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Heavy metal removal from 
MSWI fly ash by electrokinetic 
remediation coupled with a 
permeable activated charcoal 
reactive barrier
Tao Huang1,2, Dongwei Li1, Liu Kexiang2,* & Yuewei Zhang2,*

This paper presents the investigations into the feasibility of the application of a remediation system 
that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept 
for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. 
The experimental results of this study showed that the proposed combined method can effectively 
improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before 
the coupled system can further enhance the remediation process. In the optimization tests, the 
maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. 
The voltage gradient and processing time were shown to have significant effects on the removal of 
Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal 
of Pb. Generally, the processing time is the most significant factor in changing the removal rates of 
HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by 
ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions.

The gross capacity of municipal solid waste required for power generation in a power plant by burning 
increases exponentially every year in China. The significant need for electricity continues to increase, 
causing and accelerating the accumulation of fly ash produced by municipal solid waste incinera-
tion (MSWI)1,2. In many countries, the MSWI fly ash produced by the incineration of different raw 
sources is classified as hazardous waste due to its high content of heavy metals (HMs) and toxic chlo-
rinated organics3–5. Currently, the traditional method of excavation and landfilling is still the primary 
method for disposing MSWI fly ash in China, which may require large amounts of municipal land and 
wide-spread contamination under certain conditions. Many techniques exist for the remedial treatment 
of heavy-metal-contaminated solids including physical separation and isolation, immobilization, flush-
ing, toxicity reduction and phytoremediation. However, when considering these techniques for use with 
MSWI fly ash, problems including incomplete metal removal, high consumption of reagents and energy, 
low selectivity and the generation of secondary wastes are inevitable and are difficult to mitigate6–8.

In recent years, electrokinetic remediation has been shown to be an effective tool to clean up 
heavy-metal-contaminated fine-grained soils and has attracted significant attention for heavy metal 
removal in low-permeability soils9,10. Electrokinetic remediation can be applied in situ or ex situ for 
contaminated soils, sediments, sewage sludge and mine tailing and typically involves passing a low 
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direct electrical current through the matrix by imbedding electrode pairs in the contaminated solid. 
The removal of contaminants from porous solutions by EKR is primarily accomplished by electrolysis, 
electromigration, electroosmosis and electrophoresis11,12. The solid type, contaminant type and concen-
tration, zeta potential, electrode spacing and coupled enhancement techniques are considered to be the 
primary factors that affect the removal efficiencies of organic and inorganic contaminants from solid 
matrices. EKR technology is primarily used to remove and concentrate contaminants in the focusing area 
or in a reservoir solution; any subsequent poor handling procedures of the extracted contaminants can 
cause secondary or further contamination9,13. Thus, a necessity exists for EKR technology to be used in 
combination with other effective techniques14. Permeable reactive barriers (PRBs) developed in the early 
1990 s and first used effectively in 1994 have gained popularity in the in situ treatment of groundwater 
contamination in recent years due to their excellent performance, low cost and simple control proce-
dures15,16. Typically, a PRB system is placed across the flow path of a contaminated plume in a natural 
gradient to retain or degrade the contaminants in the plume flows by adsorption, precipitation and redox 
reactions between the pollutant and the barriers17. A variety of materials have been selected and used to 
prepare barriers, such as Fe(0), activated carbon, zeolite, goethite. In recent years, with the development 
of material research, carbonized food waste, lignocellulose from agricultural waste, composite materials, 
and bio-sorbents as developing and ecofriendly filling materials or adsorbents are also being applied in 
PRB processes18,19.

In recent years, combining electrokinetics and PRBs has been widely applied in the remediation of 
heavy metals and organic pollutants20,21. With the synergistic effects of this combined method, the force 
of the contaminant flow through the barrier is provided by electromigration, electroosmosis and electro-
phoresis, replacing the natural hydraulic gradient of groundwater. The pH gradient generated by the EKR 
process in the PRB may affect the chemical and electrochemical characteristics of the reactive media in 
the PRB9. Weng et al. investigated the effectiveness of a granular zero-valent iron (ZVI) PRB installed 
in the middle of a hyper-Cr6+-contaminated clay soil sample with electrochemical remediation. The 
amount of Cr6+ ions was shown to be significantly reduced by the ZVI PRB, converting them to Cr3+ 
ions22. Yuan and Chiang studied the removal mechanisms of arsenic from soil by EKR coupled with a 
PRB made of ZVI and FeOOH. The extraction efficiency for arsenic was increased by 60–120%, and the 
maximum efficiency was achieved with a FeOOH layer installed at the middle of the soil specimen23. 
Kimura et al. has remediated Cu-contaminated kaolinite by coupling EKR with a ferrite treatment zone 
(FTZ); 92% of the Cu ions in the contaminated kaolinite were found to migrate into the FTZ after 48 h 
of treatment24. Han et al. used EKR coupled with a PRB made of carbonized food waste (CFW) to 
detoxify Cu-contaminated kaolinite. Acetic acid was injected into the electrolyzer from the anode to 
elevate the removal efficiency during experimentation. The sorption capability of CFW used as the PRB 
reactive medium was found to be 4–8 times more efficient than that of zeolite25. Yuan et al. applied an 
enhanced EKR coupled with carbon nanotubes coated with cobalt (CNT-Co) for As5+ removal. Due to 
the higher sorption efficiency of As5+, which can be attributed to CNT-Co, a 62% remediation efficiency 
was achieved after the experiment26.

