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Dengue and Zika viruses cocirculate annually in endemic areas of Mexico, causing
outbreaks of different magnitude and severity every year, suggesting a continuous
selection of Flavivirus variants with variable phenotypes of transmissibility and virulence.
To evaluate if Flavivirus variants with different phenotypes cocirculate during outbreaks,
we isolated dengue and Zika viruses from blood samples of febrile patients from Oaxaca
City during the 2016 and 2019 epidemic years. We compared their replication kinetics in
human cells, susceptibility to type I interferon antiviral response, and the accumulation of
subgenomic RNA on infected cells. We observed correlations between type I interferon
susceptibility and subgenomic RNA accumulation, with high hematocrit percentage and
thrombocytopenia. Our results suggest that Flaviviruses that cocirculate in Oaxaca,
Mexico, have variable sensitivity to the antiviral activity of type I interferons, and this
phenotypic trait correlates with the severity of the disease.
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INTRODUCTION

Dengue virus (DENV) and Zika virus (ZIKV) are members of the
Flaviviridae family and the Flavivirus genus. Their mature viral
particle consists of genomic RNA on an imperfect icosahedral
capsid and an envelope covered with 90 homodimers of the
envelope protein (Therkelsen et al., 2018). To date, four
serotypes of DENV (DENV1, DENV2, DENV3, and DENV4)
and three genotypes of ZIKV (West African, East African, and
Asian) have been identified. In Mexico, the four serotypes of
DENV and mainly the Asian genotype of Zika cocirculate in
most endemic states (Thézé et al., 2018). Like other RNA viruses,
DENV and ZIKV are in constant evolution and have high
adaptation capabilities. Flavivirus variants can be selected by
evolutionary pressures like the immune response of the host,
resulting in the potential emergence of Flavivirus variants with
high transmissible or pathogenic potential (Lambrechts et al.,
2012; Pollett et al., 2018; Xia et al., 2018; Aubry et al., 2021; de
Matos et al., 2021). Although it has been reported that the
variability of Flaviviruses is comparable to that of other RNA
viruses like the human immunodeficiency virus and poliovirus
(Jin et al., 2011), phenotypic characterization of selected variants
is limited. Some studies have shown that variability in structural
proteins might influence the neutralization capability of DENV
strains by antibodies from naturally infected and vaccinated
individuals (Wahala et al., 2010; Brien et al., 2010; Messer
et al., 2012; Arimoto et al., 2015; Katzelnick et al., 2015;
Forshey et al., 2016; Gallichotte et al., 2018; Bell et al., 2019;
Chen et al., 2020; Martinez et al., 2020). This antigenic variation
could explain the documented reinfections with homotypic
serotypes of DENV, contributing to rising concerns about
incomplete long-term protective immunity to reinfection or
reduced vaccine efficacy (Waggoner et al., 2016; Juraska
et al., 2018).

Most of the evidence addressing Flavivirus variability is
focused on neutralization and cross-reactivity among DENV
serotypes and strains. However, variability in the sequence of
non-structural proteins or the untranslated regions of the viral
genome could impact transmissibility or virulence. There is
evidence that regions of the viral genome that encode non-
structural proteins present substantial variability (Pollett et al.,
2018). These differences could lead to critical phenotypic changes
since these non-structural proteins are critical to the replication
cycle, contain potential T cell epitopes, and have innate immune
evasion capabilities (Leung et al., 2008; Rastogi et al., 2016; Tian
et al., 2019; Fanunza et al., 2021). Additionally, there is evidence
of highly variable regions in the 3′UTR; variability in this region
of the gRNA could impact the secondary and tertiary structures
that are critical for the accumulation of subgenomic flaviviral
RNAs (sfRNAs), which are small RNA products of the
incomplete degradation of the gRNA by host 5′–3′ exonuclease
XRN1, which have been associated with pathogenesis and type I
interferon evasion (Pijlman et al., 2008).

Several efforts have been made to understand the variables
that influence the transmissibility and virulence of DENV and
ZIKV; the available evidence suggests that a combination of host
susceptibility, vector transmissibility, virus variability, and
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ecological factors can influence the intensity of epidemic
outbreaks and severity of the clinical manifestations (Rico-
Hesse et al., 1997; OhAinle et al., 2011; Lambrechts et al.,
2012; Tabachnick, 2016; Fontaine et al., 2018; Aubry et al.,
2021). However, the variability of cocirculating flaviviruses is
typically determined by comparing the genome sequence instead
of the phenotype. It has been suggested that some strains of
DENV and ZIKV could be associated with enhanced severity of
outbreaks or epidemiological replacements, but the
characterization of phenotypes that could explain these
differences in transmissibility or virulence between Flavivirus
variants is rarely explored (Zhang et al., 2005; De Castro et al.,
2013; Xia et al., 2018; Aubry et al., 2021; Inizan et al., 2021).

Variability in the immune evasion of the type I interferons
response could influence the pathogenic potential of circulating
flaviviruses; Manokaran et al. demonstrated that two different
clades of DENV2 induced different transcription levels of the
ifnb gene, and this difference correlated with the sfRNA
accumulation in infected cells (Manokaran et al., 2015). In this
study, we isolated cocirculating DENV and ZIKV from Oaxaca
City during the 2016 and 2019 outbreaks and compared the
replication kinetics in human cells, their ability to evade the
antiviral response of type I interferons, and the accumulation of
sfRNAs in infected human cells. We observed that cocirculating
isolates of DENV and ZIKV presented different phenotypes of
evasion and replication. Additionally, we observed a correlation
between the replication and evasion phenotypes of DENV
isolates with high hematocrit percentage and thrombocytopenia.
MATERIALS AND METHODS

