brazilian herds because they are more advantageous 
in terms of productive traits [1], such as carcass yield, 
gain weight, meat quality and sexual precocity compared 
to Bos indicus breeds. However, Bos taurus breeds tend 
to have greater susceptibility to tick infestation than Bos 
indicus breeds [2, 3]. Hence, selection of animals for tick 
resistance would be useful to reduce the need for chemi-
cal control while also increasing productivity.

Evidence for additive genetic variability of tick counts 
in cattle includes reported heritability estimates, which 
range from 0.05 to 0.42 [2, 4–6]. Genetic evaluations for 
tick counts are routinely performed in countries such as 
Australia and South Africa, which have a similar climate 
as Brazil and where the cattle tick is also present. Exam-
ples of breeds with such evaluations include breeds such 
as Bonsmara and Belmont Red [7], and Brahman and 
Hereford-Shorthorn) [8]. In Brazil, the Conexão Delta 
G (Delta G Connection) company has used a genetic 
improvement program based on selection for tick resist-
ance in Hereford and Braford cattle since 2003 [9].

These and other research studies and genetic evalua-
tions [7, 9] have not considered genotype by environment 
interactions (G*E). Failing to consider G*E interactions 
in genetic evaluations can adversely affect breeding pro-
grams if relative genetic merit is affected by the environ-
ment [10–13]; specifically, animals that are identified 
as top breeders in one environment may not be ideal in 
other environments. This issue is further exacerbated if 
progeny are raised in environments that differ from that 
of their parents [13]. In addition, most current genetic 
evaluation systems assume homogeneous residual vari-
ances across environments, although evidence of residual 
heteroscedacity has been reported, which is defined as 
heterogeneity of residual variances across contemporary 
groups, for traits such as milk yield [14] and post-wean-
ing gain [10, 15].

Linear reaction norm models capture a simple form of 
G*E interactions. They are based on the use of covariance 
functions [16] that allow for the prediction of the relative 
genetic merit of animals as a function of gradual linear 
changes in an environmental covariate. Sometimes this 
environmental covariate is not known with certainty and 

must be estimated from the data; Su et  al. [17] demon-
strated how this inference uncertainty could be formally 
accounted for by using Bayesian methods. If G*E interac-
tions are important for tick resistance, reaction norm mod-
els could be used to fine-tune genetic improvement for tick 
resistance in Brazilian beef cattle. Because G*E interac-
tions contribute to heterogeneous genetic variability across 
environments, if heteroscedastic residual variability across 
environments is ignored, inferences on G*E interactions 
based on reaction norm models could be biased.

The objective of this study was to infer upon G*E inter-
actions based on models with different assumptions 
regarding the nature of genetic and residual variation and 
with different approaches to account for uncertainty on 
environmental gradient.

Methods
Tick count data
Data used in this current study were obtained from a 
breeding program conducted by Conexão Delta G (Delta 
G Connection). Data included records of tick counts (TC) 
on Hereford and Braford beef cattle from eight herds from 
the Rio Grande do Sul state, Brazil. TC were obtained on 
each animal from 326 to 729 days of age using the method 
described by Wharton and Utech [18], for which all 
engorged female ticks larger than 4.5  mm were counted 
on the entire left side of the animal when average man-
agement group infestation, i.e., animals under the same 
feeding and sanitary management, exceeded 20 ticks per 
animal. Up to three such counts were obtained for each 
animal, with each count separated by a minimum of 
30 days, as described in other studies [5, 19, 20]. A total of 
241, 1934 and 2188 animals for which, respectively, one, 
two and three TC were recorded. The average age during 
the evaluation period was 524 ± 65 days, and the overall 
mean TC was equal to 35.0 with a standard deviation of 
42.2 (ranging from 0 to 532).

The 4363 animals with records were born between 
2008 and 2011 and originated from 604 sires and 3966 
dams, with 10 generations of pedigree depth. A total of 
11,967 animals remained after pedigree pruning (i.e., 
removing any terminal ancestors that occur only once in 
the pedigree file). Pedigree information was incomplete 
due to the use of multiple-sire matings; 36 % of the ani-
mals only had their dam known. For animals with TC, 
this increased to 65 %. Similar pedigree structures from 
this same population have been used in other studies 
[20], and they have not affected the results of genetic 
evaluation. A detailed breakdown of the pedigree struc-
ture is in Table 1.

Because TC were not normally distributed (Fig.  1), a 
log-transformation was used such that LTTC  =  log10 
(TC + 1.001), which was used as the response variable [1, 
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20]. The constant 1.001 was included because some TC 
were equal to 0 [1, 20]. Skewness and kurtosis tests were 
performed and ensured the normality of the residuals 
from the fitted models.