Although combining EKR and PRBs for the disposal of contaminated soil has become commonly 
used, reference to the remediation of MSWI fly ash with this method was scarce. To increase the number 
of applications of this coupled technique and investigate the feasibility of remediating toxic fine-grain 
MSWI fly ash, EKR technology coupled with an activated-charcoal PRB was proposed in this study to 
enhance the removal efficiency of MSWI fly ash. Batch tests of aqueous equilibrium adsorption under 
different conditions of pH, adsorbent dosage and processing time before the EKR-PRB process was con-
ducted to understand the removal behavior of HMs by the PRB media and to obtain the proper experi-
mental parameters for the subsequent coupled tests. The trends of the pH and the electric density from 
the EKR and EKR-PRB tests were reported and analyzed, respectively, to study the migration character-
istics of HMs in the different processing electrolyzers. Then, the removal efficiencies and leaching toxic-
ities of the HMs in the fly ash matrices after the experiments were evaluated to determine the removal 
of the HMs and to directly measure the remediation effect of the coupled system in the samples. X-ray 
diffraction, scanning electron microscopy with an energy dispersive spectrometer and FTIR spectroscopy 
were used to further analyze and understand the mechanisms of heavy metal removal from MSWI fly 
ash particles via EKR coupled with activated-charcoal PRBs.

Materials and Methods
Preparation and characteristic analysis of fly ash and PRB media. The MSWI fly ash samples 
were collected from the TongXing Waste Power Generation Plant in TongGuXi town, Beibei county, 
Chongqing, China. There are no specific permissions required for these sampling activities at the 
TongXing Waste Power Generation Plant, and the sampling activities did not involve endangered or 
protected species. The sampling fly ashes were dried in a thermostatic heater at 120 °C for 2 hours and 
sifted by a 200-mesh sieve. The elemental analysis of the MSWI fly ash samples was measured by X-ray 
fluorescence (XRF, 1800CCDE). The major and minor phases of the fly ash samples were measured by 
X-ray diffraction (Shimadzu XRD-6000) and analyzed by MDI Jade 5.0 software based on the diffraction 
patterns of the samples8. The activated charcoals (ACCs) used in the tests were manufactured by the 
Chemical Reagent co., LTD in Chongqing, China via the thermal decomposition method. The particle 
size distribution of an MSWI fly ash sample was detected and reported by a laser particle sizer (Microtrac 
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S3500, USA). The porosity and specific surface areas of the PRB materials were measured and analyzed 
by a BET surface-area analyzer (ASAP 2010, Micromeritics, USA). The pH corresponding to the point of 
zero charge (pHzpc) of an ACC was determined by a zeta meter (Pen 3.0 +  , Kem Inc., USA)19.

Aqueous equilibrium adsorption tests. A stock solution of HMs was prepared using ZnCl2, PbCl2, 
CuCl2 and CdCl2 in deionized water; the amounts of these materials that were added were 250 mg/L, 
25 mg/L, 100 mg/L and 15 mg/L, respectively. The additions of the HMs were determined based on the 
results of the leaching toxicity of the fly ash samples. Considering the high content of Ca2+ in the fly 
ash and the oxidation of aluminum wire during the EKR process, 500 mg/L of CaCl2 and 500 mg/L of 
Al2O3 were also added to the heavy metal solutions. The effect of pH on the equilibrium adsorption of 
the activated carbon for Zn2+, Pb2+, Cu2+ and Cd2+ was evaluated in the range of 4.0–13. Dried activated 
carbon in the amounts of 0.5 g, 1 g and 5 g were added to the 100-mL solution to achieve adsorption 
equilibrium. The reaction mixtures in the conical flasks were shaken on an oscillating shaker at 150 rpm 
and 25°C  for 24 h. At the end of the experiment, the solutions were separated from the adsorbent by 
centrifugation at 10,000 rpm for 5 min. The concentrations of four HM elements in the solutions were 
analyzed using ICP-OES. The removal percentage of HMs from the simulated solution at equilibrium 
was calculated using Eq. (1):

α
α α
α
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−

( )1
e0

0

where α 0 and α e (mg/L) are the liquid-phase concentrations of HMs at the initial and equilibrium states, 
respectively. All experiments were conducted in triplicate, and the average values were used in the data 
analysis below.

EK experiments. The EKR and EKR-PRB experiments were conducted in rectangular glass boxes. 
The schematic cross-section of the testing devices used for the corresponding experiments are shown 
in Fig.  1. The testing device consisted of two major parts: a chamber holding MSWI fly ash samples 
and the electrode compartments. The chamber (150 mm ×  100 mm ×  100 mm) was evenly divided into 
three regions (S1, S2 and S3) from the cathode to anode for all experiments. S1 and S2 is separated 
using plastic mesh (Φ  0.25 mm). The Graphite electrodes (10 mm ×  100 mm ×  100 mm) were placed near 
the ends of the sample chamber in the electrode compartments as anodes and cathodes. For the EKR 

Figure 1. The schematic cross-section of the testing devices. 
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experiment, only deionized water was poured into the S1 region in the chamber before the test. For the 
EKR-PRB experiment, activated carbon particles were placed into the S1 region and mixed with the 
deionized water9. For the enhanced EKR-PRB (ENEKR +  PRB) experiment, a given amount of oxalic 
acid (0.05 mol/L) was added to the PRB media region at regular intervals (e.g., every two days). The 
experimental conditions of the three types of batch tests are shown in Table  1. To further elevate the 
removal efficiencies of HMs in the fly ash and obtain optimum performance, three factors including the 
voltage gradient, the processing time and the oxalic acid concentration, each at three different levels, 
were considered to design the orthogonal tests for the enhanced EKR-PRB (ENEKR +  PRB) system. The 
detailed information of the orthogonal tests is shown in Table 2.

