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Studies have reported that electroencephalogram signals in Alzheimer’s disease patients usually have less synchronization than
those of healthy subjects. Changes in electroencephalogram signals start at early stage but, clinically, these changes are not easily
detected. To detect this perturbation, three neural synchrony measurement techniques: phase synchrony, magnitude squared
coherence, and cross correlation are applied to three different databases of mild Alzheimer’s disease patients and healthy subjects.
We have compared the right and left temporal lobes of the brain with the rest of the brain areas (frontal, central, and occipital)
as temporal regions are relatively the first ones to be affected by Alzheimer’s disease. Moreover, electroencephalogram signals are
further classified into five different frequency bands (delta, theta, alpha beta, and gamma) because each frequency band has its
own physiological significance in terms of signal evaluation. A new approach using principal component analysis before applying
neural synchrony measurement techniques has been presented and compared with Average technique. The simulation results
indicated that applying principal component analysis before synchrony measurement techniques shows significantly better results
as compared to the lateral one. At the end, all the aforementioned techniques are assessed by a statistical test (Mann-Whitney U
test) to compare the results.

1. Introduction

Mild cognitive impairment (MCI) is characterized by
impaired memory state of brain probably leading towards
mild Alzheimer’s disease (MiAD) or Alzheimer’s disease
(AD). This prodromal stage of AD has been under a great
influence of research for a long time [1–3]. Statistics reported
that 6–25% of MCI is transformed to AD annually and 0.2–
4% from healthy person to AD [2, 4], revealing the fact that
MCI is a transition state of MiAD and AD.

Loss of functional connectivity between cortical and
hippocampus has long been an important focus of researches
to examine the cause of cognitive dysfunction in AD [5, 6].
Statistical analysis of interdependence among time series
recorded from different brain areas, to study the func-
tional interaction, is called “functional connectivity” [7].

Due to destructive characteristics of AD, it has also been
characterized as a neocortical “disconnection syndrome” [8].
The brain’s visualization as a complex network of subsystems
has led us to find out the factors that can best identify
functional disorders in brain [9].There is nowample evidence
that formation of dynamic links in terms of synchronization
constitutes the functional integration of the brain [10–12].

Electroencephalogram (EEG) signals are considered
functional examples to evaluate cognitive disturbances and
a diagnostic tool, especially when a diagnostic doubt exists
even after the initial clinical procedures [13, 14]. A great deal
of research has already been conducted to detect the fluc-
tuations in EEG signals [2, 5, 15]. Alteration in the regional
cerebral blood flow (rCBF) has been considered one of the
causes of abnormality in EEG signals of AD [16, 17]. Studies
onMCI have shown a decrease of alpha power [18, 19] and an
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increase of theta (4–8Hz) power [20, 21] in corticocortical
and subcortical parts of the brain. Babiloni et al. [2] claimed
that the reduction of the synchronization likelihood occurs
both at interhemispherical (delta-beta2) and frontoparietal
(delta-gamma) electrodes.

Topographically analyzing the EEG signals, Hogan et al.
[22] reported a less synchronization of upper alpha band
between central and temporal cortices. In line, a correlation
between higher low-frequency amplitude and alpha-beta
activity at frontal region may reflect an early sign of cortical
atrophy during the course of AD [23]. Similarly, perturbation
in cholinergic inputs from the basal forebrain to cortex and
hippocampus indicates a decrease in cortical EEG coherence
[24] that can be considered a biomarker for the early
detection of AD [2]. Moreover, a combination of multilinear
interactions within the tensor formed by multiplying the
subject × frequency × regions also provides a simple set of
features for the interpretation and classification of AD at its
early stage [25]. The concept of local and global methods is
used to analyze synchronization between pairs of signals and
entire EEG channels at the same time, respectively [15].

The studies, so far, have provided a very limited regional
comparison of brain; for instance, less synchronization has
been reported between temporal and central regions [22]
and also in frontoparietal region [2]. Similarly, functional
coupling of EEG rhythms by sensorimotor events is presented
only in centroparietal regions of brain [26]. A wider range
of study is still required to analyze the synchronization
likelihood in all parts of brain (right temporal, left temporal,
frontal, central, and occipital) at the same time, on different
sets of data for AD.

Synchronization, precisely speaking, is a coordination of
“rhythmic oscillators” [27] for a repetitive functional activity,
whereas neural synchronization is putatively considered a
mechanism where brain regions simultaneously communi-
cate with each other to complete a specific task such as
perception, cognition, and action [28, 29]. Any disturbance
in the brain, caused by a disease or any other infection, can
highly affect the synchronization of brain.Quantitative analy-
sis of EEG signals provides a better insight of synchronization
between different parts of brain. For instance, less synchrony
has been detected in the EEG signals of AD patients as
compared to healthy persons [15].

Various synchronymeasurement techniques have already
been discussed to detect any perturbation in the EEG signals
of AD patients [30]. Both linear such as coherence and
nonlinear such as phase synchronization methods are widely
used to quantify synchronization in electroencephalographic
signals [6, 31, 32]. A comparison of occipital interhemispheric
coherence (IHCoh) for normal older adults and AD patients
reveals a reduced occipital IHCoh for both lower and higher
bands of alpha [33]. Almost similar findings were reported
by Locatelli et al. [34] where a significant increase in delta
coherence is noticed between frontal and posterior regions
in AD patients while a decrease in alpha coherence is
shown in temporoparietooccipital areas. Spontaneous phase
synchronization of different brain regions is calculated by
Kuramoto’s parameter (𝜌), which is particularly useful to
measure multichannel data [6].

