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Abstract: Cancer is a complex and multistage disease that affects various intracellular pathways, lead-
ing to rapid cell proliferation, angiogenesis, cell motility, and migration, supported by antiapoptotic
mechanisms. Chemoprevention is a new strategy to counteract cancer; to either prevent its incidence
or suppress its progression. In this strategy, chemopreventive agents target molecules involved
in multiple pathways of cancer initiation and progression. Nrf2, STAT3, and Src are promising
molecular candidates that could be targeted for chemoprevention. Nrf2 is involved in the expression
of antioxidant and phase II metabolizing enzymes, which have direct antiproliferative action as
well as indirect activities of reducing oxidative stress and eliminating carcinogens. Similarly, its
cross-talk with NF-κB has great anti-inflammatory potential, which can be utilized in inflammation-
induced/associated cancers. STAT3, on the other hand, is involved in multiple pathways of cancer
initiation and progression. Activation, phosphorylation, dimerization, and nuclear translocation
are associated with tumor cell proliferation and angiogenesis. Src, being the first oncogene to be
discovered, is important due to its convergence with many upstream stimuli, its cross-talk with other
potential molecular targets, such as STAT3, and its ability to modify the cell cytoskeleton, making
it important in cancer invasion and metastasis. Therefore, the development of natural/synthetic
molecules and/or design of a regimen that can reduce oxidative stress and inflammation in the
tumor microenvironment and stop multiple cellular targets in cancer to stop its initiation or retard its
progression can form newer chemopreventive agents.
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1. Introduction

Cancer chemoprevention is the use of various means (natural and synthetic) to sup-
press, prevent, or delay cancer by inhibiting tumor development at the initial stages or by
retarding the rate at which it grows to delay the malignant tendencies and properties of
tumors [1,2].

At the cellular level, chemoprevention involves the halt or retardation of various
molecular pathways at any or all three stages of cancer, i.e., initiation, promotion, and
progression [3]. Such agents may block DNA damage during initiation or reduce free
radical-induced damage. Furthermore, their potent antioxidant activities and ability to
repair DNA may be additional mechanisms of chemoprevention [4]. Chemopreventive
agents can also have profound effects on the progressive stages of cancer owing to their
antiproliferative, anti-angiogenic, and antiapoptotic effects [3,5,6]. These actions are ex-
erted by affecting various cellular signaling pathways, such as Nrf2, NF-κB, STAT3, and
Src [5,7,8].
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2. Nuclear Factor E2-Related Factor 2 (Nrf2)
2.1. Role and Significance of Nrf2 in Cancer

Nrf2 is an important transcription factor that regulates cancer gene expression and
inflammation [9]. In the resting or inactive state, it binds to Keap1. In the bound state,
it undergoes constant ubiquitination by Cullin 3-dependent E3 ubiquitin ligases. When
activated, Keap1 undergoes modification, and Nrf2 is released from the complex. It
enters the nucleus, dimerizes with the Maf proteins, and binds to the antioxidant response
elements of the target genes [10] (Figure 1). Activation of Nrf2 may occur via MAPK, such
as p38 and JNK [11]. Nrf2 is responsible for the expression of many enzymes involved
in phase II metabolism (making xenobiotics more water soluble and readily excretable)
and protects cells from oxidative damage. These enzymes include γ-glutamylcysteine
synthetase (γGCS), NADPH quinone oxidoreductase 1 (NQO1), and heme oxygenase 1
(HO-1) [12]. The γ-GCS is involved in the biosynthesis of glutathione, which is one of the
major antioxidants in human cells. NQO1 is responsible for generating reduced forms
of ubiquinone and tocopherols, making them effective in eliminating free radicals. HO-1
plays a significant antioxidant role in maintaining cellular homeostasis against reactive
oxygen species (ROS) [13].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 2 of 19 
 

 

2. Nuclear Factor E2-Related Factor 2 (Nrf2) 

2.1. Role and Significance of Nrf2 in Cancer 

Nrf2 is an important transcription factor that regulates cancer gene expression and 

inflammation [9]. In the resting or inactive state, it binds to Keap1. In the bound state, it 

undergoes constant ubiquitination by Cullin 3-dependent E3 ubiquitin ligases. When ac-

tivated, Keap1 undergoes modification, and Nrf2 is released from the complex. It enters 

the nucleus, dimerizes with the Maf proteins, and binds to the antioxidant response ele-

ments of the target genes [10] (Figure 1). Activation of Nrf2 may occur via MAPK, such as 

p38 and JNK [11]. Nrf2 is responsible for the expression of many enzymes involved in 

phase II metabolism (making xenobiotics more water soluble and readily excretable) and 

protects cells from oxidative damage. These enzymes include γ-glutamylcysteine synthe-

tase (γGCS), NADPH quinone oxidoreductase 1 (NQO1), and heme oxygenase 1 (HO-1) 

[12]. The γ-GCS is involved in the biosynthesis of glutathione, which is one of the major 

antioxidants in human cells. NQO1 is responsible for generating reduced forms of ubiq-

uinone and tocopherols, making them effective in eliminating free radicals. HO-1 plays a 

significant antioxidant role in maintaining cellular homeostasis against reactive oxygen 

species (ROS) [13]. 