Concentration and leaching toxicity analysis. At the end of the experiments, the fly ash samples 
in the S2 and S3 regions were digested in a microwave to determine the total concentrations and the 
removal rates of the HM contaminants from the fly ash samples. The solid material (0.2 g) was mixed 
with 5 mL of HNO3, 2 mL of H2O2 (30%) and 3 mL of HF and was digested in the microwave digestion 
system (MDS) at temperature of 200°C for two hours (GB5085). The digestion solution was diluted to 
100 mL using deionized water and then investigated by inductively coupled plasma optical emission 
spectrometry (ICP-OES). The leaching toxicities of Zn, Pb, Cu and Cd were determined based on the 
toxicity characteristic leaching procedure (TCLP)27. The MSWI fly ash sample (10 g) mixed with 200 mL 
of 0.0992 M acetic acid and 0.0643 M NaOH was shaken on a rotary shaker at approximately 300 rpm for 
18 h, and the pH in the mixture was maintained at 4.93 ±  0.05. Then, the filtrate was adjusted by nitric 
acid and was measured by ICP-OES to determine the concentration of the HM elements. The removal 
rates of the HMs in a fly ash sample was calculated as Eq. (2):
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where δ  is the removal rate (%) of the heavy metal in the fly ash sample, δ (t) is the HM concentration 
(mg/L) in the sample at time t, and δ0 is the initial concentration (mg/L) of HMs in the sample before 
the experiment.

Morphology analysis. The morphology and chemistry of the ACCs were analyzed by scanning elec-
tron microscopy with energy dispersive spectrometry (SEM-EDS). The changes of the surface structures 

Type

Sample Chamber Electrode Electrolyte Experimental Conditions

S1 S2 S3 Anode Cathode

Voltage 
Gradient 
(V/cm)

Proposing 
Time (d)

EKR Deionized water Fly ash Fly ash Deionized water Deionized water 1.5 10d

EKR +  PRB Activated carbon Fly ash Fly ash Deionized water Deionized water 1.5 10d

Enhanced 
EKR +  PRB

Activated 
carbon +  oxalic acid Fly ash Fly ash oxalic acid oxalic acid 1.5 10d

Table 1. The experimental conditions of the three types of batch tests.

Test 
No Voltage Gradient(V/cm)

Proposing 
Time(d)

Oxalic Acid 
concentration(mol/L)

Removal rate (%)

Zn Pb Cu Cd

T-1 1 (1 V/cm) 1 (5d) 1 (0.05 mol/L) 54.32 42.12 47.16 34.91

T-2 2 (1.5 V/cm) 1 2 (0.1 mol/L) 57.11 46.33 53.26 36.15

T-3 3 (2 V/cm) 1 3 (0.2 mol/L) 58.49 51.12 57.45 40.02

T-4 1 2 (10d) 2 60.78 56.45 54.12 39.87

T-5 2 2 3 73.65 69.34 70.43 44.79

T-6 3 2 1 65.25 47.32 73.12 49.23

T-7 1 3 (15d) 3 61.11 59.83 65.67 39.12

T-8 2 3 1 76.65 54.34 74.23 41.34

T-9 3 3 2 78.34 62.45 80.14 46.25

Table 2. The design of orthogonal tests of the enhanced EKR-PRB system (Three factors with three 
levels, L9(34)).
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and elemental contents on the surfaces of the PRB media before and after the tests were determined and 
analyzed.

FTIR analysis. To detect the surface functional groups involved in the metal adsorption and improve 
the analysis of the removal mechanisms of HMs in the EKR-PRB system, the ACC samples obtained 
before and after the experiments were analyzed using Fourier transform infrared spectroscopy (Nicolet 
5DXC FT-IR) in the range of 400–4000 cm−1.

Desorption and regeneration analysis. The loaded ACC gotten from the electrolyzer were added 
to 100 mL of 0.05 mol/L NaNO3 solution being stirred for 4–12 h. The unloaded PRB media were sepa-
rated from the solution and washed with deionized water three times to remove the ions and inorganic 
acid adsorbed on the surface. The filtrate was doped and concealed in sewage collection system. The 
treated solid media were dried at temperature of 100°C to be recycled for the next EKR-PRB process. 
The methods of MDS and ICP-OES were used in combination to detect and calculate the desorption 
efficiencies of HMs in ACC25.

Results and Discussion
Elemental properties of the fly ash and PRB media. The semi-quantitative results of the elemen-
tal and major phase analyses of the fly ash samples are shown in Table  3 and Fig.  2, respectively. The 
major elements in the MSWI fly ash samples are Ca, O and Cl, and the cumulative percentage of these 
three elements is 82.9269%. There are four measurable HM elements (Zn, Pb, Cu and Cd) that were 
detected in the samples, and their cumulative percentage is 0.9666%. The total concentration of these 
four HM elements in the original fly ash sample measured by ICP-OES from the digestion solution are 
5256.25 mg/kg, 2047.26 mg/kg, 593.33 mg/kg and 149.02 mg/kg, respectively, and their total concentra-
tion is 8045.86 mg/kg (Table 4). The major phases contained in the fly ash samples include halite (NaCl), 
sodium sliver chloride (Na0.903Ag0.097Cl), sylvite (KCl), calcite (CaCO3, Mg0.03Ca0.97CO3) and silicon chlo-
ride (SiCl4). By standardizing the fom value (< 10) as the matching criterion in the MDI Jade software, 
the HM elements in the fly ash sample are found to exist primarily in the form of minor and trace phases. 
The detailed information of the phases of HMs is shown in Table 4. The size distribution of the fly ash 
samples is shown in Fig. 3.

