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Introduction

Infertility affects 15% of couples worldwide (1) with 
male factor involved half of the time (2). Regardless of 
the underlying etiology, assessment of male fertility by a 
semen analysis (SA) has long been the initial diagnostic 

tool. Ejaculated volume, sperm concentration, motility, 
and morphology are the foundational parameters with 
reassuring values assumed to be those above the 5th 
percentile according to the most recent iteration of the 
World Health Organization (WHO) (3). The WHO 
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cautions however that these are not normative values and 
stresses the inherent limitations of the SA. Arguably, the 
most predictive semen parameter is the total motile sperm 
count (4). The decline of sperm counts worldwide has 
gained traction in mainstream media and literature with 
a recently updated, large systematic analysis reporting 
40–60% sperm count decline (population variability) since 
1973 with loss of nearly 1 million/mL/year (5). This has 
implications for assisted reproductive technology (ART) 
and its ever more prevalent use [predominantly in-vitro 
fertilization (IVF)] up 234%, from 413,776 cycles in 2021 
compared to 176,274 in 2012. Despite the numerous 
technological advances in ART since the first successful 
embryo transfer (6), including intracytoplasmic sperm 
injection (ICSI), live-birth rates (e.g., live birth per embryo 
transfer) via IVF (when considering women of all ages, 
all infertility diagnoses) have been stagnant, with similar 
international trends (7,8). From its most recent peak in 2008 
(36.7%), live-birth rates via IVF in the U.S. have been on a 
steady decline ever since with 29.1% in 2012 and 22.2% in 
2021. For ideal women undergoing IVF (i.e., age <35 years), 
the 2022 national summary preliminary data from Society 
for Assisted Reproductive Technology reports live-birth 
rate per intended egg retrieval of 43.1%. Even when this 
is considered, there is room for improvement (9). Several 
suspected theories have been postulated (7) including sperm 
dysfunction. Assessment of sperm quality for ART includes 
objective measures of concentration and motility as well as the 
subjective evaluation of morphology per WHO criteria (3) and 
there is a large need for universal, unbiased selection criteria 
to afford selection of more robust sperm (10). We sought 
to evaluate the literature to review the current landscape 
of sperm selection and determine if any modern research 

holds promise with hope of optimizing sperm for IVF. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://tau.amegroups.com/
article/view/10.21037/tau-24-195/rc).

Methods

This manuscript is a qualitative review with use of PubMed 
as our search modality. Search terms included: sperm 
selection technology, assisted reproductive technology,  
in-vitro fertilization (IVF), and intracytoplasmic sperm 
injection (ICSI). The timeframe of included studies was 
between 1989 and 2024. Only English language studies were 
included. Priority was given to peer-reviewed, published 
manuscripts but abstracts, case reports, textbook chapters 
that fit search criteria were also included. Further, cited 
studies found within the above were also considered for use. 
Please see Table 1 for a summary of our research strategy.

Discussion

Despite numerous technological advances in ART since the 
first successful embryo transfer in 1978 (6), IVF birth rates 
have been stagnant. As a result, attention was expanded to 
consider sperm factors and the need for more expansive 
selection techniques to select for the most suitable sperm. 
Herein, we describe the classic sperm selection methods, a 
collection of promising techniques not used, and then focus 
on the most modern techniques. 

“Classic”

Shortly following the success of the first embryo transfer 

Table 1 Summary of search strategy

Items Specification 

Date of search Searches performed between December 1, 2023 and April 18, 2024

Databases and other sources searched PubMed 

Search terms used Sperm selection technology, assisted reproductive technology, in-vitro fertilization (IVF), 
intracytoplasmic sperm injection (ICSI)

Timeframe Between 1989 and 2024

Inclusion criteria Only English language studies were included. While peer-reviewed published manuscripts 
were prioritized, abstracts and textbook chapters that fit our search criteria (found on 
google.com) were also included

Selection process Each author was independently involved in literature search. The primary author (D.K.C.) 
reviewed all included articles

https://tau.amegroups.com/article/view/10.21037/tau-24-195/rc
https://tau.amegroups.com/article/view/10.21037/tau-24-195/rc
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with the boom of IVF, there was a need for sperm separation 
techniques. The early techniques focused on optimizing 
motility, whereas newer techniques have emphasized sperm 
morphology and function. These two classic methods are 
representative of their names, with each respective test 
evaluating a sperm’s motility, designed to select out the 
most suitable. 