 
Figure 1. States of Nrf2 in normal conditions and under stress by various stimuli. ARE, antioxidant 

response element; Keap1, Kelch-like ECH-associated protein 1; Maf, avian musculoaponeurotic fi-

brosarcoma. 

2.2. Targeting Nrf2 Signaling for Cancer Chemoprevention 

Nrf2 is an effective molecular target to induce chemopreventive effects. Many acti-

vators of the Nrf2 pathway have been shown to enhance the defensive capacity of cells 

against cancer, inflammation, and oxidative damage (Figure 2) [14–17]. 

A study by Lida et al. (2007) showed that Nrf2 null mice are more susceptible to de-

veloping chemically induced carcinoma of the urinary bladder [18,19]. Ginnalin A, a nat-

ural phenolic compound, has been reported to possess chemopreventive properties in hu-

man colon cancer via the activation of Nrf2 signaling. This study revealed that the com-

pound suppressed the proliferation of cancer cells by arresting the cell cycle in the S phase. 

The compound also increased the translocation and expression of Nrf2, along with other 

antioxidant genes such as HO-1 and NQO1 [20]. Lycopene, a phytoconstituent in toma-

toes, has been reported to attenuate the formation of tumors and their proliferative capac-

ity. Lycopene was found to stimulate nuclear translocation of Nrf2 and the expression of 
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2.2. Targeting Nrf2 Signaling for Cancer Chemoprevention

Nrf2 is an effective molecular target to induce chemopreventive effects. Many acti-
vators of the Nrf2 pathway have been shown to enhance the defensive capacity of cells
against cancer, inflammation, and oxidative damage (Figure 2) [14–17].

A study by Lida et al. (2007) showed that Nrf2 null mice are more susceptible to
developing chemically induced carcinoma of the urinary bladder [18,19]. Ginnalin A, a
natural phenolic compound, has been reported to possess chemopreventive properties
in human colon cancer via the activation of Nrf2 signaling. This study revealed that the
compound suppressed the proliferation of cancer cells by arresting the cell cycle in the S
phase. The compound also increased the translocation and expression of Nrf2, along with
other antioxidant genes such as HO-1 and NQO1 [20]. Lycopene, a phytoconstituent in
tomatoes, has been reported to attenuate the formation of tumors and their proliferative
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capacity. Lycopene was found to stimulate nuclear translocation of Nrf2 and the expression
of various antioxidant enzymes. The study also reported that the release of Nrf2 from
the complex was due to the enhanced expression of p62, which caused degradation of
Keap1 [21]. Miconazole has also been reported to increase the expression of autophagy
protein p62 in bladder carcinoma. The expression of p62 directly correlates with Nrf2
activation and decreases Keap1 expression [22].
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2.3. Correlation between Nuclear Factor κB (NF κB) and Nrf2 Expression in Cancer

NF-κB is a transcription factor involved in regulating inflammation and cell prolifera-
tion [23]. It is also believed to serve as a link between inflammation and cancer [24]. In the
resting state, it binds to the cytoplasmic IκBs. Proteasomal degradation of IκBs induced
through their phosphorylation by kinases causes the release of NF-κB, its translocation to
the nucleus, binding to specific response elements, and influences gene expression [25].
It also increases the expression of IL6, IL1β, TNFα, COX2, iNOS, and other cytokines.
Furthermore, genes affected by NF-κB are involved in cell proliferation, angiogenesis,
and metastasis [23,26,27]. NF-κB has also been linked to the emergence of resistance to
endocrine therapy in breast cancer, suggesting that modulation of inflammation via this
pathway is a significant requirement for cancer management [28]. Therefore, abnormal
activation of this pathway may lead to the transition from inflammation to tumorigene-
sis. Likewise, the inhibition of inflammation may serve as an important mechanism to
prevent cancer.