Contemporary groups (CG) were defined as groups of 
animals within the same herd, year of birth, season of 
birth (April–July; August–November and December–
March), sex and from the same management group. From 
11,316 observations, we selected 10,673 records pertain-
ing to 146 CG with at least five animals and with each 
LTTC record being within 3.5 standard deviation (SD) 
from its specific CG. Connectedness among the CG was 
determined by each having more than 10 genetic links 
in the dataset, using the AMC software [21]. Estimates 
of CG effects on LTTC were assumed to be the envi-
ronmental covariates for a linear reaction norm model 
because they are the most appropriate entities used to 
describe the environmental conditions for beef cattle 
production [10, 22, 23].

Statistical models
Twelve analyses based on different models and/or infer-
ential methodologies and specifications on residual vari-
ability were conducted on the data. These analyses are 
described below as M1 to M12 and are summarized in 
Table 2.

Traditional animal model (AM)
Consider the following simple linear traditional animal 
model (M1):

Here, yijk is the kth LTTC record of animal j from CG i, 
β is the vector of fixed effects that includes an overall 
intercept, linear regression coefficients for Nellore breed 
proportion, heterozygosity and recombination loss (pre-
determined by Cardoso et  al. [9]), as well as linear and 
quadratic regression coefficients on age of the animal; x′j 
is the known incidence row vector of covariates connect-
ing β to yijk; wi is the random effect of CG i (i = 1, 2, . . . , 
146 levels); aj is the random additive genetic effect of ani-
mal j; cj is the random permanent environmental effect of 
animal j; and eijk is the residual error.

The following distributional assumptions were 
specified:

(1)yijk = x′jβ + wi + aj + cj + eijk .

w = {wi} ∼ N (0, Iσ 2
w),

a =
{
aj
}

∼ N (0, Aσ 2
a ),

Table 1 Pedigree structure as  defined by  parentage cer-
tainty and pedigree completeness

With tick 
counts

Without tick 
counts

Total

Both parents known 1515 1917 3432

Both parents unknown 4 3807 3811

Only sire known 7 4 11

Only dam known 2837 1876 4713

Total 4363 7604 11,967

Fig. 1 Distribution of tick counts
Table 2 Statistical model implemented for analysis of tick 
counts, including  approach, contemporary group effect, 
heteroscedasticity specification, deviance criterion infor-
mation (DIC) value with respective model ranking

Mx model number x; two-step (Y yes, N no, N/A non-applicable because the 
model is not a reaction norm model); CG specification on contemporary group 
effects (C covariate, R random classification effect); HET heterogeneous residual 
variance; S0 homoscedastic residual variance; S1 exponential function on 
heteroscedastic residual variance; S2 discrete subclasses based on classification 
function on heteroscedastic residual variance

Mx Two-step CG HET DIC value Ranking

M1 N/A R S0 4828.60 12

M2 Y C S0 3736.80 4

M3 Y R S0 4010.93 8

M4 N R S0 3590.84 3

M5 N/A R S1 4507.90 11

M6 Y C S1 3863.92 7

M7 Y R S1 4258.18 10

M8 N R S1 3819.11 5

M9 N/A R S2 4129.39 9

M10 Y C S2 3549.11 2

M11 Y R S2 3823.49 6

M12 N R S2 3114.77 1
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 and 

 where σw
2, σa

2, σc
2 and σe

2 represent variance components 
due to CG, additive genetics, permanent environment 
and residual terms, respectively. Here, A represents the 
numerator of the relationship matrix between the ani-
mals in the pedigree, and I is the identity matrix.

Hierarchical bayesian reaction norm models (HBRNM)
Two somewhat different approaches were used to 
estimate environmental sensitivities of animals. One 
approach was based on a commonly used two-step model 
[24, 25], in which in the first step, the regular animal 
model (M1) from Eq. (1) is used to estimate CG effects ŵi. 
The second step consists of using these ŵi estimates as if 
they were “known” environmental covariates in a linear 
reaction norm model. More specifically, posterior means 
of ŵi obtained from M1 were used as covariate values in 
the following reaction norm model (M2).

Here, φ is an overall linear regression coefficient of yijk on 
ŵi; aj is the additive genetic intercept of animal j pertain-
ing to genetic merit for an average environment (ŵi = 0); 
bj is the random additive genetic effect of the reaction 
norm slope of animal j on ŵi; cj is the non-genetic (e.g., 
permanent environmental effect) intercept of animal j, as 
defined for an average environment (ŵi = 0); and dj is the 
random permanent environmental effect of the reaction 
norm slope of animal j on ŵi. Note that yijk, x′j β and eijk 
are defined as before.

Another two-step modeling strategy (M3) that is very 
similar to M2 is given by Eq. (3):

In M3, contemporary group effects are refitted as ran-
dom effects rather than being treated as known covari-
ates, such that M3 may be more flexible than M2 for 
modeling CG effects. Nevertheless, ŵi was again used as 
a “known” covariate in the random regression portion of 
the model.