Ethics Statement
Thirty 30 blood samples from donors from Oaxaca City were
co l l ec ted . These samples were te s t ed by a rap id
immunochromatography for dengue NS1 viral antigen and
DENV and ZIKV IgM and IgG antibodies. Twelve samples
were from 2016 and eighteen from 2019. Additionally, all the
samples were analyzed by hematic biometry. Participants
provided signed informed consent, all samples were treated
anonymously, and no identifiable information was collected.
The protocols were approved by UNAM and UABJO ethics
committees. The obtained biometric information and lab test
results of the samples from a virus isolated are listed in Table 1.
Cell Cultures
Vero cells were cultured in Roswell ParkMemorial Institute (RPMI)
media pH 7.8 (Biowest, Nuaillé, France) supplemented with 5% fetal
bovine serum (FBS) (Biowest) and 1% of antibiotic-antimycotic
solution (Biowest). HFF-1 was cultured with Dulbecco’s modified
Eagle’s medium (DMEM) media (Biowest) supplemented with 10%
FBS (Biowest) and 1% of antibiotic-antimycotic solution (Biowest).
U937-DC-SIGN cells were cultured in RPMI media (Biowest)
supplemented with 10% FBS (Biowest) and 1% of antibiotic-
antimycotic solution (Biowest). All cell lines were incubated in a
CO2 atmosphere at 37°C.
June 2022 | Volume 12 | Article 890750

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
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Flavivirus Isolation
Blind passages of the sera samples were realized; confluent
monolayers of Vero cells were inoculated with diluted sera (1:40)
and incubated in a CO2 atmosphere at 37°C for 7 days or until
observation of cytopathic effect (CPE) in at least 30% of the
monolayer. Supernatants were collected and cleared by
centrifugation at 2,000 rpm for 5 min at 4°C. For cryopreservation,
1/10 of SPG stabilizer (2.18mMof sucrose (Sigma-Aldrich, St. Louis,
MO, USA), 38mMofmonobasic K2HPO4 (Sigma-Aldrich), 72mM
of dibasic K2HPO4 (Sigma-Aldrich), and 60 mM of L-glutamic acid
(Sigma-Aldrich) were added, and fractionated supernatants were
stored at −80°C until further use. For all the experiments, no more
than ten passages were used.

Intracellular immunofluorescence was used to confirm the
presence of infectious virus during the blind passages; Vero or
HFF-1 cells were seeded on glass coverslips (Bellco, Vineland, NJ,
USA). After 24 h, the culture medium was removed, and
monolayers were inoculated with 100 µl of the supernatant of
the blind passage and incubated in a CO2 atmosphere at 37°C for
48 h. Monolayers were fixed with 4% p-formaldehyde solution in
phosphate-buffered saline (PBS) (Sigma-Aldrich) for 20 min at
room temperature; cells were then permeabilized with 0.1%
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Triton X-100 in PBS. The cell monolayer was incubated for 60
min with a mouse anti-pan-flavivirus 4G2 antibody (kindly
donated by Dr. Stephen Whitehead, LIV, NIH, MD, USA),
followed by Alexa Fluor 546-conjugated secondary antibody
anti-mouse IgG H+L (Invitrogen, Carlsbad, CA, USA). Non-
infected monolayers were used as negative controls. Finally, the
nucleus was labeled with DAPI (1 µg/mL) (Invitrogen) in PBS for
10 min, and the slides were mounted with Vectashield (Vector,
Burlingame, CA, USA). The images were captured in a confocal
microscope (Leica SP8; Leica Biosystems, Wetzlar, Germany).

Virus Titration
Viruses were titrated using a plaque-forming assay technique
using Vero cells; 10-fold serial dilutions of cryopreserved virus
preparations or cell supernatants were used to infect the
confluent monolayers of Vero cells in 24-well plates. After
incubation at 37°C for 1 h, the infected cells were overlaid with
RPMI with 1% methylcellulose (Sigma-Aldrich), 2% FBS
(Biowest), and 2 mM of L-glutamine (Biowest). After 5 days,
the monolayers were washed with PBS, fixed and permeabilized
with 80% ice-cold methanol for 15 min, and then blocked with
5% low fat powdered milk diluted in PBS. Plaques were
TABLE 1 | Donor information.

Oax-2016-
1

Oax-2016-
2

Oax-2016-
3

Oax-2016-
4

Oax-2016-
5

Oax-2016-
6

Oax-2019-
1

Oax-2019-
2

Oax-2019-
3

Oax-2019-
4

Gender F M F M M M M F F F
Age (years) 35 52 36 20 14 15 56 24 18 31
DENV NS1 (−) (+) (+) (+) (+) (+) (−) (+) (−) (−)
DENV IgM (−) (−) (+) (+) (−) (+) (−) (−) (−) (−)
DENV IgG (−) (−) (+) (−) (−) (+) (−) (−) (−) (+)
ZIKV IgM (+) (−) (−) (−) (−) (−) (+) (−) (+) (+)
ZIKV IgG (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
CHKV IgM (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
CHIKV IgG (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
Hgb (g/dl) 12.1 17.5 15.3 16.1 17.7 16.4 15.1 15 12.8 13.9
Hct (%) 45.7 51.9 49 47.9 52.9 47.9 43.5 47.8 39.3 38.9
RBC (×1012/L) 4.24 5.69 4.94 5.64 6.23 5.46 5.5 5.34 4.27 4.55
RDW (%) 13.7 12.8 12.8 13.2 12.7 12.5 14.2 12.5 12.8 12.7
MCV (fl) 92.69 91.21 92.51 86.88 84.91 87.73 87.09 89.51 91.1 95.6
MCH (pg) 28.54 30.76 30.97 28.55 28.41 30.04 27.45 28.09 29.98 30.55
MCHC (g/L) 307.9 337.2 309.7 328.6 335.6 342.4 315.2 313.8 329 319.5
PLT (×109/L) 148 66 78 123 27 89 296 126 297 330
MPT (fl) 8.5 10.1 12.3 10.7 10.4 10.4 8.8 8.1 9.8 10.2
WBC (109/L) 8.01 3.27 2.02 2.27 3.42 6.85 7.94 3.1 6.29 6.36
Neutrophils (%) 86.3 63.3 42.1 63.9 25.4 81.3 83.2 68.3 57 75.3
Eosinophils (%) 0.6 0 0.5 4 0.3 0.1 0.1 0.47 1.7 0
Basophils (%) 0.2 0.3 0.5 0.4 0.6 0.1 0.1 0.94 0.2 0.2
Monocytes (%) 5.7 17.1 10.9 13.2 26.9 9.2 9.3 10.04 7.2 11.6
Lymphocytes (%) 7.2 19.3 46 18.5 46.8 9.3 7.3 20.2 33.9 12.9
Bands (%) 0 0 0 0 0 4 4 0 1 6
Neutrophils (×109/L) 6.91 2.07 0.85 1.45 0.87 5.57 6.61 2.12 3.58 4.79
Eosinophils (×109/L) 0.05 0 0.01 0.09 0.01 0.01 0.01 0.01 0.11 0
Basophils (×109/L) 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.01
Monocytes (×109/L) 0.46 0.56 0.22 0.3 0.92 0.63 0.74 0.31 0.45 0.74
Lymphocytes (×109/L) 0.58 0.63 0.93 0.42 1.6 0.64 0.58 0.63 2.13 0.82
Bands (×109/L) 0 0 0 0 0 0.27 0.32 0 0.06 0.38
Ju
ne 2022 | Vo
lume 12 | Art
Biometric data, results of the rapid immunochromatography test, and hematic biometry data are listed. All the laboratory tests were performed on the original blood sample; parameters out
of the reference limits are highlighted in bold font. Samples are labeled with the Flavivirus isolate code name.
RBC, red blood cells; WBC, white blood cells; Hgb, hemoglobin; Hct, hematocrit; RBC, red blood cell count; RDW, red cell distribution width; MCV, mean cell volume; MCH, mean
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; WBC, white blood cell count; PLT, platelet count; MPV, mean platelet volume.
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immunostained with a mouse anti-pan-flavivirus 4G2 antibody
(kindly donated by Dr. Stephen Whitehead, LIV, NIH, MD,
USA) and a peroxidase-conjugated secondary antibody (KPL,
Gaithersburg, MD, USA). Finally, plaques were developed with
peroxidase substrate (KPL) and counted manually; titers are
expressed in PFU/mL.