Nrf2 has been employed as a target for designing anti-inflammatory drugs for var-
ious chronic disorders such as multiple sclerosis. Dimethyl fumarate, used as a disease-
modifying agent in multiple sclerosis, targets Nrf2. This agent is used because of its potent
anti-inflammatory effect, which causes symptomatic relief in multiple sclerosis [29]. One
study investigated the effects of sappanone A (Caesalpinia sappan) in macrophages. Sap-
panone A reduces nitric oxide (NO), prostaglandin E2 (PGE2), and IL-6. Isoflavanone also
protects C57BL/6 mice from LPS-induced oxidative damage. Sappanone increased the
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mRNA expression of Nrf2 and its target genes NQO1 and HO-1. This study demonstrated
that knockdown of Nrf2 inhibited the induction of HO-1 by sappanone A. Sappanone A
also reduced LPS-induced NF-κB activation. The authors concluded that sappanone A ex-
erts its anti-inflammatory effects by regulating Nrf2 and NF-κB signaling. This study links
these two pathways, which can be extrapolated to the connection between inflammation
and cancer [30]. Another study identified a sesquiterpene coumarin strigoid that could
induce Nrf2 and suppress NF-κB simultaneously. Hence, such natural organic compounds
may also be molecules of interest that can target both pathways to suppress inflammation
in cancer effectively. Moreover, they could prove to be effective chemopreventive agents
as monotherapy or combination therapy [31]. Another study evaluated the effects of xan-
thohumol and phenethyl isothiocyanate on pancreatic cancer cells. The combination of
both agents had better anti-inflammatory and anticancer properties than the individual
agents. A combination of the two inhibited the binding of NF-κB to DNA by 47–60%. Other
effects observed included enhanced expression of Nrf2, NQO1, and superoxide dismutase
(SOD). Thus, the combination reduced oxidative damage, angiogenesis, and proliferation of
pancreatic cells. This study suggests the use of these two agents as good chemopreventive
agents to delay the progressive stages of cancer [32]. Moringa isothiocyanate 1 increases the
nuclear accumulation of Nrf2 and reduces the nuclear translocation of NF-κB, both leading
to a reduction in inflammation and oxidative stress [33]. Another study reported that
Nrf2-mediated stimulation of antioxidant pathways causes a reduction in ROS, which is a
stimulant for NF-κB activation. Hence activation of Nrf2 leads to suppression of NF-κB [34].
Therefore, it is pertinent to mention that agents targeting Nrf2 and NF-κB can prove to be
a very useful means of chemoprevention by targeting the tumor directly and inhibiting
chronic inflammation associated with cancer [26,35]. The same correlation between Nrf2
and NF-κB is shown in Figure 3.
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Figure 3. Correlation between Nrf2 and NF-κB in counteracting inflammation-associated cancer.
Activation of Nrf2 after binding to antioxidant response element (ARE) leads to the production of
antioxidant enzymes (HO-1, UGT, NQO1, GST), which can lead to suppression of NF-κB. This leads
to indirect inhibition of NF-κB targets enzymes such as NO, COX-2, and iNOS. The overall effect is a
reduction in oxidative stress and inflammation by the Nrf2 pathway, which can serve as a valuable
target in preventing inflammation-associated cancer.
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2.4. Targeting Nrf2 in Colitis-Associated Colon Cancer

Colon cancer is a huge health burden, as it is one of the most commonly diagnosed
cancers in both men and women [36,37]. It has also been reported that chronic inflammation
of the gastrointestinal tract due to infections, aberrant immune responses, or environmental
factors can promote the progression of colon cancer [38].

In inflammatory bowel disease (IBD), the luminal side of the epithelial cells is dis-
rupted by inflammation of the intestines by cytokines and chemokines [39]. Continuous
and long-term severe IBD increases the risk of colorectal cancer [40,41]. Certain proinflam-
matory cytokines, such as IL-23, produced in excessive quantities in IBD, can also lead to
the aggravation of colon cancer [42–44]. Various studies have reported that inflammation
of the gastrointestinal tract in various forms helps in the progression of cancer [45,46]. In
experimental settings, IBD can be chemically induced in murine models using dextran
sodium sulfate (DSS). DSS is toxic to epithelial cells, causes erosion, and reduces membrane
integrity [47,48]. The known cause of epithelial damage due to DSS is the overproduction
of ROS [49–51]. Nrf2 regulates the expression of several cellular antioxidant enzymes to
counteract the effects of ROS [52]. It has been shown experimentally that Nrf2 null mice
have a greater tendency to develop DSS-induced IBD than wild-type mice. Moreover, the
levels of inflammatory cytokines were higher in Nrf2 null mice. This greater propensity
for epithelial damage is attributed to a reduction in phase II detoxifying enzymes, whose
expression is regulated by Nrf2 [53,54]. It has been postulated that inflammation is one of
the prominent characteristics of the tumor microenvironment in colon cancer [55,56]. A
study demonstrated that Nrf2 knockout mice have a greater number and size of tumors
induced by Azoxymethane or DSS. It reported that the knockout mice had 80% adenocarci-
noma lesions compared to 29% in wild type. This shows that Nrf2 exerts a protective role
in colitis-associated colon cancer [56].