The BET surface area, total pore volume and average pore diameter of the ACC are 852.83 m2/g, 
0.501 cm3/g and 4.41 nm, respectively. The average pore diameter of 4.41 nm indicates that the PRB 
material is in the mesoporous region (R =  2–50 nm). The pHzpc of the PRB media is 2.6, which indicates 
that when the pH of the solution in the electrolyzer is greater than that value, the particle surface of the 
adsorbent will be negatively charged, and vice versa.

Element E-Content (%) Oxide O-Content (%)

Ca 34.8684 CaO 53.6008

O 32.4644 — —

Cl 15.5941 — —

Na 4.5340 Na2O 6.3662

K 3.7446 K2O 4.9066

S 2.6689 SO3 7.0578

Si 1.8508 SiO2 4.1694

Mg 1.0573 MgO 1.8378

Fe 0.8769 Fe2O3 1.4133

Zn 0.6364 ZnO 0.8923

Al 0.5204 A12O3 1.0331

P 0.3279 P2O5 0.7939

Ti 0.2289 TiO2 0.4284

Pb 0.2070 PbO 0.2518

Br 0.1006 — —

Cu 0.0691 — —

Cd 0.0541 — —

Mn 0.0441 MnO 0.0639

Table 3. Semi-Quantitative results of the element analysis.
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Equilibrium adsorption of HMs with the PRB material in the aqueous phase. Batch equilib-
rium tests were conducted to study the equilibrium adsorption of the HMs on the selected ACC media. 
The effects of the initial pH and the adsorbent dosage on the adsorption uptake or the removal efficiency 
were investigated in this study; other factors, such as the contact time and shaking speed were held 
constant. In the EKR process, the processing time of the fly ash usually lasted two to four weeks, which 
was significantly longer than the contact time of the equilibrium adsorption tests, which determined the 
processing time for the coupled system.

pH effect. The removal efficiency of the HMs from the simulated solution is highly controlled by 
the pH of the liquid phase, which can significantly affect the electrical properties of the adsorbent, the 
ionization degree and the speciation of the adsorbate. The removal results for Zn, Pb, Cu and Cd after 
the equilibrium tests are shown in Fig. 4. The removal of Zn, Pb, Cu and Cd were found to be signifi-
cantly higher than the counterpart in the lower pH range, which basically increased with increasing pH 
in the aqueous solution. The possible reasons for this were concluded to be the reduction of competing 

Figure 2. X-ray diffraction pattern of MSWI FA sample. 

Element Phase
Chemical 
Formula

Total 
Concentration 

(mg/kg)

Zn
Zincite ZnO

5256.25
Zinc Silicate ZnSiO3

Pb
Lead Oxide PbO

2047.26
Lead Chloride-HP PbCl2

Cd
Cadmium Oxide CdO

149.02
Cadmium Chloride CdCl2

Cu Copper Chloride CuCl2 593.33

Table 4. The phases and the total concentration of HMs in the original MSWI fly ash sample.

Figure 3. The result of size distribution of fly ash. 
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ions, such as hydrogen ions, Al3+ and Ca2+; the formation of monovalent cations (e.g., Me(OH)+) or 
non-soluble hydroxides (e.g., Me(OH)2); and the combination of HM ions with the functional groups on 
the surface of the adsorbent. In this study, a large amount of Al3+ and Ca2+ ions were added to the solu-
tion to accurately simulate the adsorption environment of the electrolyte; the coprecipitation between the 
hydroxides of Al3+, Ca2+ and HMs should also be considered in addition to the adsorption competition. 
As the pH continued to increase, some anions of Pb and Cd, such as [Pb(OH)3]–, [Cd(OH)4]2– and 
[Cd(OH)3]–, were produced in the solution, repelling the adsorption of the negatively charged surface 
of the adsorbent, which was verified to some extent by the down slope and fluctuation of the removal 
results for Pb and Cd (Fig. 4).

Adsorbent dosage effect. Adsorption of Zn, Pb, Cu and Cd at different adsorbent doses (2, 5 and 
10 g/100 mL) was conducted at a constant concentration of HMs in the solution to analyze the effect of 
the dosage on the removal efficiency of the HM ions. The amount of the adsorbent dosage was found to 
be associated with the pollutant retention, adsorption and desorption efficiencies. The removal results 
of the HMs in the equilibrium tests (Fig.  4) showed that the percentage of adsorption of the HMs all 
increased with an increased adsorbent dose. In either pH condition for either heavy metal ion, the 
adsorption of the 10 g/100 ml case was always the highest; this can be explained by the fact that as the 
adsorbent dosage increased, more surface area and thus more active sites were available for binding or 
adsorption of the HM ions.