Virus Typification by RT-PCR
Vero cells at 1 multiplicity of infection (MOI) were infected with
every Flavivirus isolate, and at 3 days post-infection (dpi), RNA was
extracted using miRNeasy kit (Qiagen, Hilden, Germany) following
themanufacturer’s recommendations. RNAwasquantified in anano
spectrophotometer (IMPLEN, Westlake Village, CA, USA) after
extraction, and 5 mg of total RNA was used to retrotranscribe
cDNA. For DENV typification, the nested PCR protocol developed
byLanciotti et al. (Lanciotti et al., 1992)was adapted; briefly, theRNA
was retrotranscribed using the dengue serocomplex consensus
oligonucleotide D2 with recombinant Moloney Murine Leukemia
VirusRetrotranscriptase (Thermo,Wilmington,DE,USA) following
the manufacturer’s recommendations. cDNAmeasuring 1.8 to 3 mg
was used for the following PCR, and the serocomplex consensus
reaction using D1 and D2 oligonucleotides was performed. Finally,
for DENV typing, D2 oligonucleotide was replaced with serotype-
specific oligonucleotides, and the PCR products were resolved in 4%
agarose gels. For ZIKV identification, 5 mg of total RNA was
retrotranscribed with random primers (Thermo), and a fragment
of 760 bp was amplified in the NS5 region of the gRNA using the
oligonucleotides ZikV9113Fwd TTYGAAGCCCTTGGATTCTT
and ZikV9872Rev CYCGGCCAATCAGTTCATC and the
protocol designed by Dıáz-Quiñonez et al. (Dıáz-Quiñonez et al.,
2016). All PCRs were performed using the GoTaq master mix kit
(Promega, Madison, WI, USA).

Replication of Flavivirus Isolates in Human
Cell Lines
Human dermal fibroblast HFF-1 cells (ATCC SCRC-1041) and
U937-DC-SIGN cells (ATCC CRL-3253) were infected with all
the Flavivirus isolates at an MOI of 0.1, and supernatants were
harvested for titration every 24 h for 6 days.

Type I IFN Sensitivity
Vero cells were pretreated with 1, 10, and 100 U/mL of
recombinant IFNa A/D (SIGMA) 16 h before infection with
the Flavivirus isolates at an MOI of 0.1. We decided to use 1, 10,
and 100 IU/mL of recombinant IFNa accordingly to studies that
reported this range of concentrations in dengue patients (Kurane
et al., 1993; De La Cruz Hernández et al., 2014; Talarico et al.,
2017). Conversion between picograms (pg) to international units
(IU) was calculated by use of a Human IFN Alpha A (Hu IFN-
aA [2a]) laboratory standard calibrated to the international
reference standard for Human Interferon Alpha A [Hu IFN-
aA (2a)] provided by the National Institutes of Health (Meager
et al., 2001).

After infection, supernatants were harvested for titration
every 24 h for 6 days. The percentage of infection reduction
was calculated by subtracting the titer obtained in the
supernatant of preincubated Vero cells with the corresponding
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
concentration of recombinant universal a interferon from the
titer obtained in the supernatant of Vero cells infected with the
corresponding Flavivirus isolate in the absence of recombinant a
interferon multiplied by 100. Flavivirus isolates with a high
percentage of reduction are more susceptible to the antiviral
activity of recombinant a interferon. All experiments were
performed in independent duplicates.

Relative Subgenomic Flaviviral RNA
Accumulation
RNA from infected HFF-1 cells with all the Flavivirus isolates was
extracted with the miRNeasy kit (Qiagen) following the
manufacturer’s recommendations. SfRNA relative accumulation
was evaluated by the 2-DDCt method by RT-PCR with the
amplification of two fragments of the flaviviral genomic gRNA.
The first fragment was amplified with a gRNA forward primer,
which is complementary to an upstream region of the stop codon of
the open reading frame (ORF), and the gRNA reverse primer, which
is complementary to the end of the 3′UTR (shared between gRNA
and sfRNA). The second fragment was amplified with a sfRNA
forward oligonucleotide, complementary to a region in the 3′SL in
the 3′UTR, and the gRNA reverse primer. DENV sfRNA
accumulation was performed with the oligonucleotides reported
by Ayesa Syenina et al. (Syenina et al., 2020), and ZIKV sfRNA
accumulation was performed with the following oligonucleotides:
gRNA forward, 5′-ATGGTGCGCAGGATCATAGG-3′, sfRNA
forward, 5′-CTGCTAGTCAGCCACAGCTT-3′, and gRNA/
sfRNA reverse, 5′-CTGATCTCCAGTTCAGGCCC-3′, designed
with the same rationale using the sequence of a Mexican isolate
of ZIKV (GenBank KU922960.1). DCt values were calculated with
the amplification of the housekeeping gene GADPH using
oligonucleotides reported by Balm et al. (Balm et al., 2012).