Many phytoconstituents have been shown to exert beneficial effects in chemically
induced colitis through Nrf2 activation. One study demonstrated that the pretreatment
of C57BL/6 mice with the isothiocyanate compound sulforaphane (25 mg/kg) reduced
the severity of DSS-induced colitis. The loss of body weight and disease activity index
were lower than those in the untreated group. The pretreated group also had a longer
colon, reduced expression of proinflammatory markers, and increased expression of Nrf2-
related genes [57]. Another study has reported the effects of coenzyme Q10 on colitis.
Researchers found that Q10 can potentially protect the colon in an Nrf2-dependent manner.
They reported that the suppression of colitis and a reduction in the levels of inflammatory
markers are due to activation of the Nrf2-dependent HO-1 pathway [58]. A study also
demonstrated that the use of agents that cause the breakdown of the Nrf2-Keap1 complex
and facilitate its nuclear translocation in colon cells (NCM460) exerted cytoprotective
effects against ulcerative colitis. In this study, CPUY192018 was used as an inhibitor of the
Nrf2-Keap1 complex [52].

3. Signal Transducers and Activators of Transcription-3 (STAT3)
3.1. Significance of STAT3

STAT3 is one of the main regulators of the cell cycle and is involved in its differen-
tiation, proliferation, apoptosis, and angiogenesis [59,60]. Cancer cells undergoing rapid
proliferation require persistent STAT3 activation. In gastric carcinoma, IL-26-induced
abnormal STAT3 activation causes upregulation of the antiapoptotic proteins, such as
Bcl2, which leads to uncontrolled cell proliferation [61]. Its persistent activation has also
been associated with endometrial cell proliferation in uterine cancer [62]. The same has
been reported for bladder, colon, and renal carcinoma [63,64]. Cancer cells can speed up
glycolysis while downregulating mitochondrial respiration (Kreb’s cycle). This leads to
a greater conversion of pyruvic acid to lactic acid (Warburg effect). Increased lactate is
indicative of hypoxia leading to induction of HIF-1a. It induces pyruvate kinase leading
to greater pyruvate production for further conversion to lactate and consequent HIF-1a
release. Pyruvate kinase induction has been associated with greater STAT3 activation [65].
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STAT3 is responsible for transcriptional activation of the VEGF gene. It is also associated
with increased expression of MMP-2 and VEGF, which are associated with the increased
invasive and metastatic transformation of cancers [66,67]. It plays a significant role in G1 -S
phase transition by upregulation of cyclin D1, Cdc 25A, and downregulation of p21. STAT3
activation leading to change in expressions and concentrations of various cytokines and
transcription factors leading to invasive carcinogenesis is summarized in Figure 4.
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3.2. Strategies to Target STAT3

Chemoprevention strategies can be devised using STAT3 as a target molecule. The
persistent activation of STAT3 in cancer can be counteracted by various mechanisms such
as (i) inhibition of receptors leading to STAT3 activation; (ii) inhibition of ligand binding to
STAT3 activating receptor; (iii) inhibition of the phosphorylation of the cytoplasmic tail of
the receptor; (iv) inhibition of JAK kinases to cease STAT3 dimerization; and (v) prevention
of its nuclear translocation and binding to specific response elements on DNA [68–70].

STAT3 is also a downstream cellular mediator of cancer and angiogenesis, induced
by IL-6 and EGFR. Various tyrosine kinase inhibitors (AG490 and AZD1480) are currently
being studied to block the JAK-STAT3 pathway, thereby inhibiting tumorigenesis and
angiogenesis [71,72]. Novel compounds that can block STAT3 dimerization can also be
effective chemopreventive agents. Garcinol, a natural compound isolated from Garcinia
indica, has been reported to suppress STAT3 signaling in hepatocellular cancer. The mech-
anism of STAT3 inhibition involves the binding of garcinol to the SH2 domain of STAT3
and inhibition of its dimerization. Additionally, it inhibits STAT3 acetylation, leading to
impaired binding to DNA. This results in the suppression of many target genes involved
in cell proliferation and angiogenesis. Moreover, an increase in apoptosis was observed.
Hence, garcinol and its semisynthetic derivatives may be effective future treatments for
chemoprevention and chemotherapy [73]. A recently published study has reported the
effects of STAT3 inhibition by ODZ10117. The molecule inhibits dimerization by binding
to its SH2 domain. The net result observed was inhibition of phosphorylation and nu-
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clear translocation. This inhibitory effect was stronger than other known STAT3 inhibitors
such as STA-21. ODZ10117 suppresses tumor cell migration. It also induced apoptosis
and reduced cell invasiveness. Overall, this molecule and its analogs can potentially be
used as chemopreventive agents that can delay cancer progression [74]. The functional
phosphorylation sites in STAT3 are tyrosine 705 and serine 727. Most natural and synthetic
inhibitors discovered/developed block STAT3 phosphorylation at tyrosine 705. A summary
of inhibitors of STAT3 phosphorylation is given in Table 1.