Swim up

Mahadevan & Baker first described this technique, in which 
the spermatozoa are centrifuged or liquefied (mimicking 
the action of activated prostatic serine proteases in the 
female reproductive tract) and the remaining thin, watery 
concentrate is layered atop a sperm culture medium (11). 
The actively motile spermatozoa then navigate into this 
media and are collected for use. 

It is one of the most widely used forms of sperm 
selection, in addition to density-gradient centrifugation 
(DGC), in IVF for patients with normozoospermia and 
female factor infertility. Advantages include very high 
recovery of motile sperm (>90%), user-friendly, and cost-
effective while disadvantages include restricted use in 
patients with male factor infertility, potential for increased 
reactive oxygen species (ROS) creation (if using pelleted 
spermatozoa) and thus reduced motility (12,13). 

DGC

There is a gradient material of gradual density increase 
from the top to the bottom of the gradient. Regardless of 
the material, the ejaculate is placed atop the media and 
centrifuged at 200–500 g for 20 minutes. Sperm cells will 
move through the gradient to different degrees, depending 
on their density, motility. As a result, only highly motile 
sperm with good morphology navigate to the bottom of the 
gradient to form a concentrate, known as the “pellet” while 
less motile, variable morphologic, or dead sperm, among 
bacteria or leukocytes do not (13). 

Ricci et al. compared sperm outcomes between swim-
up vs. DGC in a split-sample study and found significantly 
greater sperm viability (using flow-cytometry), total 
and progressive motility in swim-up relative to DGC 
but DGC had greater total motile sperm counts (12). 
Boomsma et al. evaluated swim-up vs. DGC in setting 
of intra-uterine insemination (IUI) via Cochrane review 
with 4 randomized controlled trials (RCTs) and concluded 
inadequate, low-quality evidence to recommend one over 

the other, given similar clinical pregnancy rate (CPR) 
between swim-up vs. gradient technique (22% vs. 24% 
respectively) (14). More recently, Rao et al. evaluated live 
birth rate (LBR) in IVF cycles between swim-up and DGC, 
concluding no difference (15). In reality, IVF clinics tend to 
use one or both methods for modern IVF protocols though 
some concern exists with these methods causing harmful 
effects on sperm. DGC may induce high centripetal 
pressures and forces on sperm, potentially disrupting sperm 
integrity and secondly, those in the resulting pellet may 
have higher deoxyribonucleic acid (DNA) fragmentation 
and ROS (16-19), though controversy exists. Raimondo 
et al. nicely reviewed the history of this and updated the 
data by attempting to answer the question of whether one 
separation technique is associated with more apoptotic 
spermatozoa (using p53 expression as surrogate), concluding 
that swim-up has actually has significantly higher apoptotic 
rates relative to DGC (20). Larger, randomized studies will 
need to clarify this debate (14). 