The EKR-PRB coupled system
Three types of batch EKR-PRB tests (Table 1) were conducted to measure the effect of the coupled system 
on the removal of HMs from MSWI fly ashes based on the results of the aqueous equilibrium adsorption 
tests. The removal rates (δ ) of HMs from the fly ashes in the S2 and S3 regions of the sample chamber 
are shown in Fig. 5. The corresponding analysis of statistical significance between different experimental 
systems by using function ttest2 (Matlab) is listed in Table 5. It is clear that the difference on the removal 
of HMs among systems of EKR, EKR +  PRB, ENEKR +  PRB) is significant. As shown in Fig.  5, the δ  
values of the HMs (Zn, Pb, Cu and Cd) in the coupled system were significantly elevated in the S2 or S3 
region compared to those under the EKR process. In the coupled process, the δ  values of the HMs in the 
ENEKR +  PRB (oxalic acid addition) process in the S3 region (i.e., near the anode) were all higher than 
that in the EKR-PRB test. Based on the coupled system, the addition of oxalic acid is shown to have some 
effect on the removal of the HMs, particularly of Cu. The underlying reasons for this phenomenon might 

Figure 4. Effects of pH of the solution and adsorbent dosage on Zn, Pb, Cu and Cd removal by activated 
carbon. 
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be the increase of the pollutant desorption from the surface of the fly ash matrix and the enhancement 
of the complex reaction on the surface of the activated carbon granules.

pH changing. The migration of HM ions in the porous water of the fly ash sample was controlled 
by several interacting mechanisms during the EKR process, including the desorption and adsorption of 
contaminants, advection, diffusion and the migration of the acid front to the direction of the cathode 
electrode. However, the chemical phases and speciation of the mineral phases, the conditions of the elec-
troosmosis and the polarization of the fly ash matrix and the electrodes were all significantly affected by 
the pH distribution in the sample chamber. The electrolysis of water occurs in the electrode reservoirs, 
generating hydrogen ions (H+) at the anode and hydroxyl ions (OH–) at the cathode with the production 
of hydrogen (H2) and oxygen (O2). Under an electrical field in the chamber, the mobility of the H+ ions 
was nearly twice as larger as that of the OH− ions, which would dominate the EKR system in the middle 
and late phases of the experiment. The H+ ions tended to exchange with the cationic contaminants on 
the matrix surface, causing the release of the corresponding contaminants. The trends of the pH of the 
batch EKR-PRB tests in the regions of the sample chamber are shown in Fig. 6. The corresponding anal-
ysis of statistical significance on pH variations among three experimental systems is displayed in Table 5. 
The difference between ERK and EKR +  PRB is insignificant which means the placement of PRB in the 
electrolyzer does not significantly influence the pH distribution during the experiment. The significance 
of EKR-ENEKR +  PRB and EKR +  PRB-ENEKR +  PRB reflects the obvious effect of oxalic acid on the 
pH variations. The general trends of the pH in all three conditions (Fig. 6) showed a similar pattern: the 
pH values near the anode in all cases gradually decreased with time, and those near the cathode first 
increased and then decreased. The pH values in the S2 region were effectively constrained between those 
in the S1 and S3 regions after the first day of the test. A pH gradient that existed between the S2 and S3 
regions was higher than that between the S1 and S2 regions. The possible reasons for these findings were 
the transformation of the interface (i.e., from solid-solid to solid-liquid) and the clogging of the pores 
caused by the production of the chemical precipitation. As shown in Fig. 5, the addition of the oxalic acid 

Figure 5. Removal rates (δ) of HMs from the fly ashes in the S2 and S3 regions of the sample chamber. 

ttest2 h Sig.a Df b Stdc

Removal rate

EKR-EKR +  PRB 1 0.0027 14 6.5621

EKR-ENEKR +  PRB 1 2.9940e-004 14 11.8468

EKR +  PRB-
ENEKR +  PRB 1 0.0189 14 12.3009

pH value

EKR-EKR +  PRB 0 0.7231 64 3.2029

EKR-ENEKR +  PRB 1 2.8877e-005 64 2.6909

EKR +  PRB-
ENEKR +  PRB 1 9.1453e-005 64 2.6295

Current density

EKR-EKR +  PRB 0 0.4342 20 0.8014

EKR-ENEKR +  PRB 0 0.2561 20 0.8225

EKR +  PRB-
ENEKR +  PRB 0 0.0673 20 0.8276

Table 5. Statistical significance between different experimental systems. Default significance. a0.05. 
bdegrees of freedom. cstandard variance.
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in the ENEKR +  PRB process can mitigate the observed pH gradient and narrow the difference between 
the S2 and S3 regions’ pH values to some extent.

Current density changing. The trend of the current density in the batch coupled tests is shown in 
Fig.  7. The current density was calculated by the measured total current through the cross section of 
the sample chamber in the electrolyzer. The addition of PRB and oxalic acid cannot significantly affect 
the current density changing (Table 5). The initial current density in the EKR and EKR +  PRB tests was 
0.5–1.0 mAcm−2, as shown in Fig. 7. The low values at the early stages were possibly caused by the low 
concentration of dissolved contaminants and the slow migration of the acid front. As the pH changed, 
the general trends of the current density under the three conditions also showed a similar pattern: the 
current density first increased and then decreased. The fastest changes appeared in the early and middle 
phases of the experiments. The initial increase in the current density was primarily caused by the ele-
vated concentration of the dissolved free ions, the fluent migration of the acid front and the continuing 
release of the metal ions. From the variations of the current density shown in Fig. 7, it is clear that the 
use of the PRB (i.e., activated carbon) and the addition of the complex reagent (i.e., oxalic acid) caused 
the corresponding peaks shift to the left compared to the trend of the EKR process, which showed that 
the time of the maximum current density in the electrolyzer appeared earlier under the coupled system. 
At the end of the experiment, the current density under all conditions gradually decreased to a low state. 
The decrease of the current density was primarily due to the concentration polarization, the increase of 
the resistance caused by the decline of the ion concentration in the porous water and the production of 
some precipitates.