3.3. Chemopreventive Agents Targeting STAT3

Guggulsterone, isolated from Commiphora mukul, has also been reported to possess
anticancer potential. It induces apoptosis and causes cell cycle arrest. The combination
regimen increased the antineoplastic effects of erlotinib, cetuximab, and cisplatin in squa-
mous cell carcinoma of the head and neck. Guggulsterone has been found to reduce the
expression of STAT3 and induce apoptosis [75,76]. Another study reported that guggul-
sterone causes a decrease in the levels of phosphotyrosine STAT3 in multiple myeloma
and squamous cell carcinoma. Furthermore, it also inhibits LPS-induced inflammatory
cytokines in the NF-κB pathway [77]. A synthetic derivative of guggulsterone, GSD-1, has
recently been reported to exert its strong inhibitory effects on NF-κB which helped reduce
the metastatic potential of breast cancer cells [78].

Astaxanthin, a ketocarotenoid produced by certain algae, has been reported to block
DMBA-induced hamster buccal pouch (HBP) carcinomas by downregulating JAK/STAT
signaling. Astaxanthin has been found to reduce the expression of genes involved in the
JAK/STAT3 pathway, such as cyclin D1, MMP-2, and VEGF. Thus, it reduces tumor cell
proliferation, invasion, and angiogenesis [79].

Curcumin is a natural polyphenolic present in turmeric rhizome. It has been reported
to suppress STAT3 and NF-κB signaling. A study demonstrated that a combination of
epigallocatechin gallate and curcumin suppresses STAT3 phosphorylation in breast cancer-
derived stem cells. It also reduces COX-2 activity and, therefore, can be considered a good
agent for combing with those potentiating Nrf2 antioxidant pathways. It also increases
cancer cell apoptosis mediated by Bcl-2. Proapoptotic effects are more pronounced when
used with Wnt signaling inhibitors [80].

Silibinin is a natural flavonoid with chemopreventive potential. Silibinin has been
reported to have anti-inflammatory and antineoplastic properties. In the current study,
silibinin significantly inhibited the viability of intestinal tumor cells. The production
of inflammatory cytokines and phosphorylation of STAT3 is inhibited in intestinal tu-
mor cells. Silibinin (750 mg/kg) decreased the number and size of tumors induced by
azoxymethane/DSS. Colitis and tumor scores decreased. The rate of proliferation also re-
duced with an increase in tumor cell apoptosis. Moreover, silibinin reduced the production
of inflammatory cytokines and attenuated the impairment of the colonic mucosal barrier.
Furthermore, an interaction of the probe with cellular molecules showed that silibinin
suppressed the LPS-induced upregulation of STAT3 phosphorylation. It also reduced the
expression of IL-6. The study concluded that silibinin had chemoprotective potential via
the IL-6/STAT3 pathway, giving it dual beneficial activity in cancer and inflammation, both
of which are present in colitis-associated cancer [81].

Acetoside is a naturally occurring glycoside found in plants. Its chemopreventive po-
tential was assessed in a rat model of hepatocellular cancer chemically induced by diethyl
nitrosamine (DEN). Acetoside was administered at 0.1% and 0.3% of their diet 2 weeks
before chemical induction of hepatic cancer. Treatment was continued for 18 weeks. Histo-
logical studies have shown that acetoside reduces nodule size in hepatocellular cancer. The
levels of biochemical markers of hepatocytic injury (ALT), inflammation (IL-6, IFN-γ, and
TNF-α), and apoptosis (Caspase-3) improved after the administration of acetoside. It also
ameliorated the DEN-induced DNA damage, cytotoxicity, and genotoxicity. It also consid-
erably reduced oxidative damage. Furthermore, the reduced expression of NF-κB, Bcl2, and
STAT3 showed anti-inflammatory, proapoptotic, and anticancer potential. Thus, acetoside



Pharmaceutics 2022, 14, 1775 8 of 19

induced STAT3-mediated antioxidant and anti-inflammatory effects along with its antipro-
liferative and proapoptotic properties, making it an agent with good chemopreventive
potential [82].

3.4. Targeting STAT3 Improves Sensitivity of Other Anticancer Agents

Since STAT3 is the converging point of many upstream stimuli, receptors, and ligands,
combining anti-STAT3 agents with other chemotherapy or immunosuppressants might
offer promising ways to delay the progression of aggressive cancers. The STAT3 pathway
is involved in the pathogenesis of EGFR-dependent squamous cell carcinoma (SCC). The
invasive potential of EGFR-mediated SCC is greatly enhanced by the persistent activation
of STAT3. A previous study suggested that combining anti-EGFR and anti-STAT3 agents
would prove a practically effective mode of cancer suppression [83]. Since SCC and other
solid tumors are resistant to anticancer agents, their suppression and elimination may
warrant blocking via multiple pathways [84]. It has also been reported that SCC of the
head and neck is more sensitive to cetuximab when combined with a short hairpin RNA
knockdown approach for STAT3 inhibition. Combination therapy enhances DNA damage
and apoptosis in cancer cells, as STAT3 activation is important for cell survival [83].