These classic sperm separation techniques require at least 
50,000 total sperm after washing, to optimize fertilization 
rates (21). In specific scenarios with oligospermia, there is 
limited published data with one study showing a minimum 
concentration of 12 million/milliliter for swim-up (22) 
while another required at least 20 million/milliliter (23). 
If densities were less, DGC was pursued. When total sperm 
counts are less, conventional ICSI is pursued as minimal 
sperm are required. When considering classic IVF, the only 
prerequisite is motility. With that said, motility is not 100% 
concordant with fertility potential. Teratospermia or abnormal 
shape was previously felt to be a strong indicator of subfertility 
with lower pregnancy rates a motile sperm with IVF (24,25). 
Subsequent research suggested no difference in IVF/ICSI 
with teratospermia (26-28). Zhou et al. attempted to close this 
debate with a recent case-control study, finding morphology 
to have limited predictive value on pregnancy outcomes in 
IVF (29). A severe form of teratospermia is globozoospermia, 
a rare sperm defect leaving sperm head devoid of acrosome, 
cannot fertilize an oocyte in vivo (30). ICSI enables these 
men to conceive. Aside from globozoospermia, there is no 
consensus on management of teratospermia and morphology 
remains largely a subjective assessment via embryologists. 

Morphology
Motile sperm organelle morphology examination (MSOME)
Conventional ICSI uses magnification of 200–400× to select 
the ‘best’ morphologic and motile sperm. Bartoov described 
MSOME, a technique using ultra-high magnification 
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(>6,000×) to evaluate minor morphologic criteria (six 
cellular organelles: acrosome, post-acrosomal lamina, 
neck, mitochondria, tail and nucleus). His prospective 
study demonstrated increased morphological normalcy of 
the sperm cell and was positively associated with ICSI 
fertilization rate [area under the curve (AUC) 88%] but 
not uniformly with pregnancy rates (31). His follow-up 
prospective comparative study examined couples with 
repeated ICSI failure (mean =4 transfers) for routine 
ICSI vs. intracytoplasmic morphologically selected sperm 
injection (IMSI) (also known as ICSI with MSOME). 
IMSI showed increased CPR compared with MSOME 
(66% vs. 30%) (32). This led to a large Cochrane review 
of MSOME vs. ICSI more widely, concluding non-
superiority of LBR in one study (33) and insufficient 
evidence to support IMSI (34). 

Membrane surface charge
Magnetic-activated cell sorting (MACS)
MACS is a sperm selection technology that sorts sperm 
based on the relative burden of phosphatidylserine (PS) 
on sperm cell membranes, a known marker for selecting 
apoptotic cells (35). MACS functions via a sperm sample 
run through a column coated in magnetic microspheres 
conjugated to annexin V (a cellular protein known to have 
a high affinity for PS), and therefore are able to filter out 
any non-viable sperm (36). Multiple studies comparing 
MACS to alternative sperm selection methods have shown 
conflicting results, with very few reporting any statistically 
significant change in CPR or LBR (37-40). Moreover, a 
recent systematic review of the MACS literature did not 
find a statistically significant change in overall ability for 
filtered sperm to result in pregnancy relative to traditional 
methods (41). 
Zeta-potential method
Sperm characteristically have negatively charged membranes 
and with maturation. Its membrane potential becomes 
increasingly more negatively-charged and therefore can be 
selectively sorted out using electrophoresis or other charge-
based equipment (42). This group of processes is referred 
to as the Zeta-potential methods. Some of the initial studies 
investigating Zeta-potential reported improved embryo and 
DNA quality, both of which are desired qualities in ART 
(42,43). Only one double-blinded RCT trial exists with similar 
results, in addition to the observation that sperm selected 
using DGC combined with the Zeta group had a higher 
XY/XX sex ratio than DGC alone (44). A 2019 Cochrane 
review compared Zeta-potential vs. conventional ICSI, 

concluding with the lone RCT previously mentioned, the 
overall quality of data on zeta-potential to be “very low” (45).  
Given the paucity of subsequent data, this method has fallen 
out of favor in lieu of standard selection techniques. 