Removal optimization of HMs in the enhanced EKR-PRB coupled system. To further increase 
the removal rates of the HMs (Zn, Pb, Cu and Cd) from the MSWI fly ash samples and determine the 
most significant factor, orthogonal tests were designed based on the ENEKR +  PRB batch tests. The 
removal results of the corresponding HMs in the S3 region under the designed experimental condition 
(L9(34)) are shown in Table 2. As shown, the maximum removal of Zn was 78.34%, which was obtained 

Figure 6. pH changing trends of the batch EKR-PRB tests. 

Figure 7. Current density changing trends of the batch EKR-PRB tests. 
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at a 2-V/cm voltage gradient, a 15 d of processing time and 0.1 mol/L of oxalic acid; this was 1.045, 0.389 
and 0.088 times higher than that under the conditions of the EKR only, EKR +  PRB and ENEKR +  PRB 
in the above batch coupled tests (Fig. 5), respectively. The maximum removal of Pb was 69.34%, which 
was achieved under the condition of a 1.5-V/cm voltage gradient, 10 d of processing time and 0.2 mol/L 
of oxalic acid; this was 1.327, 0.521 and 0.072 times higher than those under the corresponding con-
ditions in the above batch coupled tests, respectively. The maximum removal rate for Cu was 84.14% 
when a 2-V/cm voltage gradient, 15 d of processing time and 0.1 mol/L were used; this was 1.126, 0.769 
and 0.0157 times higher than that under the corresponding conditions of the batch coupled tests. The 
maximum removal rate of Cd was 49.23% when a 2-V/cm voltage gradient, 10 d of processing time and 
0.05 mol/L of oxalic acid were used; this was 0.817, 0.2246 and 0.1291 times greater than that under 
the corresponding conditions of the batch coupled tests, respectively. To compare the significances of 
each experimental factor (i.e., voltage gradient, proposing time and oxalic acid) at each level, the mean 
removal rates of the HMs with the three experimental factors at three different levels were calculated, 
and the results are shown in Fig. 8; the results of the variance analysis of the orthogonal tests are also 
shown in Table  6. From the analytical results (Table  6, Fig.  8), it was clear that the variations of the 
voltage gradient and the processing time have significant effects on the removal of Cu and Cd in the 
coupled system. Additionally, changes in the amount of oxalic acid added yielded more influence on the 
removal of Pb than on the other HMs; however, this was not significant (0.238 >  0.05). In general, the 

Figure 8. Mean removal rates of HMs under the condition of three experimental factors with three 
levels. 

Sources Element Type II Sum of Squares df
Mean 

Square F Sig.

Voltage gradient

Zn 185.678 2 92.839 2.130 0.320

Pb 24.907 2 12.454 0.354 0.738

Cu 337.518 2 168.759 14.218 0.066

Cd 79.061 2 39.531 20.287 0.047

Proposing time

Zn 365.318 2 182.659 4.190 0.193

Pb 278.884 2 139.442 3.969 0.201

Cu 661.063 2 330.531 27.847 0.035

Cd 90.683 2 45.341 23.269 0.041

Oxalic Acid concentration

Zn 1.967 2 .983 0.023 0.978

Pb 224.432 2 112.216 3.194 0.238

Cu 9.571 2 4.786 0.403 0.713

Cd 1.718 2 0.859 0.441 0.694

Error

Zn 87.180 2 43.590

Pb 70.272 2 35.136

Cu 23.739 2 11.869

Cd 3.897 2 1.949

Table 6. The results of variance analysis of the orthogonal tests. Computed using alpha =  0.05.
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proposing time is more significant than the other two factors on the removal rates of the HMs in the 
coupled system for the MSWI fly ash samples.

Removal mechanisms of HMs in the EKR-PRB system
Changes of phases. As shown in Fig.  6, there were always pH gradients between the solid-liquid 
interface (i.e., between S2 and S3) through the coupled experiments, which was usually considered to be 
one of the primary reasons for the increasing mobility resistance of the ions, the concentration polari-
zation of the electrolyte and the transformation of specific phases. Thus, to clearly understand the redis-
tribution of HMs in the sample region during the tests and analyze the possible adsorption mechanisms 
of the PRB media (i.e., ACC), it is necessary to detect the changes in the phases of the MSWI fly ash 
samples and the PRB media near the interface in the ERK-PRB and ENEKR +  PRB systems after the 
remediation experiments. The XRD patterns of the MSWI fly ash samples near the interface and the PRB 
media in the S1 region after the coupled experiments are thus shown in Fig. 9, and the corresponding 
phase results of the MSWI fly ash samples and the ACC are shown in Table  7. The experiments were 
conducted at a voltage gradient of 2 V/cm with 15 d of disposing time and with 0.1 mol/L of oxalic acid 
in the ENEKR +  PRB experiment. From Fig.  9, the primary peaks at different 2θ  values are generally 
found to be similar regardless of the MSWI fly ash or PRB media used in the two different systems. 
As shown in Table 7, the MSWI fly ash in the ENEKR +  PRB system had fewer phase species than the 
phase results of the MSWI fly ash in the EKR +  PRB system, which indicated that more contaminants 
were dissolved, and the migration of these ions was more efficient in the sample regions. Based on these 
findings, more phase species that were adsorbed in the ACC in the oxalic acid electrolyte were detected 
than those in the EKR +  PRB system, which was directly reflected the increasing adsorption capacity of 
the ACC in the ENEKR +  PRB system.