In pancreatic cancer, STAT3 activation has also been correlated with developing re-
sistance to MEK inhibitors. Resistance is due to mutations in K-Ras and MEK inhibitors
that target the Ras pathway and are less efficacious. The authors reported that the use of
MEK inhibitors such as AZD6244 and trametinib caused profound activation of STAT3
in K-Ras mutant pancreatic cancer. We believe that STAT3 may be an important factor in
developing resistance to MEK inhibitors in K-Ras-mutated pancreatic cancer. Therefore, a
combination of LY5 (STAT3 inhibitor) and trametinib (MEK inhibitor) was administered to
assess anticancer efficacy in resistant cancer. The results showed that trametinib displayed
better tumor suppression in the presence of a STAT3 inhibitor. The authors concluded
that the STAT3 regimen improves the efficacy of anti-MEK agents in resistant pancreatic
cancers [85].

Curcumin has been reported to have a good chemopreventive potential. One known
mechanism is the suppression of the JAK/STAT3 pathway. Epigallocatechin gallate is
another promising candidate as a chemopreventive agent for cancer. This study assessed the
effect of the two as monotherapy and combination therapies on angiogenesis in colorectal
carcinoma cell lines (HCT116 and HT-29). Although both inhibited angiogenesis via
inhibition of JAK/STAT3 signaling, their individual effects were minimal. However, the
anti-angiogenic effects were potentiated when a combination of the two was used [86,87].

To devise new therapeutic strategies for cholangiocarcinoma, the combined effects
of doxorubicin and β-caryophyllene were studied in Mz-ChA-1 and H69 cholangiocyte
cell lines. In the carcinoma cell line Mz-ChA-1, β-caryophyllene synergized with the
cytotoxic effect of doxorubicin at lower doses. However, it exerted cytoprotective effects
on the H69 cell line (non-malignant cholangiocytes) after exposure for 24 h. Mechanistic
insights revealed that the synergistic cytotoxicity of doxorubicin was due to cell cycle
arrest in the G2/M phase by β-caryophyllene. It was also observed that the presence of
β-caryophyllene improved the suppression of STAT3 signaling by doxorubicin. Hence, this
study reports that the sensitivity of cholangiocarcinoma to doxorubicin is improved due to
better suppression of STAT3 signaling by the concomitant use of β-caryophyllene, making
it a good candidate as a chemosensitizer and chemopreventive agent [88].
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Table 1. Various natural and synthetic STAT3 antiphosphorylating agents.

Inhibitor of STAT3
Phosphorylation Class of Compound Mechanism References

1 Alantolactone Sesquiterpene lactone Binds and inhibits phosphorylation at Tyr705 in
pancreatic cancer [89]

2 S-3I 1757 Synthetic; salicylic acid
derivative

Binds pTyr 705 at SH2 domain; inhibits
dimerization [90]

3 B12 Synthetic; sulfamoyl
benzamide derivative

Inhibits phosphorylation at Tyr 705; inhibits
STAT3 phosphorylation induced by IL-6 [91]

4 Cinobufagin Natural; bufadienolide
Inhibits STAT3 phosphorylation; Inhibits EMT;
Inhibits IL-6 mediated STAT3 translocation in

colon cancer
[92]

5 ACT001
Synthetic; parthenolide

derivative
(sesquiterpene lactone)

Directly binds STAT3, inhibits phosphorylation;
inhibits PD-L1 in glioblastoma [93]

6 Resveratrol Natural stilbenoid Inhibits IL-6 induced phosphorylation at Tyr
705; inhibits EMT in cervical cancer [94]

7 Piperine &
piperlongumine Natural alkaloids

Combination inhibits STAT3 phosphorylation;
induces apoptosis selectively in breast cancer

cells
[95]

8 Curcubitacin B Natural triterpene
Inhibits STAT3 phosphorylation at Tyr 705;
inhibits its nuclear translocation; induces

apoptosis in gastric cancer
[96]

9 oleacein Natural polyphenolic
Reduces cell adhesion, migration, inhibits

STAT3 phosphorylation; induces apoptosis in
neuroblastoma

[97]

10 HJC0152 Synthetic niclosamide
derivative

Inhibits STAT3 phosphorylation at Tyr 705;
reduces glutamine and glutathione causing
oxidative stress-mediated apoptosis in lung

cancer.