Nuclear/membrane integrity
Zona pellucida (ZP) binding
The ZP is a glycoprotein matrix that surrounds an ovulated 
oocyte and is the last barrier a sperm has to overcome before 
fertilization, thus serving an important role in the selection 
process of fertilization. Since the discovery of the sperm-
ZP interaction (46,47), multiple studies have compared ZP-
binding assays vs. the “classic” methods of ART [1 RCT (48), 
2 observational studies (49,50)], concluding that the ZP 
selects for sperm with higher DNA and chromatin integrity, 
and decreased levels of methylation and thus can lead to 
higher quality embryos though no difference in CPR. The 
reduced DNA fragmentation was further corroborated with 
recent basic science work (51); however, a recent meta-
analysis concluded that no difference existed between 
standard ICSI outcomes and use of ZP-bound sperm (52). 
Further, Liu and company demonstrated that reduced 
number of sperm-ZP binding correlated with failure of 
conventional IVF (53).
Physiologic ICSI (PICSI) with hyaluronic acid (HA)
HA is a ubiquitous fatty acid of the extracellular matrix 
of the cumulus oophorus and mature sperm express HA-
binding sites that allows for HA digestion as an initial 
step with intent of reaching the oocyte (14). Serving as a 
physiologic marker of mature sperm, numerous studies have 
evaluated its efficacy vs. gold-standard of ICSI, including 
four robust, RCTs (54-57) and subsequent Cochrane 
review (45) concluding little to no difference in CPR, LBR, 
miscarriage or embryo quality.
Microfluidics
Microfluidics is a constantly evolving technology within 
the biomedical field that has showed significant promise 
as a potential tool for sperm selection. Along with sperm 
motility, and morphology, DNA integrity is also of utmost 
importance (58). Reduced motility, concentration and 
morphology have been correlated with reduced DNA 
integrity (59). In patients with idiopathic infertility and 
normozoospermia, some patients are observed to have 
higher DNA fragmentation (60). Subsequently, it is 
known that increasing DNA damage correlates with lower 
probability of pregnancy and prolonged time to pregnancy 
(61,62). With the concerns for ROS production and DNA 
fragmentation with DCG, there was room to improve 
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with a new technique, microfluidics. The overall design 
of each chip can be highly variable, but the theory is that 
each microchip can be designed to isolate sperm based on a 
variety of different biomimetic interactions encountered in 
the female reproductive tract such as geometry, fluid flow 
(i.e., rheology) (63), chemotaxis (64) and thermotaxis (65). 
Given the significant heterogeneity across these approaches, 
direct head-to-head comparison between microfluidics and 
conventional sperm selection methods (i.e., swim-up or 
DCG) are difficult to generalize. With that said, multiple 
studies comparing various microfluidics designs to these older 
methods have shown higher sperm motility selection rates 
and minimal DNA fragmentation rates among sperm selected 
using microfluidic devices (66-68). Unfortunately, as with 
many of the previously described methods, multiple recent 
review articles have reported conflicting data on whether 
microfluidic sperm selection increases clinically relevant 
outcomes such as fertilization, CPR and LBR (69-72).  
Godiwala et al. recently published a large, double-blinded 
prospective RCT concluding similar euploid blastocyst 
rate though fertilization rate favored microfluidic sperm 
selection (73). One aspect of microfluidics that sets it apart 
from some of the other previously discussed methods is 
that there is the potential for multiple modalities of sperm 
selection to be combined onto one chip to compound its 
sorting capabilities. Additionally, some researchers have 
hypothesized that microfluidics can be combined with 
developing technologies such as interferometric phase 
microscopy and advanced spectroscopy to fully potentiate 
its capabilities (74,75). 

Future of sperm selection

Epigenetic testing
Since sperm’s first reported identification in 1,677, despite 
many initial debates of its role in conception, leaps and 
bounds have been made with its genetic role with egg in 
mammalian development (76). With that said, it is well 
established that tremendous heterogeneity exists within 
sperm of a single species, but also within a single ejaculate, 
owing to numerous intrinsic or extrinsic alterations related 
to environmental pressures (77-80), which can result in 
variable shape, DNA content, motility or membrane protein 
structure. Changes may include calcium influx or protein 
kinase activation as response to external signals within the 
female reproductive tract (81). 