Including ŵi as if it is a “known” covariate in the sec-
ond step of this approach is clearly a limitation that may 
understate statistical uncertainty and lead to biased 
predictions on animal genetic merit. These biases may 
be due to genetic trend, differences in environmental 
covariate values across CG, or both [10, 17]. An appeal-
ing one-step approach that avoids these limitations of 
the two-step approach was proposed by Su et  al. [17]. 
This approach is purely Bayesian in that the covariate 

c =
{
cj
}

∼ N (0, Iσ 2
c )

e =
{
eijk

}
∼ N (0, Iσ 2

e ),

(2)yijk = x′jβ + φŵi + aj + bjŵi + cj + djŵi + eijk .

(3)yijk = x′jβ + wi + aj + bjŵi + cj + djŵi + eijk .

associated with the reaction norm is treated as unknown, 
which allows inferences for all unknowns together within 
a one-step linear reaction norm model (M4):

Model M4 can be rewritten in matrix notation as below 
[17]:

where y =  {yijk} is the nx1 vector of observations; β is 
the vector of fixed effects of order p; w ={wi}

nw
i=1 is the 

vector of environmental effects; a =  {aj}q
j=1 is the vector 

of random genetic intercepts; b = {bj}q
j=1 is the vector of 

random genetic slopes; c = {cj}q
j=1 is the vector of random 

permanent environment intercepts; d = {dj}q
j=1 is the vec-

tor of random permanent environment slopes; and e is 
the nx1 vector of residuals. Matrices X, P, Za and Zc are 
known incidence matrices, where the column address of 
matrices Zb and Zd has exactly one element equal to the 
environmental covariate (wi or an estimate of wi) for that 
CG in the row address of the observation, with all other 
elements in that row equal to 0.

Prior distributional specifications
To infer environmental sensitivities using a hierarchical 
Bayesian model, three stages are required: the first stage 
defines the distribution of the observed data conditional 
on all other parameters [17]:

For a homoscedastic residual specification such as for 
M1, M2, M3 and M4, R =  Iσe

2, where σe
2 is the residual 

variance and I is the identity matrix. However, as previ-
ously noted, it might be important to model residual het-
eroscedasticity. We propose two alternative strategies for 
this. The first heteroscedastic residual specification (S1) is 
defined by R = diag

(
Iniσ

2
ei

)
, a diagonal matrix with ele-

ments equal to σ2ei = σ2e × ηŵi and Ini denoting an iden-
tity matrix of order ni, where ni is the number of records 
in the ith CG. Here, η is an unknown scaling parameter 
that characterizes the degree of heterogeneity of residual 
variance across environments, and ŵi is the solution for 
the ith CG [26].

Based on S1, we tested two two-step approaches (M6 
and M7) that used inferred values of ŵi from M1 as if they 
were known and a one-step reaction norm model (M8), 
where wi is an unknown covariate that is jointly inferred 
with the reaction norm and η parameters. Model M6 was 
a heteroscedastic residual extension of M2, whereas M7 
and M8 were heteroscedastic residual extensions of M3 
and M4, respectively.

(4)yijk = x′jβ + wi + aj + bjwi + cj + djwi + eijk .

(5)y = Xβ+ Pw + Zaa + Zbb+ Zcc+ Zdd + e,

(6)
y|β,w, a,b, c,d,R ∼ N

(Xβ+ Pw + Zaa + Zbb+ Zcc+ Zdd, R).
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Another heteroscedastic residual specification (S2) was 
based on residual variance subclasses determined by a 
decile-based classification of ŵi, following Cardoso and 
Tempelman [10]. That is, CG were ordered into one of 10 
categories based on decile delimiters of ŵi obtained from 
M1, such that R  =  diag

(
Inkσ

2
eγk

)
, where the order nk 

denotes the number of records delimited by deciles k − 1 
and k, and was 1157, 1174, 1047, 765, 1188, 1192, 1208, 
918, 1150 and 874, respectively, for k = 1, 2, . . . , and 
10. This specification was used to extend the two-step 
models M2–M10 and M3–M11 and the one-step model 
M4–M12 with this particular heteroscedastic residual 
specification.

The last two models considered (M5 and M9) were het-
eroscedastic residual animal models based on extending 
M1 with S1 and S2 heteroscedastic residual specifications, 
and were used as control models to determine the conse-
quences of failing to model G*E interactions versus fail-
ing to model residual heteroscedasticity [10].

The second stage of HBRNM is represented by the 
prior distributions of the location parameters, as follows:

where p(β) ∝ 1, σw
2 is the environmental effect variance; σa

2 
and σb

2 are the additive genetic variances due to the reac-
tion norm intercept and slope, respectively; σc

2 and σd
2 are 

permanent environment variances due to reaction norm 
intercept and slope, respectively; σab is the genetic covari-
ance between reaction norm intercept and slope; and σcd 
is the permanent environment covariance between reac-
tion norm intercept and slope. Then, rab = σab/

√
σ2a×σ2b 

and rcd = σcd/
√
σ2c×σ2d are the corresponding genetic 

and permanent environment correlations between inter-
cept and slope, respectively.