Statistical Analysis
Peak titers, the percentage of infection reduction with
recombinant a interferon, and sfRNA/gRNA (2DDCt) were
compared between DENV and ZIKV isolates by two-way
ANOVA to determine the effect of the virus species and
between isolates from 2016 and 2019 to evaluate the effect of
the epidemic year. Spearman’s correlation was assessed between
hematocrit percentages and platelet counts with peak titers,
percentage of infection reduction with recombinant a
interferon, and 2DDCt of sfRNA. Finally, differences in peak
titers, percentage of infection reduction with recombinant a
interferon, and 2DDCt of sfRNA between Flavivirus isolates were
compared with a one-way ANOVA with Bonferroni correction.
Statistical analyses were done using GraphPad Prism 8.
RESULTS

Isolation and Characterization of Flavivirus
Isolated From Blood Samples From
Infected Donors
We realized blind passages with diluted sera from all the samples
in confluent monolayers of Vero cells. Even though all collected
June 2022 | Volume 12 | Article 890750
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samples were positive for the rapid immunochromatography
test, we isolated ten infectious Flavivirus. Initially, we confirmed
the Flavivirus isolation by immunofluorescence. In Figure 1, we
present confocal images of monolayers of Vero (A) and HFF-1
(B) inoculated with supernatants of blind passages of samples
from infected patients and immunostained with anti-Flavivirus
4G2 monoclonal antibody. We observed the presence of
intracellular E protein in Vero and HFF-1 cells, confirming the
presence of a Flavivirus in the supernatant. We prepared virus
stocks from immunofluorescence positive supernatants and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
titered them on Vero cells. In Figure 1C, we observe the
morphology of immunostained plaques from the 10 Flavivirus
isolates; all isolates presented round and homogenous plaque
morphology except isolates Oax-2016-3, Oax-2016-4, and Oax-
2016-6, which generated plaques with at least two different sizes.
Finally, we identify the Flavivirus species by RT-PCR with RNA
from infected Vero cells. All the samples were tested with the
protocol of nested RT-PCR for DENV published by Lanciotti
et al. (Lanciotti et al., 1992) and with the amplification of a region
of NS5 of ZIKV designed by Dıáz-Quiñonez et al. (Dıáz-
A

C

B

FIGURE 1 | Flavivirus isolate identification and quantification. Immunofluorescence of Vero (A) and HFF-1 (B) cells inoculated with supernatants of blind passages of
diluted sera from positive samples. Cells were fixed, permeabilized, and intracellularly stained with 4G2 monoclonal antibody followed by Alexa Fluor 546-conjugated
secondary antibody. Non-inoculated cells were used as staining controls. (C) Plaque morphology of Flavivirus isolates. Supernatants of blind passages that were
immunofluorescence positive were tittered in Vero cells, and plaque-forming units (PFUs) were immunostained with 4G2 monoclonal antibody followed by
horseradish peroxidase (HRP)-conjugated secondary antibody. Finally, PFUs were developed with 3,3′,5,5′-tetramethylbenzidine (TMB).
June 2022 | Volume 12 | Article 890750
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Quiñonez et al., 2016). The amplification specificity was
confirmed with reference DENV and ZIKV isolates, and a
representative image of the amplification pattern is presented
in Supplementary Figure 1. The species and serotype of each
isolate are listed in Table 2. Of the ten isolated Flaviviruses, four
were characterized as ZIKV and six as DENV2. These results
confirmed that both species cocirculate in the same
epidemic year.

Replication in Human Cells Varies Among
Flavivirus Isolates From the Same
Geographical Area and Year
Once characterized, we compared the replication curves of the
ten Flavivirus isolates on Vero cells and the human cell lines
HFF-1 and U937-DC-SIGN. We used the human dermal
fibroblast cell line HFF-1 as a model to study the early stages
of Flavivirus infection since there is evidence that replication in
this skin resident cell type could represent an advantage to the
virus to establish a productive infection (Montes-Gómez et al.,
2020). We also evaluated replication in the human monocyte cell
line U937-DC-SIGN as a model of the critical stage of Flavivirus
infection since monocytes have been associated with the
pathogenesis during DENV and ZIKV infection (Wong et al.,
2012; Ayala-Nunez et al., 2019). All cell lines were infected with
the Flavivirus isolates at an MOI of 0.1. Figure 2 shows the
multistep growth curves in Vero cells (Figure 2A), HFF-1
(Figure 2C), and U937-DC-SIGN (Figure 2E). From these
curves, we compared the maximum titer reached by each
isolate in Vero (Figure 2B), HFF-1 (Figure 2D), and U937-
DC-SIGN (Figure 2F). The highest titers were observed in
supernatants from infected Vero cells, followed by titers
observed in HFF-1 cells and U937-DC-SIGN. We observed the
maximum titers between 1 and 3 days post-infection.

To evaluate if there was an overall difference between virus
species or epidemic years, we compared peak titers in human cell
lines between DENV and ZIKV and between isolates from 2016
to 2019 by two-way ANOVA. We observed statistically
significant differences in peak titers in U937-DC-SIGN
between DENV and ZIKV isolates (p = 0.01867), but we did
not observe differences between species in peak titers in HFF-1.
In contrast, we observed statistically significant differences in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
peak titers in HFF-1 between isolates from 2016 and 2019 with
(p = 0.03807).