Epigenetic heterogeneity or altered gene expression 
within sperm is also established (79) with changes such as 

methylation or acetylation resulting in change to DNA-
binding histones, ribonucleic acids (RNAs) (82) resulting 
in altered sperm development and maturation, therefore 
indirectly impacting fertility (83,84). Methylation 
specifically is vital to DNA gene regulation and therefore 
at least considered important for sperm functioning (85). 
For example, Miller et al. recently analyzed public databases 
to evaluate epigenetic methylation data and its correlation 
with disease states, finding men with least epigenetic 
dysregulation of methylation at gene promotor sites were 
nearly twice as likely to conceive relative to those with 
more dysregulation (86). A follow-up study to quantify the 
precise aberrant methylation with infertility demonstrated 
significantly more than double both CPR and LBR between 
upper 10th and lower 10th percentile of hypermethylated 
promotors when undergoing IUI (not IVF) (87). 

Further, Carrell et al. reviewed the sperm epigenome, 
concluding aberrant epigenetic changes (e.g., histone 
modification) are present in patients with abnormal 
spermatogenesis and idiopathic infertility (88). Detection 
of changes in discrete epigenetic markers often requires 
staining with a subsequent cellular analysis and while 
effective in identification of epigenetic alterations, render 
the sperm unsuitable for ART (89). 

Ideally having the ability to identify such epigenetic 
changes  tha t  cou ld  impact  sperm qua l i ty  cou ld 
result in better sperm selection. Methods that could 
accomplish this without need for invasive techniques 
include aforementioned microfluidics,  along with 
sperm nanopurification and Raman spectroscopy (75). 
Nanotechnology implies use of nanoparticles for a 
procedure, now widely used in science and medicine 
for diagnostics and chemotherapy delivery (90) and also 
considered as a non-invasive sperm selection method (91). 
Sperm nanopurification is manipulation of sperm based 
on their biomarkers and the best example of this in clinical 
practice is MACS, which was discussed previously (41). 
The principle behind the use is again to select out defective 
sperm. There has been some success in bull IVF, in which 
they use a ferritin nanoparticle used to target ubiquitin or 
various lectins, both which present on defective sperm (92). 
Similarly, ubiquitin is a well-known marker for elimination 
of defective sperm in humans via phagocytosis (93,94) with 
subsequent sperm ubiquitin tag immunoassay (SUTI) able 
to quantify ubiquitylation. Ozanon et al. found that after 
sperm were separated via discontinuous density gradient, 
patients with male infertility diagnosis had higher residual 
ubiquitylated sperm and this negatively correlated with 
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embryo development (95). Raman spectroscopy is a laser-
based technology, obtaining molecular information based 
off of vibrational energy from the biochemical makeup (96). 
Subsequent use of a microscope with Raman spectroscopy 
is deemed Raman microspectroscopy and allows for 
assessment of single cells and their components (97). 
While its application in sperm selection is used widely in 
IVF bovine sex sorting (98), its use is humans is mainly in 
assessment of sperm DNA damage (99). Promise exists as 
the ability to evaluate DNA, RNA and respective proteins 
has allowed Raman spectroscopy to monitor leukemic cells 
and implement a treatment to monitor induced epigenetic 
change subsequently alter cell makeup (100). 