Finally, the third stage of HBRNM was based on 
specifying an inverted gamma (IG) distribution for 
the variance of the contemporary group effects, i.e., 
σ2w|αw, βw ∼ IG (αw = 1, βw = 0.097), where the mean of 
this distribution is:

Similarly, we specify σ2e |αe, βe ∼ IG (αe = 1, βe = 0.0728).
Likewise, an inverted Wishart distribution (IW) 

prior distribution was specified for the permanent 

(7)β ∼ p(β),

(8)w|σ2w ∼ N(0, Iσ2w),

(9)

[
a

b

]
∼ N

([
0

0

]
,

[
σ2a σab
σab σ2

b

]
⊗ A

)
,

(10)

[
c

d

]
∼ N

([
0

0

]
,

[
σ2c σcd
σcd σ2

d

]
⊗ I

)
,

(11)E(wi|αw, βw) =
αw

βw
.

environment and additive genetic covariance matrices, as 
follows:

Here, v  =  4 represents a presumed known number of 

degrees of freedom, and T0 =

[
0.0181 0.0102
0.0102 0.0161

]−1

 and 

T1 =

[
0.01560.0087

0.00870.0136

]−1

 are presumed scale matrices for 

additive genetic and permanent environmental effects, 
respectively, and E(G0) =

T−1
0

v−p−1 and E(U0) =
T−1
1

v−p−1 
are the prior means for v  >  p+1, where p is the number 
of parameters In the models with heterogeneous resid-
ual variances, additional hierarchical specifications were 
required, depending on the nature of the function (S1 or 
S2) chosen, i.e.: η|αη, βη ∼ p(η|αη, βη) = IG(αη, βη), for 
S1or γk|αγ ∼ p

(
γk|αγ

)
= IG

(
αγ, αγ − 1

)
, k = 1, 2, . . . , 10 

for S2 [10, 27, 28]. We specified αη = −1 and βη = 0, where 
the prior p(αγ) on αγ was a gamma with shape and scale 
hyperparameter values of 0.03 and 0.01, respectively [10]. 
This assumption leads to a prior mean of αγ equal to 3 
[E(αγ) = 3] and a large prior variance (var(αγ ) = 300) [27].

Due to the absence of relevant previous knowledge, flat 
or highly dispersed prior densities were assumed for all 
parameters of all models, and hyperparameters for vari-
ance components priors were specified on the basis of 
REML estimates obtained by M1 and M2 (not shown).

Bayesian inference
Bayesian analyses were conducted to sample all param-
eters from their fully conditional posterior distributions. 
Gibbs sampling was generally used except for the wi’s and 
η in M5, M6, M7 and M8 and for αγ (S2) in M9, M10, M11 
and M12. MCMC sampling of these parameters required 
a random walk Metropolis–Hastings step because their 
full conditional posterior distributions were unrecog-
nizable (see Cardoso and Tempelman [10] for further 
details).

Monte Carlo Markov chain (MCMC) based infer-
ences were implemented using the INTERGEN software 
[29] by saving every 10th cycle from a total of 1,000,000 
cycles, after 100,000 cycles of burn-in. Global conver-
gence was checked using Geweke’s Z criterion [30] 
applied to the conditional distribution of the data, as 
proposed by Brooks and Roberts [31]. In addition, visual 
inspection of trace plots was conducted, and a minimum 
effective sample size of 100 for all unknown parameters 
was obtained.

(12)G0 =

[
σ2a σab
σab σ2b

]
∼ IW(T0, v),

(13)U0 =

[
σ2c σcd
σcd σ2d

]
∼ IW(T1, v).
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Model comparison
The deviance information criterion (DIC) was used to 
compare model fit and model complexity [32]:

where D(θ) = Eθ|y[D(θ)] is the posterior expectation of 
Bayesian deviance; pD = D(θ)− D(θ) corresponds to the 
penalty for increasing model complexity, with θ being the 
vector of model parameters and D(θ̄ ) being the Bayes-
ian deviance as a function of the posterior mean of the 
parameters. Smaller values of DIC thereby indicate bet-
ter-fitting models, while taking a penalty for model com-
plexity into consideration.

Variance components and genetic parameters
The additive genetic variance of TC for a specific envi-
ronment i with effect wi was obtained as follows:

Thus, the heritability (ha
2) and repeatability (r) of TC for 

a specific environment was determined as:

and 

where σc
2|wi and σe

2|wi are permanent environment 
and residual variances in environment i, respectively. 
For homoscedastic residual models (from M1 to M4), 
σe

2|wi is constant, i.e., σe
2|wi  =  σe

2∀i. For heteroscedas-
tic residual models, σ2ei |wi = σ2e × ηŵi for M5–M8, and 
σ2ei |wi = σ2e × γk:i, where k:i denotes the decile-based 
classification k for CG i, in models M9, M10, M11 and M12.