Changes of morphologies. After the remediation experiments, the samples of the unused raw 
ACC and the used ACC material from the EKR +  PRB and ENEKR +  PRB systems were scanned by 
SEM-EDS. The scanning electron micrographs and the corresponding quantitative elemental composi-
tion from the EDS spectra are shown in Figs 10 and 11, respectively. Based on the figures, the surface 
of the ACC from the EKR +  PRB system (Fig.  10b) was filled with many granular sediment particles 
(i.e., particle precipitation) compared with the original ACC (Fig. 10a); also, the flocculated coagulation 
on the media surface from the ENEKR +  PRB process was clearly observed (Fig.  10c). Relative to the 
weight percentage (Wt%) of the elemental composition (Fig.  11) from the EDS spectra, the Wt values 
of carbon (C), oxygen (O) and calcium (Ca) on the surface of the ACC from the ENEKR +  PRB system 
were significantly lower than the corresponding parts from the non-enhanced test, whereas those of the 

Figure 9. The XRD patterns of MSWI fly ash samples near the interface and PRB media in S1 region 
after the experiments. 
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Phase 
type

MSWI fly ash Activated charcoal

(a) Phase (b) Phase (a) Phase (b) Phase

Major Ca(OH)2 Ca(CO3) Ca(OH)2 Ca(CO3) CaCO3 SiO2 NaAlH4 CaCO3 SiO2 Mg5H2W12O42(H2O)3 
(C6H9NO3)n

Minor
(Mg0.03Ca0.97)(CO3) (Mg0.064Ca0.936)

(CO3) Ca(SO4)(H2O)0.662 Ca(SO4)
(H2O)0.67

(Mg0.03Ca0.97)
(CO3) (Mg0.06Ca0.94)(CO3) Cu2O (NH2)2SO2

Ba2Cu(PO3)8 C17H251NO2·H2O 
C45H33AlO6 C16H40Cl4N2Zn 

Mn(HSO4)2(H2O) 
(Zn,Mg,Mn)4Zn3(CO3)2(OH)10

Trace C16H40Br4N2Zn Pb4(NO3)2O3 — Ba(Bi0.4Pb0.6)O3 Ba(PbO3)

Table 7. The phase results of MSWI fly ash samples near the interface and PRB media in S1 region after 
the coupled experiments. (a) EKR +  PRB (b) Enhanced EKR +  PRB.

Figure 10. Scanning electron micrographs. (a) raw activated charcoal (×4000), (b) activated charcoal from 
EKR + PRB system (×5000), (c) activated charcoal from enhanced EKR + PRB system (×5000). 
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other elements, particularly including the HMs (Zn, Pb, Cu and Cd), were all higher. The two different 
morphologies indicated the different adsorption processes in the two systems, and the quantitative ele-
mental composition directly illustrated the effectiveness of the doping oxalic acid to enhance the HM 
adsorption on the surface of the ACC during the process of the coupled experiments.

FTIR analysis. Fourier infrared spectroscopy is usually considered to be an effective method to 
qualitatively or semi-quantitatively determine the chemical elements present and analyze the structural 
characteristics and functional groups of organic, inorganic and compound molecules. Through the com-
parison and the analysis of the characteristic absorption peaks in the spectrogram, the change of the 
functional groups on the surface of the adsorbent can be clearly determined. The FTIR spectra of the 
raw activated coal (a) and ones from the EKR +  PRB (b) and ENEKR +  PRB (c) systems have been inves-
tigated and are shown in Fig. 12. The FTIR spectra of the raw ACC (Fig. 12(a)) shows spectrum bands 
of –OH stretching at 3452.56 cm− 1, C =  C shift stretching at 1637.69 cm− 1, C-O-C bending at 1120.00 
cm− 1, and C-H deformation at 623.14. The spectrum bands of the ACC sample from the EKR +  PRB 
system include -OH stretching at 3449.59 cm− 1, C =  C stretching at 1628.76 cm− 1, –OH in-plane at 
1423.47 cm− 1, C =  N stretching at 1316.36 cm− 1, C-O-C bending at 1316.00 cm− 1, and C-H bending 
at bands of 777.85 cm− 1 and 620.17 cm− 1. The spectrum bands of –OH stretching at 3443.64 cm− 1, 
C =  C stretching at 1637.69 cm− 1, C-H deformation at 1426.45, C-O-C bending at 998.02 cm− 1, 873.06 
cm− 1 and 679.52 cm− 1, C-H bending at 605.29 cm− 1 are also present. The surface chemistry of the 
raw ACC and the ACC samples from the two different coupled systems were found to be different: some 
functional groups were shifted, disappeared or added due to the different chemical pathways present, 
including the changing pH environment in the electrolyte, organic acid grafting, adsorption and desorp-
tion of the HMs and protons between the adsorbate and the adsorbent. Compared the spectrograms of 
ACC samples from the systems of EKR +  PRB and ENEKR +  PRB with the raw one, the appearance of 
–OH in-plane and C =  N stretching, and the increase of C-O-C bending spectrum bands directly reflect 
the influence of hydroxyl (OH-) produced by hydrolysis on the reactive sites, and the oxalic grafting and 
the adsorption of some inorganic pollutant on the ACC grains.