To evaluate individual differences between Flavivirus isolates, we
compared peak titers of each virus in both cell lines by one-way
ANOVAwith multiple comparisons and Bonferroni correction.We
observed statistically significant differences between isolates from
2016 but not between isolates from 2019. Additionally, we observed
statistically significant differences between isolates from 2016 and
2019 (Figures 2D, F). These results suggest that replication in
human cells can vary between Flavivirus that cocirculate in the same
geographical region and between epidemic years. p-Values obtained
by multiple comparisons in Vero, HFF-1, and U937-DC-SIGN are
discussed in detail in Supplementary Tables 1–3, respectively.

Since we observed differences in replication among Flavivirus
isolates in human cells, we evaluated if there was a correlation
between peak titer reached by DENV isolates and warning signs of
dengue disease, thrombocytopenia, or elevated hematocrit
percentage (WHO, 2009). We did observe a tendency to a
positive correlation between peak titer in both human cell lines
and hematocrit percentage and a tendency to a negative correlation
between peak titers and platelet count (Supplementary Figure 2).
However, these tendencies were not statistically significant.

Susceptibility to the Antiviral Activity of
Type I Interferon Correlates With Warning
Signs in Dengue Virus-Infected Patients
Type I interferons are antiviral cytokines that limit viral
replication, activating the expression of thousands of
interferon-stimulated genes (ISGs) with a broad spectrum of
antiviral activity. However, co-evolution with this antiviral
response has selected evasion strategies in Flavivirus (Miorin
et al., 2017). Evidence shows that the capacity to block the
transcription of type I interferons genes correlates with
epidemiological fitness among DENV variants (Manokaran
et al., 2015). However, a comparison of susceptibility to the
antiviral activity of type I interferons among Flavivirus isolates
from the same geographical region or the same epidemic year has
not been done. We compared the capability of Flavivirus isolates
to replicate in Vero cells preincubated with 1, 10, and 100 IU/mL
of recombinant universal a interferon since they are unable to
secrete endogenous type I interferons but do have IFNAR and an
TABLE 2 | Species and serotypes of Flavivirus isolates.

ZIKV D1-D2 Ts1 Ts2 Ts3 Ts4 Virus

Oax-2016-1 (+) (−) (−) (−) (−) (−) ZIKV
Oax-2016-2 (−) (+) (−) (+) (−) (−) DENV2
Oax-2016-3 (−) (+) (−) (+) (−) (−) DENV2
Oax-2016-4 (−) (+) (−) (+) (−) (−) DENV2
Oax-2016-5 (−) (+) (−) (+) (−) (−) DENV2
Oax-2016-6 (−) (+) (−) (+) (−) (−) DENV2
Oax-2019-1 (+) (−) (−) (−) (−) (−) ZIKV
Oax-2019-2 (−) (+) (−) (+) (−) (−) DENV2
Oax-2019-3 (+) (−) (−) (−) (−) (−) ZIKV
Oax-2019-4 (+) (−) (−) (−) (−) (−) ZIKV
June 2022 |
 Volume 12 | Article
Results of the RT-PCR protocols for identifying species and serotypes of the isolated Flavivirus are listed. Result for the amplification of ZIKV NS5 specific PCR product (ZIKV), DENV
serotype cross-reactive PCR product (D1–D2), and serotype-specific PCR products (Ts1, Ts2, Ts3, and Ts4) are described as positive or negative accordingly for each Flavivirus isolate.
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intact JAK-STAT pathway and therefore produce ISGs in
response to exogenous type I interferon stimulation (Naoki
et al., 2014).

In Figure 3, we can observe that preincubation with
recombinant universal a interferon significantly reduced most
isolates titer, especially on the first 3 days of the replication curve.
However, some isolates were able to replicate similarly in the
presence of recombinant universal a interferon, suggesting
differences in the susceptibility of the induced antiviral
response. To compare the differences in susceptibility to the
antiviral activity of recombinant universal a interferon between
Flavivirus isolates, we calculated the percentage of infection
reduction on each day of the replication curve for all Flavivirus
isolates, normalizing the titers obtained from infected Vero cells
in the presence of recombinant universal a interferon with titers
without interferon.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
We observed significant differences in the infection reduction
percentages on days 1 and 2 of Vero cells preincubated with 10
and 100 IU/mL of recombinant universal a interferon; in
Figure 4 , corresponding plots of infection reduction
percentages are presented. To evaluate if there was an overall
difference between virus species or epidemic years, we compared
infection reduction percentages between DENV and ZIKV and
between isolates from 2016 to 2019 by two-way ANOVA. At 10
IU/mL of recombinant universal a interferon, we observed a
statistically significant difference between virus species (1 dpi,
p = 0.0009, and 2 dpi, p = 0.0001) but not between epidemic
years (1 dpi, p = 0.1429, and 2 dpi, p = 0.3997). At 100 IU/mL, we
also observed statistically significant differences between DENV
and ZIKV (2 dpi, p = 0.0153) but also between epidemic years (1
and 2 dpi, p < 0.00001). To evaluate if there were individual
differences between Flavivirus isolates, we compared each virus’s
A B

C D

E F

FIGURE 2 | Replication curves of Flavivirus isolates. Multistep growth curves were performed in Vero (A), HFF-1(C), and U937 DC-SIGN cells (E) infected at a multiplicity of
infection (MOI) of 0.1 with the indicated Flavivirus isolates and harvested from 1 to 6 days post-infection. Titers were obtained in Vero cells and are plotted on a logarithmic
scale. Peak titers obtained by each isolate in Vero (B), HFF-1 (D), and U937 DC-SIGN cells (F) are presented. Letters indicate distinct groups based on the post-hoc statistical
comparison (p < 0.05). Groups without a common letter are significantly different. Data are presented as the mean ± SD; n = 2.
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percentage of infection reduction by one-way ANOVA with
multiple comparisons. Except for ZIKV-Oax-2016-1, Flavivirus
isolates from 2016 were more resistant to the antiviral activity of
type I interferon than isolates from 2019, especially the isolates
DENV2-Oax-2016-5 and DENV2-Oax-2016-2, which presented
a minimum infection reduction, even at 100 IU/mL of type I
interferon (Figures 4A–D). The significant differences in the
multiple comparisons for 10 and 100 IU/mL 1 and 2 dpi are
presented in Supplementary Tables 4–7.