The genetic covariance of TC between two environ-
mental gradients based on covariate values wi and wi’ was 
calculated as:

so that the corresponding correlation between TC in two 
specific environments was calculated as described below:

(14)DIC = D(θ)+ pD = 2D(θ)− D(θ),

(15)σ2a |wi = var
(
aj + bjwi

)
= σ2a + w2

i σ
2
b + 2wi σab.

(16)h2a |wi =
σ2a |wi

σ2a

∣∣wi + σ2c

∣∣wi + σ2e |wi
,

(17)r|wi =
σ2a |wi + σ2c |wi

σ2a

∣∣wi + σ2c

∣∣wi + σ2e |wi
,

(18)

cova
(
aj + bjwi, aj + bjwi

′

)
= σ2a+

(
wi + w

i
′

)
σab + wiwi′σ

2
b,

(19)

ra
(
aj + bjwi, aj + bjwi′

)

=
cova

(
aj + bjwi, aj + bjwi′

)
√

(σ2a + w2
i σ

2
b
+ 2wi′σab)(σ

2
a + w2

i′
σ2
b
+ 2wi′σab)

.

Estimated breeding values
An estimate of the breeding value of sire j for TC, 
specific to a given environment i was obtained by 
ĝj|ŵi = âj + b̂jŵi [10]. On the one hand, estimates of 
b̂j close to 0 indicate that ĝj is relatively constant across 
various environments (ŵi) such that sire j has an envi-
ronmentally robust genetic merit. On the other hand, an 
environmentally sensitive genetic merit has a large esti-
mate b̂j, meaning its relative performance should sub-
stantially change on the environmental gradient [33].

The sire breeding value estimates were compared 
based on the ranking of the animals obtained by AM and 
HBRNM for low, medium and high environmental levels. 
These values were defined by the 10, 50 and 90th percen-
tiles for ŵi. Potential differences in re-rankings of sires for 
selection based on these models were also determined by 
the Spearman correlation between estimated breeding 
values. Spearman correlations were obtained for all ani-
mals and for the top 10 % (60) of sires with 12 or more 
progeny between low, medium and high environmental 
levels under different fitted models.

Results and discussion
Model comparison
Models M1, M5 and M9, which were the only models that 
did not include G*E interactions with a linear reaction 
norm model, along with M7, and M1, had the highest or 
lowest DIC values. Comparison of DIC between models 
M1, M5 and/or M9 implies that considering heterogene-
ity of residual variance across environments is important 
for modeling LTTC. However, these DIC improvements 
from homoscedastic to heteroscedastic residual models 
were small compared to the improvements in DIC when 
going from regular animal to linear reaction norm mod-
els. This suggests that modeling G*E interactions is more 
important than modeling heterogeneous residual vari-
ances (Table 2).

The two one-step reaction norm models (M4 and M12) 
had lower DIC values than the corresponding two-step 
reaction norm models, except for M10. Thus, treating 
all CG effects as uncertain when modeling G*E interac-
tions based on reaction norms seems to be important. 
This observation is in agreement with the findings of Su 
et  al. [17], who demonstrated by simulation that jointly 
estimating all unknown parameters is more reliable than 
using previously estimated environmental effects from 
a simple animal model as known covariates. DIC can 
be used to compare any type of model (not necessarily 
nested models) [10, 13, 22, 23]. However, when fitting 
two-step models, the reported DIC values come from the 
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second step because we could not account for the uncer-
tainty about ŵi estimates from the first step model M1. 
This limitation might have yielded downwards-biased pD 
and DIC values for two-step models, but even so, their 
fit was much poorer compared to their counterpart one-
step models (Table 2).

Model M12 had the lowest DIC value (Table 2). Recall 
that M12 allows for residual variance groupings into 
decile-based subclasses, which agrees with the findings 
of Cardoso and Tempelman [10], who reported this same 
model as the best-fitting in the characterization of post-
weaning gain in Angus cattle.

Inferences on contemporary group effects
Model M1 estimated that CG posterior means (ŵi) 
ranged from −0.849 to 0.805, which were considered 
fixed covariates for models M2, M6 and M10 (Fig.  2). 
Going from the 0–1st to the 9–10th deciles, correspond-
ing values of ŵi were equal to −0.424, −0.224, −0.121, 
−0.032, 0.032, 0.107, 0.182, 0.240 and 0.316, respectively. 
Following Cardoso and Tempelman [10], these val-
ues were used as the cutoff points for the decile-based 

heteroscedastic residual subclasses defined in M9, M10, 
M11 and M12.