[98]

11 Costunolide Natural sesquiterpene Inhibits STAT3 phosphorylation at Tyr 705;
inhibits metastasis in osteosarcoma [99]

12 Ginsenoside Rh1 Natural triterpenoid
saponin

Inhibits its phosphorylation, nuclear
translocation, and accumulation; inhibits NF-κB

in triple-negative breast cancer
[100]

13 Convollatoxin Natural glycoside
Inhibits STAT3 phosphorylation at Tyr 705 &

Ser 727; inhibits phosphorylation of JAK1, JAK2
& Src; promotes apoptosis in colon cancer

[101]

14 SS-4
Synthetic

Phenoxyacetamide
derivative

Inhibits STAT3 phosphorylation at Tyr 705;
highly potent and STAT3 selective glioblastoma

tumor growth inhibitor
[102]

15 WZ-2-033 Synthetic acetamide
derivative

Inhibits STAT3 phosphorylation at Tyr 705;
inhibits its dimerization & nuclear translocation;

inhibits metastasis; induces apoptosis in
triple-negative breast cancer and gastric cancer

[70]

4. Src

Src was the first oncogene to be discovered [103]. It is a prototype of the Src family
of kinases, which are non-receptor tyrosine kinases. These include Fyn, Yes, Blk, Yrk, Fgr,
Hck, Lck, and Lyn. Src, Fyn, and Yes are ubiquitously expressed in many tissues. Higher
concentrations have been observed in neurons, platelets, and osteoclasts [104]. Their basic
function is to catalyze the transfer of phosphate from ATP to tyrosine residues at specific
positions in proteins. This tyrosine phosphorylation causes activation and transduction
of downstream molecules to transmit signals. The ultimate result of this signaling may
be the activation of nuclear factors, resulting in gene expression or reorganization of the
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cell cytoskeleton [105]. Figure 5 shows the upstream stimuli of Src and its downstream
pathway molecules, leading to cell survival, proliferation, and cancer progression.
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Figure 5. Upstream stimuli of Src and its downstream target molecules. Src interacts with inte-
grin/focal adhesion kinase (FAK), the receptor of tyrosine kinases (RTKs), and G-protein-coupled
receptors (GPCRs), leading to activation of its downstream target proteins, including MAPK/ERK,
PI3K, IL-6/JAK/STAT3, and Rho/Rho-associated protein kinase (ROCK), subsequently promoting
cancer progression.

4.1. Significance of Src in Cancer

Studies have shown that upon activation, Src induces cell growth and survival, leading
to the promotion of tumor formation, promotion of reorganization of the cell actin cytoskele-
ton, and p120-mediated disruption of tight junctions, which subsequently facilitates the
invasion and motility of cells (Figure 6) [106,107]. Src overactivation has been observed
in multiple cancers, including melanoma, glioma, gastric, pancreatic, colorectal, prostate,
breast, lung, head, and neck [108–116].
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Figure 6. Activated SFKs can phosphorylate p120 catenin and FAK, causing destabilization of
E-cadherin and adherens junction. The p130cas and paxillin are cell migration mediators. Src-
FAK-p130cas axis causes cell invasion via MMP activation. All these cellular changes promote the
invasiveness of cells.

It has been shown that the migration and invasion of cancer cells underlie the
“mesenchymal-type” mechanism where matrix-degrading proteases promote the loco-
motion of cancer cells through pericellular ECM breakdown [117]. Studies have shown that
Src is involved in the increased expression of MMPs via diverse pathways, including the
Src/Akt and NF-κB pathways [118], ERK and PI3K signaling [119], and PKC/MAPK/AP-
1/LEF-1 and PI3K/AP-1/LEF-1 pathways [120]. Furthermore, Src has been reported to
upregulate the expression of MMPs. A study reported that WNT5A upregulates Src, which
induces MMP-14, all leading to invasion in osteosarcoma cells [121]. Hypoxia also en-
hances the invasive characteristics of malignant cells and angiogenesis via stimulation of
the Src signaling pathway. Cannabidiol has been reported to inhibit Src, which causes
a reduction in the hypoxia-inducible factor and consequent angiogenesis in breast can-
cer cells [122]. Additionally, Src has been shown to facilitate tumor cell extravasation by
enhancing VEGF-induced vascular permeability [123].

Epithelial-mesenchymal transition (EMT) is a complicated process through which
epithelial cells attain the characteristics of mesenchymal cells with increased migratory
potential [124]. Loss of E-cadherin is a hallmark of EMT, in which cells detach from each
other and start migrating to other parts of the body [105,125]. It has been shown that the
activation of Src phosphorylates the E-cadherin–β-catenin complex, dissociating the latter,
and subsequently induces EMT [126]. Upon dissociation from the complex, β-catenin
translocates to the nucleus, where it transcriptionally activates various EMT-related targets
such as Snail-family members, vimentin, Myc, matrix-degrading proteases, and cyclin
D [127,128]. Src-induced EMT is related to and may promote the metastatic potential of
cancer cells [129–131].
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4.2. Chemoprevention via Src Inhibition

The inhibitory effect of apigenin on TGF-β-stimulated VEGF production in human
prostate carcinoma cells was analyzed. The authors reported that apigenin blocked VEGF
and TGF-β1-induced phosphorylation and was correlated with cancer progression, espe-
cially in Smad2/3 and Src/FAK/Akt signaling pathways [132]. It has been shown that
activation of Src actively participates in early stage (ER-negative) breast cancer initiation,
whereas downregulation of Src significantly inhibits cancer progression involving various
underlying mechanisms such as suppression of Myc translation, reduction of GLUT1 tran-
scription, and glucose uptake by tumor cells. These findings highlight the importance of
Src inhibitors in the prevention and treatment of ER-negative breast cancer [133].