Evasion of type I interferon response has been proposed as a
DENV virulence factor (Green et al., 2014) and a positive fitness
trait (Manokaran et al., 2015); with these antecedents, we decided
to evaluate if there was a correlation between dengue disease
warning signs and increment of hematocrit percentage
and thrombocytopenia with type I interferon infection
reduction of our DENV isolates. In Figure 5, we observed a
significant Spearman’s correlation between the increment of
hematocrit percentage (Figures 5A–D) and thrombocytopenia
(Figures 5E–H) with infection reduction percentages in the
presence of 10 and 100 IU/mL of recombinant universal a
interferon. Our results suggest a correlation between the
severity of dengue disease and evasion of the type I interferon
response in Flavivirus isolates.

Accumulation of Subgenomic Flaviviral
RNA in Cells Infected With Flavivirus
Isolates Correlates With Infection
Reduction and Warning Signs
sfRNA play a pivotal role in evading the signaling pathways for
transcription of type I interferons genes and ISGs during
Flavivirus virus infection (Bidet et al., 2014; Manokaran et al.,
2015). Since the accumulation of sfRNAs depends on the XRN1-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
resistant sequences in the 3′UTR, variation in this region could
influence type I interferon evasion between Flavivirus variants.
To explore this hypothesis, we infected HFF-1 cells with all the
Flavivirus isolates and compared accumulated sfRNA by the
2−DDCt method by RT-PCR with the amplification of two
fragments of the gRNA; the first fragment is only present in
the gRNA, from the end of ORF to the end of the 3′UTR. The
second fragment is shared between gRNA and sfRNA located at
the end of the 3′UTR. We observed an overall difference between
DENV and ZIKV in the sfRNA/gRNA (2−DDCt) by two-way
ANOVA (p = 0.0194) but no difference between epidemic years.
To determine if there were differences between individual
Flavivirus isolates, we compared the sfRNA/gRNA (2−DDCt) by
one-way ANOVA with multiple comparisons. In Figure 6A, we
can observe that Flavivirus in 2016 accumulated variable
amounts of sfRNA. In contrast, we did not observe differences
in the sfRNA accumulation between Flavivirus from 2019. We
also observed a correlation between sfRNA/gRNA (2−DDCt) of
DENV isolates and increment of the hematocrit percentage
(p = 0263, r = 0.6354) (Figure 6B) and a negative correlation
between sfRNA/gRNA (2−DDCt) and platelet counts (p = 0173,
r = −0.6690) (Figure 6C). Our results suggest that cocirculating
Flavivirusmight employ different strategies to evade the antiviral
activity type I interferons.
DISCUSSION

Flavivirus infections are a public health priority in several
countries, as they are linked to a wide variety of clinical
manifestations ranging from asymptomatic infections to life-
threatening diseases. Since the reemergence of DENV in 1978
A B C D E

F G H I J

FIGURE 3 | Replication curves of Flavivirus isolates in Vero cells preincubated with recombinant type I interferon. Vero cells were preincubated without recombinant
IFNa (black lines), 1 IU/mL of recombinant universal type I interferon IFN (blue lines), 10 IU/mL of recombinant universal type I interferon IFN (purple lines), and 100
IU/mL of universal type I interferon IFN (orange lines) and infected with ten Flavivirus isolates: ZIKV-Oax-2016-1 (A), DENV2-Oax-2016-2 (B), DENV2-Oax-2016-3
(C), DENV2-Oax-2016-4 (D), DENV2-Oax-2016-5 (E), DENV2-Oax-2016-6 (F), ZIKV-Oax-2019-1 (G), DENV2-Oax-2019-2 (H), ZIKV-Oax-2019-3 (I), and ZIKV-
Oax-2019-4 (J) at 0.1 MOI. Supernatants of each day were collected and tittered in Vero cells; plaque-forming units (PFUs) are presented on a logarithmic scale.
Data are presented as the mean ± SD; n = 2.
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and the introduction of Zika in 2014, Mexico has been one of the
more affected countries by the cocirculation of both Flavivirus on
an annual basis (Dıáz et al., 2006; Thézé et al., 2018; Slonchak
et al., 2020).

Epidemiological surveillance in Mexico mainly focuses on
identifying the Flavivirus species and the DENV serotype that is
present in every state of the country by using RT-PCR (Direccion
General de Epidemiologia, 2021). Meanwhile, characterization of
viral factors influencing its transmissibility and virulence of
circulating variants of Flavivirus are limited. To study
phenotypic characteristics of the circulating Flavivirus in
Oaxaca City, one of the most affected states in the country, we
isolated and compared viruses from samples of infected patients
in the febrile stage of the disease from the epidemic years 2016
and 2019. We isolated ten Flaviviruses: four were characterized as
ZIKV and six as DENV2. Although it is well known that both
species cocirculate in Oaxaca, this result was surprising since
according to official epidemiologic data, in 2016, 17,795 cases of
DENV and 7,560 cases of Zika were confirmed; meanwhile, in
2019, 41,505 cases of DENV and only 138 cases of ZIKV were
confirmed (Secretaria de Salud and Dirección General de
Epidemiologıá). This observation alone suggests that in 2019,
ZIKV was circulating more than reported. However, our sample
number is too limited to support this claim.

DENV and ZIKV isolates presented similar plaque sizes except
for DENV isolates DENV2-Oax-2016-3, DENV2-Oax-2016-4, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
DENV2-Oax-2016-6. Traditionally, plaque size has been used as a
criterion for virulence or attenuation of Flavivirus, and it is common
to associate plaque size with in vitro growth rate (Liprandi, 1981).
DENV isolates DENV2-Oax-2016-3, DENV2-Oax-2016-4, and
DENV2-Oax-2016-6 were the Flavivirus isolates with the highest
peak titers in Vero (Figure 2B) and HFF-1 (Figure 2D) but not in
U937-DC-SIGN cells (Figure 2F), suggesting that in vitro
replication rate might not be the only characteristic of the virus
that determine plaque size. Recently, it has been demonstrated that
plaque size also could be influenced by other variables such as
evasion of the innate immune response, particularly the
transcription mediated by IRF3, STAT1, and NF-kB transcription
factors (Goh et al., 2016); we compared the replication of all the
isolates in the presence of recombinant interferon a and DENV2-
Oax-2016-3, DENV2-Oax-2016-4, and DENV2-Oax-2016-6
among the viruses with less sensitivity to the antiviral response
established by a interferon (Figure 4), supporting the hypothesis of
the influence of these phenotypes on plaque size. However, not all
Flavivirus with high evasion phenotype presented large plaques,
suggesting the multivariable effect to a simple phenotype such as
plaque size.