Artificial intelligence (AI)-based algorithms
AI is a rapidly evolving field with seemingly infinite 
applications within the medical field—sperm selection 
is certainly no exception. As previously discussed, sperm 
morphology, motility and DNA integrity are some of the 
key qualities assessed when trying to manually identify 
the best sperm (3). Early reports of computer-aided sperm 
analysis (CASA) highlighted that computer assistance has 
the potential to provide an objective, high-throughput 
alternative to an otherwise highly subjective process (101). 
Over the years, research has improved on countless deep-
learning algorithms trained on very large datasets that 
have primarily focused on differentiating normal sperm 
morphologies characteristics (102,103). Although many of 
the algorithms have reached near parity with the gold-standard 
of manual interpretation, a large review article identified that 
most comparisons to date are retrospective, thus lack the 
real-time assessment necessary for use in ICSI (104) with 
some concern for current programs lacking specificity and 
capabilities for andrology use (105). These shortcomings 
seem to have been at least partially addressed by newer deep 
learning algorithms promising real-time sperm selection 
(106-109). For example, the algorithm developed by Sato 
et al. reported a sensitivity and positive predictive value 
(PPV) of 0.794 and 0.689 respectively when assessing sperm 
morphology, and a tracking performance of 78.4% mostly 
tracked (108). 

As with any algorithm, adding a second layer of 
complexity (in this case sperm tracking) will ultimately 
reduce the overall accuracy of the procedure based on 
the concept of conditional probability. Taking things one 
step further, global IVF company IVIRMA, known for 
AI research in embryos, recently published a pilot study 
evaluating spermatozoa using hyperspectral (measuring 

electromagnetic wave lengths) imaging, a technique 
that combines fine microscopy (4,000×) with chemical 
information provided by spectra (giving sperm unique 
signatures based on various wavelengths). Reproducibility 
was near perfect and classification by the model was both 
highly sensitive (93.8%) and specific (96.7%), giving hope 
to build on this to select a given sperm cell and be able 
to predict the outcome of a given ICSI cycle, thereby 
avoid ICSI failures due to male factor (110). Additionally, 
it is important to note that machine learning algorithms 
developed for sperm selection are susceptible to bias given 
that the initial training data sets are commonly evaluated 
by technicians with inherent subjectivity and thus with high 
inter-expert variability (111). Additionally, other challenges 
exist including data accuracy and standardization across 
models (112). With that said, AI continues to be a promising 
area of sperm selection and appears to be a significant factor 
in enhancing various ARTs moving forward.

Sperm vitality testing
Sperm use for IVF are largely based on ‘normal’ 
morphology and motility (113). Most sperm viability tests 
involve DNA binding dyes or killing the sperm, leaving 
them unavailable for clinical use. Motility is a proxy for 
viability and most often used a surrogate given lack of other 
reliable options. With advent of IVF, the realization that 
testis sperm is largely immotile (114) led to research of other 
methods to test viability. Pentoxifylline is a phosphodiesterase 
inhibitor that inhibits breakdown of cyclic adenosine 
monophosphate, a molecule integral to sperm motility (115). 
Tarlatzis et al. demonstrated modest motility improvements 
and fertilization in IVF protocols (116) along with several 
others (117,118) while others disagreed with its fertilization 
enhancement (119,120). 

Hypo-osmotic swelling test (HOST) was introduced in 
1984 as a supplemental assay (based on reactionary swelling 
of sperm in a hypoosmotic environment given semi-
permeable nature of functional plasma membranes) off the 
premise that an intact spermatic plasma membrane doesn’t 
necessarily correlate with a functional membrane. This is 
felt to correlate with more global sperm functions, DNA 
integrity and fertilizing potential (121) with subsequent 
realization of inverse relationship of degree of swelling 
and DNA integrity (122). With that said, disparities exist. 
One RCT (123) showed improved pregnancy rates while 
another demonstrated inferior results to pentoxifylline (124). 
Further, it fell out of consideration given time needed, 
chemical usage, prolonged incubation reducing viability and 
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sperm dilution induced in the HOST solution (125,126). 
Lasers (i.e., light amplification by stimulated emission 