An investigation reported that shikonin blocked STAT3/FAK/Src signaling and stim-
ulated the suppression of stem cell load in vitro, tumorigenicity, and metastasis in vivo.
Compared to individual inhibitors, the combined blockade of STAT3 with Src or FAK
decreased cell migration, invasion, and mammosphere formation more significantly [134].
S100 calcium binding proteinA7 (S100A7) is upregulated in many cancers and is associated
with the facilitation of metastasis. A study reported that metastasis induced by S100A7
is reduced by flavonoids, such as luteolin and quercetin, via inhibition of Src/STAT3 sig-
naling in A431-III cells. Flavonoids reduce the levels of S100A7, phosphorylated Src, and
phosphorylated STAT3. The effect of flavonoids on EMT markers, such as E-cadherin,
was also observed. Flavonoids increased the levels of E-cadherin and were found to resist
metastasis of cancer cells in zebrafish larvae [135]. Another study reported that the extract
of Morus alba could suppress the metastatic potential of non-small cell lung cancer cells. The
plant extract also caused the downregulation of EMT markers such as Slug and vimentin.
It also upregulates the expression of occludin, a tight junction protein. Insights into the
anti-invasive and anti-metastatic mechanisms revealed that the plant extract decreased the
activation of STAT3 and Src by inhibiting their phosphorylation [136].

5. Conclusions

Recently, chemoprevention studies have gained popularity because of the basic con-
cept of delaying the production (if absent) or progression (if present) of cancer. Therefore,
investigations leading to the discovery of molecular pathways and target cellular molecules
are necessary for a complete understanding of chemopreventive mechanisms. The molecu-
lar targets for chemopreventive agents described in this review (Nrf2, STAT3, and Src) have
shown to be promising candidates with chemopreventive potential in various cancer cell
lines or carcinogen-induced tumorigenesis models in animals. Structural modifications of
chemoprevention agents into safer and more effective chemoprevention agents are needed.
Recently, researchers have synthesized such derivatives that include dimethylaminomethyl
curcumin, diarylyheptanoid curcumin [137], and GSD-1. Moreover, effective delivery of
therapeutic doses of medicaments requires careful design of drug delivery systems such
as lipid-based nanoparticles. These modifications may enable the agent to effectively con-
centrate at its target sites and regulate the intracellular molecular targets (Nrf2, STAT3,
etc.) to counteract cancer. Emphasis must be given to changing the chemical structures
such that their aqueous and lipid solubility becomes optimal for optimal drug delivery
and bioavailability. Additions of groups capable of binding specific proteins present in
the tumor microenvironment may increase their selectivity toward tumor cells. The use of
agents acting on Nrf2, STAT3, Src, and NF-κB, etc., can be looked into in various cancers
aggravated by oxidative stress, such as estrogen-dependent breast cancer and steatohep-
atitis. Furthermore, the discovery and synthesis of agents which can act on Nrf2, STAT3,
and NF-κB (like physodic and salazinic acids [138]) is yet another area to be explored for
effective and timely chemoprevention.
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Bcl-2 B-cell lymphoma 2
Bcl-xL B-cell lymphoma-extra-large
bFGF Basic fibroblast growth factor
c-Myc Cellular myelocytomatosis
Cdc Cell division cycle
COX-2 Cyclooxygenase-2
DSS Dextran sodium sulfate
FAK Focal adhesion kinase
GCS Glutamylcysteine synthetase
HIF Hypoxia-inducible factor
HO-1 Heme oxygenase 1
IBD Inflammatory bowel disease
ICAM-1 Intercellular adhesion molecule-1
IL Inter leukin
iNOS Inducible nitric oxide synthase
IκB Inhibitor of Nuclear factor-κB
JNK C-Jun N-terminal kinase
LPS Lipo polysaccharide
M-CSF Macrophage colony-stimulating factor
Maf Musculoaponeurotic fibrosarcoma
MAPK Mitogen-activated protein kinase
MMP Matrix metalloproteinase
MUC1 Mucin 1
NF-κB Nuclear factor κB
NO Nitric oxide
NQO1 NADPH quinone oxidoreductase 1
Nrf2 Nuclear factor Erythroid factor 2-related factor 2
PGE2 Prostaglandin E2
PI3K phosphoinositide 3-kinase
ROS Reactive oxygen species
RTK receptor tyrosine kinase
SCC Squamous cell carcinoma
SFK Src family kinase
SOD Superoxide dismutase
STAT3 Signal Transducers and Activators of Transcription-3
TNF Tumor necrosis factor
VEGF Vascular endothelial growth factor
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