Infection levels were observed by intracellular immunofluorescence
assays (Figure 1A) and by replication curves in infected Vero
cells (Figures 2A, B), human dermal fibroblasts (Figure 2B), and
U937-DC-SIGN (Figure 2C), which showed differences in
permissiveness among cell types; as expected, the highest peak
A B

C D

FIGURE 4 | Comparison of infection reduction percentages between Flavivirus isolates. Percentages of infection reduction titers were calculated, normalizing the
titers obtained in the presence of 10 IU/mL (A, B) and 100 IU/mL (C, D) of recombinant universal type I interferon at 1 dpi (A, C) and 2 dpi (B, D). Letters indicate
distinct groups based on the post-hoc statistical comparison (p < 0.05). Groups without a common letter are significantly different. Data are presented as the mean
± SD; n = 2.
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A E
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FIGURE 5 | Correlation of infection reduction with warning signs. Spearman’s correlation was calculated between infection reduction percentages in Vero cells
preincubated with 10 IU/mL of recombinant universal type I interferon and percentages of hematocrit at 1 dpi (A) and 2 dpi (B) and with 100 IU/mL recombinant
universal type I interferon and percentages of hematocrit at 1 dpi (C) and 2 dpi (D). Spearman’s correlation was calculated between infection reduction percentages
in Vero cells preincubated with 10 IU/mL of recombinant universal type I interferon and platelet count at 1 dpi (E) and 2 dpi (F) and with 100 IU/mL of recombinant
universal type I interferon and percentages of hematocrit at 1 dpi (G) and 2 dpi (H).
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titers were reached in Vero cells, a highly used cell line in
virology because of its highest susceptibility and permissiveness
to multiple viral infections, probably associated with the deletion
of the type I interferon cluster on chromosome 12 (Naoki et al.,
2014). We decided to infect human dermal fibroblasts since these
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
cells are among the first permissible cell types in the skin for both
DENV and ZIKV. It has been reported that infection of dermal
fibroblasts induces activation of innate immune responses like
secretion of IFNb and other soluble mediators that could be key
to the establishment of the antiviral and pro-inflammatory
microenvironment that could shape the activation status of
immune cells like dendritic cells (Kurane et al., 1992; Bustos-
Arriaga et al., 2011; Hamel et al., 2015; Bustos-Arriaga et al.,
2016; Kim et al., 2019). We hypothesize that Flavivirus isolates
that efficiently infect human dermal fibroblasts could have an
advantage in establishing productive infection. We observed
differences in peak titers in HFF-1 between Flavivirus isolates
from 2016 and 2019 but not between DENV and ZIKV isolates.
In contrast, we did observe statistically significant differences
between DENV and ZIKV isolates in U937-DC-SIGN peak titers
but not between Flavivirus isolates from different epidemic years.
Monocytes are susceptible to infection by DENV, and multiple
studies have proposed their role in the severity since infected
monocytes secrete high levels of pro-inflammatory cytokines
(Wong et al., 2012). Monocytes have also been proven to be a
target of ZIKV infection. They could play a key role in ZIKV
disease since the infection has been associated with a
counterbalance of monocyte/natural killer activity and
increased dissemination to neural cells (Michlmayr et al., 2017;
Lum et al., 2018; Ayala-Nunez et al., 2019). These observed
differences between HFF-1 and U937-DC-SIGN cells could be
associated with the differences in the induced innate immune
response of each cell type to Flavivirus infection; it has been
reported that DENV-infected monocytes secrete MCP-1,
interferon g-induced protein (IP)-10, IL-6, IL-8, IL-10, and IL-
1b. Meanwhile, DENV- or ZIKV-infected human dermal
fibroblasts secrete mainly IFNb (Kwissa et al., 2014; Kim et al.,
2019; Montes-Gómez et al., 2020). The observed differences
between peak titers in dermal fibroblasts and monocytes
suggest that replication efficiency varies between cocirculating
Flavivirus variants between epidemic years.

To further explore differences in type I interferon evasion
between Flavivirus isolates, we evaluated the replication curves in
Vero cells preincubated with recombinant a interferon. Vero cells
cannot secrete endogenous type I because of a homozygous
deletion of approximately 9 Mb in chromosome 12. Some of the
deleted genes include IFNB, IFNA8, IFNA2, IFNA1 or 13, IFNA6,
and IFNA17. However, Vero cells have IFNAR and an intact JAK-
STAT pathway and therefore produce ISGs in response to the type
I interferon stimulation (Desmyter et al., 1968; Naoki et al., 2014).
In Figure 3, we observe that all Flavivirus isolates significantly
reduced their titers at 2 dpi, delaying their replication curves to
reach maximum titer by at least 2 days. Several studies have
correlated type I interferon concentration in infected patients
with the severity of dengue and Zika disease with controversial
and, in some cases, contradictory results, such as the study by
Talarico et al., where they demonstrate that higher levels of IFNa
or IFNb in sera can correlate with the severity of dengue disease in
pediatric patients from Paraguay (Talarico et al., 2017); in contrast,
the study by De la Cruz Hernandez et al. observed that the
concentration of IFNa in sera was higher in milder cases of
A

B

C

FIGURE 6 | Accumulation of subgenomic flaviviral RNAs (sfRNA) in HFF-
1 infected with Flavivirus isolates varies and correlates with infection
reduction and warning signs. (A) RNA from HFF-1 cells infected with the
Flavivirus isolates was used to evaluate the sfRNA relative accumulation
by the 2-DDCt method by RT-PCR; letters indicate distinct groups based
on the post-hoc statistical comparison (p < 0.05). Groups without a
common letter are significantly different. Data are presented as the
mean ± SD; n = 2. Spearman’s correlation was calculated between
sfRNA/gRNA 2−DDCt hematocrit percentage (B) and platelet count (C).
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dengue fever in comparison with samples from patients with
dengue hemorrhagic fever (patients were classified according to
the WHO 1997 criteria) (De La Cruz Hernández et al., 2014).