Leaching toxicity comparison. The leaching toxicity characteristics used to simulate the leaching 
of HMs through a landfill are also considered to be an indicator that reflects the final remediation effi-
ciency for contaminated solid. The leaching toxicities of the fly ash found in the S2 and S3 regions of 
the sample chamber after the experiment are shown in Table 8. In the raw MSWI fly ash, the leaching 
toxicities of Zn, Pb, Cu and Cd were 145.21 mg/L, 8.79 mg/L, 21.34 mg/L and 5.73 mg/L, respectively. 
The leaching activity of Zn was found to be higher than that of the other three elements under the same 
testing conditions. Comparing the leaching results of the fly ash sample from the different processing 
system (EKR, EKR +  PRB, ENEKR +  PRB) with each other, the leaching value of each HM from the 
ENEKR +  PRB system was lowest and showed the least difference in their values between the S2 and S3 
regions. Additionally, although the leaching toxicity of the sample from the EKR +  PRB test was lower 
than that from the enhanced coupled test (ENEKR +  PRB), relative to the uncoupled treat (EKR), the 
leaching toxicity of each HM was significantly decreased, which proves the effectiveness of loading the 
activated charcoal PRB into the electrolytic cell during the electroremediation process.

HMs desorption and regeneration of PRB media. HMs desorption experiments were carried out 
to transfer HMs into the inorganic acid solution and regenerate the PRB media. The regenerated ACC 
will be available for recycling use in the following experiments. As shown in Fig.  13, at 8h of stirring 

Figure 11. The quantitative elemental composition of composite according to the EDS spectra of 
activated charcoal from EKR + PRB and ENEKR + PRB system. 
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time, the desorption of Zn and Cu have been stable with efficiencies of 96% and 93% respectively, and 
at 10h, all the four HMs (Zn, Pb, Cu and Cd) have entered into plateau period with efficiencies of 95%, 
92%, 92% and 85%, and only small variation can been recorded at 12h. The bubbles generated by the 
stirring plates in the middle of a breaker intensely shear the ACC granules facilitating cation-exchange 
happened on the surface of pores.

Conclusions
Regarding the toxicity of the MSWI fly ash specimens, four measurable and detectable HM elements, Zn, 
Pb, Cu and Cd, were found in the original fly ash sample and had a cumulative percentage of 0.9666% 
in the sample and corresponding concentrations of 5256.25 mg/kg, 2047.26 mg/kg, 593.33 mg/kg and 
149.02 mg/kg, respectively. Compared to those of the EKR process, the δ  values of the HMs in the cou-
pled systems (EKR +  PRB, ENEKR +  PRB) in the S2 and S3 regions were all higher, and that in the S3 

Figure 12. FTIR spectra of (a) raw activated charcoal, (b) activated charcoal from EKR + PRB system, (c) 
activated charcoal from enhanced EKR + PRB system.

HM Region

Leaching toxicity (mg/L)

EKR ERK + PRB ENEKR + PRB Raw

Zn
S2 83.2 60.73 32.24

145.21
S3 110.2 76.23 34.11

Pb
S2 1.12 0.61 0.14

8.79
S3 2.02 0.72 0.23

Cu
S2 7.12 5.12 3.14

21.34
S3 9.67 5.67 3.32

Cd
S2 1.21 0.87 0.1

5.73
S3 2.01 0.92 0.12

Table 8. Leaching toxicity of the fly ashes in the S2 and S3 regions of the sample chamber after the 
experiment.
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region in the ENEKR +  PRB system reached the maximum value for each HM. These results indicated 
that the proposed combined method could improve the remediation efficiency, and the addition of oxalic 
acid to the PRB media before the coupled system could further enhance the remediation process by 
reducing the pH gradient between the S2 and S3 regions and shifting the current density peaks to the 
left of the x axis. Based on the results of the designed optimization tests, the maximum removals of Zn, 
Pb, Cu and Cd were achieved under different experimental conditions. Based on the analysis of each 
experimental factor, the voltage gradient and processing time were found to have significant effects on 
the removal of Cu and Cd, and the addition of oxalic acid was found to have more influence on the 
removal of Pb than on those of the other HMs. Generally, the processing time has a more significant 
effect on the removal rates of the HMs in the enhanced coupled system for the MSWI fly ash samples 
than the other two factors. In the discussion of the removal mechanism of the HMs from the MSWI fly 
ash, the specimen from the ENEKR +  PRB system was found to have significantly fewer phase species 
than those from the EKR +  PRB system, which indicated that more contaminants were dissolved, and 
the migration of the ions was more efficient in the electrolyzer. However, additional phase species that 
adsorbed in the ACC in the oxalic acid electrolyte were detected compared to that in the EKR +  PRB 
system, which demonstrated the boosting adsorption capacity of ACC in the ENEKR +  PRB system. Two 
different morphologies on the surfaces of the ACC from the EKR +  PRB and ENEKR +  PRB systems 
showed that different adsorption processes were occurring during the tests in the two systems. The cor-
responding quantitative elemental compositions directly illustrated the effectiveness of the doping oxalic 
acid to enhance the HM adsorption on the PRB media. The specimen remediated by the ENEKR +  PRB 
system showed the lowest leaching value for each HM in the S2 and S3 regions.
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