Posterior means ŵi of wi were similar for all models, 
regardless of whether G*E interactions were considered, 
as in M3, M4, M7, M8, M11 and M12, or not, as in M1 and 
M9 (Fig. 2); Pearson correlations among these estimates 
between methods always exceeded 0.99, which means 
they were also not influenced by homoscedastic versus 
heteroscedastic residual modeling. These results do not 
agree with Cardoso and Tempelman [10] for post-wean-
ing gain in Angus cattle, for which estimates ŵi from the 
model with the decile-based heteroscedastic classifica-
tion function (S2) had substantially lower correlations 
with estimates from the heteroscedastic exponential 
function models (S1), or even the conventional animal 
models. Furthermore, every model resulted in negative 
skewness on the ŵi, ranging from −0.521 to −0.415.

Inferences on variance components and genetic 
parameters
The one-step model M12 resulted in the highest 
(0.022  ±  0.04) estimate of the reference or intercept 
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genetic variance (σa
2) compared with all other models, 

except for M8 (0.025 ±  0.03; Table  3). In addition, M12 
showed the highest estimate of the genetic variance for 

slope (σb
2) compared to the two-step models, except for 

M3 and M8, which had the same estimate (0.046 ± 0.022). 
Estimates of the variance components for reference 

Table 3 Posterior means and 95 % posterior probability intervals reported as  (2.5, 97.5th) posterior percentiles of dis-
persion parameters estimated for tick counts of Hereford and Braford cattle by different models

σa
2 reaction norm intercept genetic variance; σb

2 reaction norm slope genetic variance; σc
2 reaction norm intercept permanent environment variance; σd

2 reaction norm 
slope permanent environment variance; rab genetic correlation between intercept and slope of the reaction norm; rcd permanent environment correlation between 
intercept and slope of the reaction norm; σw

2 contemporary group effect (environmental) variance; σe
2 residual variance

M1 linear animal model; M2 two-step linear reaction norm model; M3 two-step linear reaction norm model with the random contemporary group (CG) effect being 
re-estimated; M4 one-step linear reaction norm model with homoscedastic residual variance; M5 linear animal model with exponential function on heteroscedastic 
residual variance; M6 two-step linear reaction norm model with exponential function on heteroscedastic residual variance; M7 two-step linear reaction norm model 
with exponential function on heteroscedastic residual variance and with the random CG effect being re-estimated; M8 one-step linear reaction norm model with 
exponential function on heteroscedastic residual variance; M9 linear animal model with classification function grouped in discrete subclasses on heteroscedastic 
residual variance; M10 two-step linear reaction norm model with classification function grouped in discrete subclasses on heteroscedastic residual variance; M11 
two-step linear reaction norm model with classification function grouped in discrete subclasses on heteroscedastic residual variance and the random CG effect being 
re-estimated; M12 one-step linear reaction norm model with classification function grouped in discrete subclasses on heteroscedastic residual variance; N/A not 
applicable

Parameter Models

M1 M2 M3 M4 M5 M6

σa
2 0.019 0.019 0.020 0.020 0.018 0.019

(0.011, 0.026) (0.012, 0.025) (0.013, 0.026) (0.013, 0.026) (0.011, 0.025) (0.013, 0.025)

σb
2 N/A 0.032 0.046 0.036 N/A 0.036

(0.006, 0.074) (0.011, 0.094) (0.008, 0.087) (0.009, 0.069)

σc
2 0.010 0.008 0.008 0.007 0.010 0.008

(0.003, 0.018) (0.003, 0.014) (0.003, 0.015) (0.002, 0.014) (0.003, 0.017) (0.003, 0.015)

σd
2 N/A 0.063 0.053 0.084 N/A 0.04

(0.022, 0.098) (0.009, 0.093) (0.031, 0.123) (0.009, 0.075)

rab N/A −0.23 −0.19 −0.14 N/A −0.28

(−0.69, 0.42) (−0.65, 0.43) (−0.65, 0.55) (−0.73, 0.40)

rcd N/A −0.09 −0.07 −0.11 N/A 0.33

(−0.65, 0.62) (−0.71, 0.74) (−0.69, 0.60)

σw
2 0.099 N/A 0.097 0.101 N/A (–0.47, 0.88)

(0.079, 0.126) (0.076, 0.123) (0.080, 0.129) N/A

σe
2 0.072 0.063 0.064 0.062 0.070 0.064

(0.069, 0.074) (0.060, 0.065) (0.061, 0.066) (0.060, 0.065) (0.067, 0.072) (0.061, 0.067)

M7 M8 M9 M10 M11 M12

σa
2 0.018 0.025 0.021 0.020 0.021 0.022

(0.012, 0.025) (0.019, 0.030) (0.013, 0.028) (0.014, 0.027) (0.014, 0.028) (0.014, 0.028)