Multiple variables can influence these observed contradictions,
like the phase of illness when the sample was taken, the patient’s
age and health status, and even genetic background (Pichainarong
et al., 2006; Maneerattanasak and Suwanbamrung, 2020; Azamor
et al., 2021). Although there is evidence of variants of DENV and
ZIKV that correlate with more severe clinical presentations,
variability of the susceptibility to type I interferon antiviral
response between circulating variants is rarely considered a
factor influencing the severity of the disease. In our results
presented in Figure 4, we demonstrate that Flavivirus isolated
from the same geographic region and different epidemic years can
present different susceptibilities to the type I antiviral response; the
observed differences were as high as 30% in infection reduction
between isolates from the same year (Figure 4B, DENV2-Oax-
2016-5 vs. ZIKV-Oax-2016-1) and 63% between isolates from
epidemic years at 3 years apart (Figure 4C, ZIKV-Oax-2016-1 vs.
ZIKV-Oax-2019-4). This evidence suggests that variants with
differences in the susceptibility to type I interferon antiviral
response during outbreaks cocirculate and compete to dominate
the ecological niche. There is no reference for the concentration
range of type I interferons in the skin. However, some studies have
reported a range between 10 and 100 IU/mL in sera of dengue
patients. We decided to test 1, 10, and 100 IU/mL of recombinant
IFNa to mimic the amount of type I interferon that the viruses
would face in the infected patients (Kurane et al., 1993; De La Cruz
Hernández et al., 2014; Talarico et al., 2017). We were able to
observe differences in susceptibility from 10 IU/mL (Figures 4A,
B), suggesting that the lowest concentration present in patients
would be able to control replication of the susceptible isolates;
however, some isolates were resistant to antiviral activity even at
100 IU/mL (Figures 4C, D), suggesting that some circulating
variants of Flavivirus could replicate and establish a productive
infection in patients with a high concentration of type I interferon
in sera. It is interesting to observe that the isolate ZIKV-Oax-2016-
1 is entirely susceptible to the antiviral response at 10 IU/mL
(Figures 4A, B), but when the concentration is increased to 100
IU/mL, no infection reduction was observed (Figures 4C, D). We
do not have experimental evidence to explain this observation;
however, as it has been reported that some interferon-stimulated
genes activated by the type I interferon signaling pathway like
ISG56 can act as negative feedback regulators of the antiviral
response, one possible hypothesis could be that some variants take
advantage of this negative feedback regulation and gain resistance
to the antiviral activity to type I interferons response after the
negative regulator is expressed. Mechanistic data comparing the
evasion strategies between Flavivirus isolates could confirm the
observation that Flavivirus can use multiple strategies to subvert
the innate immune response of the host (Li et al., 2009;
Chathuranga et al., 2021).

Thrombocytopenia and increments in the hematocrit
percentage in DENV-infected patients are considered warning
signs by the WHO and correlate with viremia and severity of the
clinical presentation of dengue (WHO, 2009; Upadhyay et al.,
2017; Pathak et al., 2021). We observed a correlation of DENV
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
isolates susceptibility to type I interferon antiviral response with
the increment of hematocrit percentage and thrombocytopenia
(Figure 5), supporting the hypothesis that type I interferon
susceptibility of DENV could be a driving factor in the severity
of the disease. It is possible that some observed differences in type
I interferon susceptibility between isolates could be attributed to
the evasion properties of sfRNAs of DENV and ZIKV; however,
some isolates with low sfRNA accumulation were highly resistant
to the antiviral activity of type I interferons (Figure 4C, ZIKV-
Oax-2016-1), suggesting that other evasion strategies could be
present in cocirculating Flaviviruses in the same epidemic event.
This diversity in strategy could influence the selection of highly
virulent Flavivirus variants.

Characterization of the transmissibility and virulence
phenotype of the Flavivirus variants that circulate in the
Mexican population could provide invaluable information on
the selection dynamic as well as the variability of natural
susceptibility of the hosts since available evidence suggests that
genetic variability in Mexicans is particular in comparison with
other Latin American populations and could influence
biomedical treats (Moreno-Estrada et al., 2014). This is
especially true for the Oaxaca population, as it is characterized
by diverse Amerindian groups admixed with Mediterranean and
African genetic backgrounds and features high diversity of HLA
(González-Quezada et al., 2019). The Flavivirus variants that
cocirculate in the Mexican population could be subjected to
characteristic selection pressures; more multidisciplinary studies
that could identify genetic traits that select successful Flavivirus
variants that dominate the epidemiologic picture should
be conducted.

Our study has some clear limitations starting with the limited
number of isolates; however, to our knowledge, our study is the
first to compare critical phenotypic traits of multiple isolates of
Flavivirus that cocirculate in the same geographic area for two
epidemic years. Additional studies of the characterization of type
I interferon susceptibility among cocirculating variants of
Flavivirus during outbreaks could explain the observed
contradictions of studies correlating the type I interferon
response with the severity of dengue and Zika disease and add
to the knowledge of the pathogenesis of Flavivirus.
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Antagonism of Type I Interferon by Flaviviruses. Biochem. Biophys. Res.
Commun. 492, 587–596. doi: 10.1016/J.BBRC.2017.05.146
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Visoso-Carvajal, G., Juárez-Delgado, F. J., et al (2020). Crosstalk Between
Dermal Fibroblasts and Dendritic Cells During Dengue Virus Infection. Front.
Immunol. 11. doi: 10.3389/FIMMU.2020.538240

Moreno-Estrada, A., Gignoux, C. R., Fernández-López, J. C., Zakharia, F., Sikora,
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Domıńguez, Vaca-Paniagua, Av́ila-Moreno, Garcıá-Cordero, Cedillo-Barroń,
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