of radiation) have been used over the last six decades in 
various scientific fields and quickly became ubiquitous 
in the 1970’s in medicine and thereafter in ART via 
reproductive endocrinology for gamete and embryo 
manipulation (127-129). Sato et al. were the first to 
publish their experience of sperm motility manipulation via 
lasers (108). While subsequently used in various laser types 
and settings of sperm manipulation, photobiomodulation 
(PBM) utilizes light at near-infrared and red wavelengths 
to modulate biological activity with numerous studies 
demonstrating its impact on beneficial effect on sperm 
function and motility (130-134). PBM’s hypothesized effect 
surrounds its ability to alter sperm mitochondrial function, 
release of ROS, nitric oxide release and activation of 
various G-proteins (135). With these mechanisms in mind, 
subsequent work confirmed these theories via improved 
motility via above studies and importantly, preserved DNA 
integrity in several studies (130,136,137). Regarding clinical 
utility, several small observational studies on patients with 
oligospermia or asthenospermia demonstrated significantly 
improved motility (138,139). Notably, several animal 
models demonstrated promise for future human application, 
including PBM induction of spermatogenesis of a 
hyperthermia-induced azoospermia murine model (140,141) 
and PBM induction of enhanced sperm capacitation and 
fertilization potential in a boar model (142). Lasers have 
been used to assess for sperm vitality as well, when sperm 
are not motile. By targeting the sperm tail with a laser, 
subsequent curling of tail considered sign of viability 
as dead sperm lose dynamic membrane integrity (143). 
Birefringence of sperm along with polar microscopy has 
been researched and two studies demonstrated significantly 
improved CPR when compared to control ICSI sperm 
(144,145). When looking at the various methods of 
evaluating sperm viability, (HOST, pentoxifylline, laser 
use), pentoxifylline is most commonly used based on 
what was previously stated (119,124) and given the lack of 
standardization in larger studies along with disadvantage of 
a need for laser equipment. With that said, Chen et al. had 
a successful pregnancy via ICSI after an immotile frozen-
thawed spermatozoa was selected by laser (146). 

Sperm biomarkers
PS
Another key step in successful sperm fertilization is the 
recognition of certain ligands by the ovulated oocyte. 

However, sperm binding does not necessarily always lead to 
fusion of the sperm and oocyte (147,148). One promising 
biomarker, recently identified to be a significant component 
of proper sperm-oocyte fusion, is the exposure of PS on the 
sperm head of viable and motile sperm. This interaction 
appears to be vital to fertilization and presentation of PS 
(PtdSer) progressively increasing during sperm transit 
through the epididymis. PS was historically considered a 
marker for sperm non-viability and apoptotic cells (3,35). 
Despite this seemingly paradoxical relationship, research 
studies have shown that as a sperm matures and undergoes 
capacitation, PS expression may be increasing in viable, 
motile sperm (149). Rival et al. identified PS expression on 
the sperm head and PS-recognition receptors to engage 
the sperm on the oocyte in a murine model (150). Masking 
the PS expression on sperm via a murine genetic knockout 
or antibody-mediated blocking of PS oocyte receptors 
inhibits sperm:egg fertilization. PS may therefore be a 
marker for fertilization competent sperm (150). A follow-
up study confirmed that human sperm can fuse with murine 
myoblasts in a PS-dependent manner. PS expression may 
have several clinical applications including a diagnostic 
marker of male infertility that extends beyond the 
traditional SA, a functional diagnostic test for egg fusion 
competent sperm and in sperm selection for ARTs (151). 
RNA
The discovery of the azoospermia factor (AZF) region of 
the Y chromosome in 1976 was a profound insight into 
the genetics of spermatogenesis (152). The subsequent 
completion of the Human Genome Project in 2003 
reinvigorated research into DNA and its byproducts has 
exploded, including that of spermatozoa. Despite the two 
decades of research that have passed, approximately 60–75% 
of infertile men are considered idiopathic with belief that 
genetic alterations are contributing at least 40% with no 
novel interventions to date (153,154). Various studies have 
elucidated some 3,000 genes involved in male reproduction 
and more than 500 identifiable genes confirmed to result 
in infertility in animal models (155-158). RNA studies 
established differential gene expression between fertile and 
infertile men (159,160) along with universal membrane 
display patterns (rather than packed in cells like DNA) with 
the possibility for use as fertility biomarkers (161). Despite 
this progress, research has suggested that the evolution 
of RNA processing during maturation, the presence 
of numerous RNA subtypes and the belief that minor 
regulatory RNA are vital to the RNA as a whole indicates 
that more research is needed (162). Hua et al. exemplified 
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the potential of RNA by establishing that human sperm 
(with normal density, morphology, motility and viability) 
demonstrate differential expression of several subtypes of 
RNA in higher quality embryos, thus indirectly serving as 
sperm biomarker for IVF (163). Mehta et al. reviewed sperm 
RNA selection techniques and concluded that the future of 
RNA as viable biomarkers is bright but decoding the sperm 
RNA and focusing on these smaller regulatory RNA will be 
critical to its development (164). 