σb
2 0.038 0.046 N/A 0.031 0.035 0.046

(0.013, 0.065) (0.021, 0.072) (0.009, 0.057) (0.010, 0.063) (0.009, 0.098)

σc
2 0.009 0.006 0.010 0.010 0.009 0.009

(0.004, 0.015) (0.002, 0.010) (0.004, 0.017) (0.004, 0.016) (0.003, 0.016) (0.003, 0.016)

σd
2 0.023 0.015 N/A 0.021 0.020 0.055

(0.005, 0.051) (0.003, 0.039) (0.004, 0.049) (0.004, 0.050) (0.006, 0.106)

rab −0.16 −0.45 N/A −0.28 −0.17 −0.07

(−0.08, 0.94) (−0.68, −0.18) (−0.67, 0.29) (−0.61, 0.45) (−0.57, 0.58)

rcd 0.63 0.35 N/A 0.53 0.39 0.30

(−0.08, 0.94) (−0.51, 0.87) (−0.36, 0.93) (−0.58, 0.91) (−0.50, 0.89)

σw
2 0.097 0.113 0.098 N/A N/A 0.097

(0.076, 0.123) (0.088, 0.144) (0.077, 0.125) (0.076, 0.124)

σe
2 0.066 0.071 0.074 0.068 0.069 0.065

(0.063, 0.068) (0.068, 0.074) (0.059, 0.099) (0.055, 0.089) (0.056, 0.089) (0.053, 0.085)
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permanent environment (PE) (σc
2) were similar among 

all models (ranging from 0.006 to 0.010). In agreement 
with σb

2, PE slopes (σd
2) were also significant (ranging from 

0.015 to 0.084). These results show that the one-step 
approach confirmed the presence of G*E interactions. 
Biegelmeyer [20], in a study on tick resistance in Her-
eford and Braford beef cattle reported similar estimates, 
i.e., 0.012 and 0.022 for σa

2 and σc
2, respectively.

Estimates of the correlation between intercept and 
slope for the additive genetic and permanent environ-
ment effects were characterized by a great deal of uncer-
tainty, as shown by the widths of their respective 95  % 
posterior probability interval (PPI; Table  3). This large 
uncertainty differs from those of previous studies [10, 
25, 34], which estimated large and positive correlations. 
These differences may in part be caused by the fact that 
the correlation estimates depend upon the scale used for 
ŵi or because the biological nature of tick counts is differ-
ent from that of production traits.

Residual variance estimates (σe
2) were similar among 

models, ranging from 0.062  ±  0.001 to 0.074  ±  0.010, 
but they were slightly higher in traditional animal mod-
els M1 (0.072  ±  0.001), M5 (0.070  ±  0.001) and M9 
(0.074 ±  0.010), which confirms the importance of con-
sidering G*E interactions in genetic evaluations for Her-
eford and Braford beef cattle (Table  3). Cardoso and 
Tempelman [10] also reported that HBRNM resulted 
in lower estimates of σe

2 than AM. However, despite the 
similarity of the residual variances across the various 
reaction norm models, Fig. 3 illustrates the need to con-
sider residual heteroscedasticity. The first decile class was 
particularly deviant from the other classes. This unex-
pected, very large residual variance at the lowest extreme 
of the CG effects boundary may be due to data artifacts 
or a non-obvious biological condition associated with low 

tick infestation levels. Similar results were demonstrated 
by Cardoso and Tempelman [10], with residual variances 
being remarkably decreased at the extremes of the CG 
average performance. Figure 3 also explains the poor fit of 
models M5, M6, M7 and M8, which modeled heteroscedas-
tic residual variance as an exponential function (i.e., S1). 
This function forced a gradual monotonic change in the 
residual variances over the CG classes, while M9, M10, M11 
and M12 showed a more flexible pattern, perhaps reflect-
ing the true residual variance behavior of the actual data.

Heritability estimates (ĥ2) were generally higher 
for HBRNM and for M5 and M9, compared to M1 
(ĥ2 = 0.19 ± 0.04; Fig. 4a). Similar heritability estimates 
have been reported in the literature, using models such 
as M1 and logarithmic transformations of the observed 
data [1, 5]. With M12, average heritability estimates were 
higher, which also indirectly indicates the better fit of 
one-step versus two-step models that consider residual 
heteroscedasticity. Other studies in beef cattle also found 
higher average heritability estimates for weaning weight 
and 450-day weight, respectively, using HBRNM com-
pared to AM [10, 35]. Therefore, greater response to 
selection is expected when using reaction norm models 
that model heterogeneity of residual variances across CG. 
Considering that using data from animals with unknown 
sires could lead to lower heritability estimates, we found 
that our heritability estimates were similar to those previ-
ously reported in the literature [1, 5, 20, 35].

Estimates of repeatability varied along the environmen-
tal gradient (ranging from 0.18 to 0.45) and were, in gen-
eral, higher under high levels of tick infestation (Fig. 4b). 
These results demonstrate the particular importance 
of modeling permanent environmental effects in harsh 
environments, where more resistant animals are more 
likely to maintain a consistent performance.
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Posterior means of the genetic correlations [see 
Eq. (19)] between breeding values along the environmen-
tal gradients for Hereford and Braford LTTC that were 
obtained by the best-fitting model M12 demonstrated a 
large plateau above 0.80 (Fig. 5). Furthermore, estimated 
genetic correlations decreased as the tick infestation level 
increased, with negative correlations between extreme 
environmental levels, i.e., between more favorable (low 
infestation) and harsh environments (high infestation). 
Similar results that demonstrate differences in genetic 
correlations between breeding values along environmen-
tal levels, mainly between high challenge conditions and 
favorable environments, have been reported in the lit-
erature [10, 13, 25]. However, Ambrosini [36] estimated 
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small differences for Nellore yearling weight, with genetic 
correlations between breeding values along the environ-
mental gradient ranging from 0.78 to 1.00.

Inferences on genetic merit
A low genetic correlation between breeding values in 
extreme infestation environments (Fig. 5) could indicate 
that different animals would be selected when using the 
reaction norm model M12. However, Spearman rank 
correlations among genetic values obtained by different 
models were always higher than 0.85 (Table  4), which 
indicates that rankings of animals would be similar and, 
thus, substantial losses on selection precision might not 
be observed when using a traditional animal model.

Conclusions
Hierarchical Bayesian reaction norm models can be 
used to describe the presence of genotype by environ-
ment interactions for tick resistance in Hereford and 
Braford beef cattle. The model that best fitted tick counts 
in Brazilian climates was a one-step model that consid-
ered heteroscedastic residual variance based on ten dis-
crete classes of deciles of average CG performance (M12), 
and hence, this model should be considered as the pre-
ferred model for genetic evaluation of this population. 
However, other functions on residual variance and other 
classes of models can be evaluated as viable approaches. 
Reaction norm models are a powerful tool to identify 
and quantify genotype by environment interactions and 
present a promising alternative for genetic evaluation of 

tick resistance, since they are expected to lead to greater 
selection efficiency and genetic progress.
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Table 4 Spearman rank correlations among  posterior means of  genetic values for  tick counts of  Hereford and  Braford 
cattle at different tick infestation levels obtained by different models

Correlations between all animal above the diagonal and between the most used sires (60) below the diagonal

LTI = 10th (−0.424); MTI = 50th (0.032); HTI = 90th (0.316) percentiles of the contemporary group effects (environmental gradient)

M1 linear animal model based on homoscedastic residual variance; M4 one-step linear reaction norm model with homoscedastic residual variance; M9 linear animal 
model with classification function grouped in discrete subclasses on heteroscedastic residual variance; M10 two-step linear reaction norm model with classification 
function grouped in discrete subclasses on heteroscedastic residual variance; M12 one-step linear reaction norm model with classification function grouped in discrete 
subclasses on heteroscedastic residual variance. LTI low tick infestation; MTI medium tick infestation; HTI high tick infestation; Ov. overall

Model M1 M4 M4 M4 M10 M10 M10 M12 M12 M12 M9
Environmental level (Ov.) (LTI) (MTI) (HTI) (LTI) (MTI) (HTI) (LTI) (MTI) (HTI) (Ov.l)

M1 (Ov.) 0.97 0.98 0.96 0.98 0.99 0.98 0.94 0.97 0.94 0.98

M4 (LTI) 0.96 0.97 0.91 0.96 0.97 0.97 0.98 0.96 0.89 0.94

M4 (MTI) 0.99 0.97 0.98 1.00 1.00 1.00 0.94 0.99 0.96 0.99

M4 (HTI) 0.96 0.91 0.98 0.99 0.98 0.98 0.88 0.97 0.99 0.98

M10 (LTI) 0.98 0.96 1.00 0.99 1.00 1.00 0.94 0.99 0.97 0.99

M10 (MTI) 0.99 0.97 1.00 0.98 1.00 1.00 0.95 0.99 0.96 0.98

M10 (HTI) 0.99 0.97 1.00 0.98 1.00 1.00 0.94 0.99 0.96 0.99

M12 (LTI) 0.92 0.98 0.93 0.85 0.92 0.93 0.92 0.95 0.88 0.93

M12 (MTI) 0.98 0.97 0.99 0.97 0.99 1.00 0.99 0.94 0.98 0.99

M12 (HTI) 0.96 0.91 0.98 1.00 0.98 0.98 0.98 0.86 0.97 0.98

M9 (Ov.) 0.99 0.96 0.99 0.98 1.00 0.99 0.99 0.92 0.99 0.98
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