Quantitative phase imaging (QPI)
One emerging technology that has the potential to 
replace traditional microscopy in the future as the 
marquee option for direct live sperm visualization is QPI. 
Unlike traditional microscopy, QPI can rapidly visualize 
>1,500 human sperm simultaneously in 3D (165) as well as 
track multidimensional swimming patterns, with promising 
application of isolating the most favorable sperm (166,167). 
Modern QPI applications have expanded to identify 
varying degrees of stress in otherwise normal morphologic 
sperm using traditional microscopy (168,169), as well as 
accurately predict sperm-cell DNA fragmentation in live, 
unstained sperm cells with a deep learning model (170). 
Another aspect of QPI that is particularly valuable is that 
it can be combined with numerous other sperm selection 
techniques. For example, Kamieniczna et al. successfully 
combined digital holography, a specific form of QPI, with 
the traditional “swim up” and DGC methods on live, 
unlabeled sperm cells (171). Atzitz et al. combined QPI 
with microfluidics (172). As of today, QPI technology isn’t 
ready for primetime as concerns exist surrounding it its cost 
and time-intensive requirements (173). However, as QPI 
techniques become more standardized and combined with 
other selection modalities, it presents an exciting alternative 
to the traditional microscopy techniques being used across 
the world.

Ethics consideration

For the most part, rapid advances in medically assisted 
reproduction (MAR) have been lauded for transforming 
reproductive opportunities for millions of couples around 
the world. These advancements have raised numerous 
ethical and social issues that require constant discussions 
between many members of our society including physicians, 
human rights groups, legislators and many more (174). 
Some argue that as MAR techniques continue to improve, 
reports of illegal “baby factories” in poor countries will 

continue to increase despite countries passing legislation 
directly targeting international reproductive exploitation (175). 
Further, some of the ART methods previously discussed 
like AI have already led to successful births (176), raising 
new ethical concerns that have yet to be formally discussed 
in the literature. Another aspect of MAR and ART that 
needs further investigation is long-term follow-up of 
children born through artificial reproduction given that 
there are conflicting reports regarding the relative health 
of these individuals (177,178). Lastly, recent litigation 
within the United States has put numerous reproductive 
technologies at risk, further highlighting the necessity for 
a comprehensive and multidisciplinary ethical review of all 
ART and MAR techniques.

Benefits/limitations

While this narrative review is a qualitative assessment of the 
literature, it is an exhaustive survey of the available literature 
with particular attention given to original research on the 
topic over the last 35 years. With that said, limitations 
include lack of original research, lack of standardization 
relative to a typical quantitative study, as well as potential 
for bias with interpretation of the various studies. We 
sought to give consistent summaries of pertinent studies to 
avoid this. 

Conclusions

While IVF is nearing its 50-year anniversary, the success rates 
have been stagnant with ample room for improvement. The 
research into optimizing this has been expansive, including 
promise with sperm selection, though the mainstay continues 
to be swim-up and density centrifugation. Much promise 
exists with numerous techniques, though sperm epigenetics 
and biomarkers appear most encouraging. 
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