Despite the considerable success of the above mentioned
techniques to analyze disruption in the EEG signals of
Alzheimer’s patients, further investigations are still required
to fulfill the clinical requirements. For instance, in order to
detect Alzheimer’s disease at its earlier stages, we need to
focus on those areas where Alzheimer’s disease attacks at
first and then we need to check its synchronization with
the rest of the brain regions. Furthermore, additional novel
and comprehensive methods are still required to check the
validity of aforementioned techniques on EEG signals.

The above overview suggests that, first, spatial-spectral
analysis of EEG signals can provide a measure of memory
visualization. Second, neural synchrony measurement tech-
niques have a potential to discriminate between AD patients
and healthy subjects. What is still missing or ambiguous in
the literature survey is the simultaneous comparison of all
parts of brain with the right and left temporal lobes (the
most affected parts of brain) to analyze synchronization and
also the implementation of new methods to apply synchrony
measurement techniques. In this researchwork, the following
novel contributions are considered.

(i) We have filtered a dataset of MiAD patients into
five different frequency bands (delta, theta, alpha,
beta, and gamma). For each frequency band, we
have computed neural synchronization to compare all
parts of brain (frontal, occipital, and central) with left
and right temporal lobes.

(ii) Furthermore, three different sets ofMiADpatients are
compared to check the validity of ourmethodology. A
high intersubject variability has been seen in the EEG
signals of AD patients, especially with different level
of severity and comorbidities [25, 35, 36]. Most of the
existing studies focus on a single synchrony measure
with a single set of data [37]. Also, they apply different
measures to different datasets. In this case, it is hard
to compare the results to conclude a single hypothesis.
To extract a general set of features, we have analysed
three different databases, each from one hospital at a
time.

(iii) In order to remove the ambiguity of biased results due
to “features redundancy,” we have applied PCA (prin-
cipal component analysis) technique before applying
synchrony measurement techniques. Reducing fea-
tures vector dimension, commonly known as feature
reduction, will help to get accuracy results and avoid
overfitting classification [38]. We compare the results
with simpleAverage technique to analyze the pros and
cons of the new proposed methodology.

Besthorn et al. [39] applied PCA technique in the quanti-
tative analysis of EEG signals to compress a group of predictor
variables to a small set of factors or principle components.
Later, they applied linear discriminant classifier to these
variables to discriminate AD patients from healthy subjects.
Similarly, Uhlhaas et al. [40] applied PCA to remove the
artifacts from EEG signals that were generated by eye-blink.
To the best of our knowledge and the literature we have
surveyed so far, we could not find the application of PCA
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to remove the redundant features from the data that can
generate a biased result to check the synchronization of brain
areas.

Given the exploratory nature of the study, our priori
hypothesis is that the proposed methodology would provide
a better insight to investigate the decline in the neural
synchronization of AD patients. It would provide a better
topographical and spectral analysis of the brain regions
eliminating the probability of biased result due to feature
redundancy.

The rest of this paper is structured as follows. Section 2
provides an overview of our synchrony measurement tech-
niques, the utilized data and the filtering process using five
frequency bands, methodology of the proposed technique,
and statistical analysis of the results. Sections 3 and 4 are
dedicated to discussion and conclusion, respectively.

2. Methods

2.1. Synchrony Measurement Techniques. In this section, we
briefly review the synchrony measurement techniques that
we have implemented in our datasets which include phase
synchrony, cross correlation, and coherence. For this research
work, we have selected three synchrony measures from the
literature that provides comparatively better results when
implemented in EEG signals for the diagnosis of Alzheimer’s
disease [15]. We use these three synchrony measures to infer
which of our proposed methods provides better results in
terms of𝑃 values. Figure 1 shows the 21 channels used for EEG
recording.

2.1.1. Phase Synchrony (Hilbert Transform). The oscillation of
two ormore cyclic signals where they tend to keep a repeating
sequence of relative phase angles is called phase synchroniza-
tion. Synchronization of two periodic nonidentical oscillators
refers to the adjustment of their rhythmicity, that is, the
phase locking between the two signals [41, 42]. It refers to
the interdependence between the instantaneous phases 𝜑

1
(𝑡)

and 𝜑
2
(𝑡) of the two signals 𝑠

1
(𝑡) and 𝑠

2
(𝑡), respectively. It is

usually written as

𝜑
𝑚,𝑛

= 𝑚𝜑
1

(𝑡) − 𝑛𝜑
2

(𝑡) = constant, (1)

where 𝑚 and 𝑛 are integers indicating the ratio of possible
frequency locking and 𝜑

𝑚,𝑛
is their relative phase or phase

difference. To compute the phase synchronization, the instan-
taneous phase of the two signals should be known.This can be
detected using analytical signals based on Hilbert transform
[9] as follows:

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑖𝑥 (𝑡) . (2)

Here, 𝑧(𝑡) is complex value with 𝑥(𝑡) being a real time series
and 𝑥(𝑡) being its Hilbert transform. The Hilbert transform
can be calculated as
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Figure 1: The 21 channels used for EEG recording [15].

Here, PV denotes Cauchy principle value. The instantaneous
phases 𝜑

1
(𝑡) and 𝜑

2
(𝑡) for both signals can be calculated with

the following formula:

𝜑 (𝑡) − arctan 𝑥 (𝑡)

𝑥 (𝑡)

. (4)

2.1.2. Cross Correlation. Cross correlation is a mathematical
operation used to measure the extent of similarity between
two signals. If a signal is correlated to itself, it is called
autocorrelated. If we suppose that 𝑥(𝑛) and 𝑦(𝑛) (why not
𝑠
1
(𝑡) and 𝑠

2
(𝑡)make uniform signals suggestion) are two time

series, then the correlation between them is calculated as [43]
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Cross correlation returns a sequence of length 2∗𝑁−1 vector,
where 𝑥 and 𝑦 are of length 𝑁 vectors (𝑁 > 1). If 𝑥 and 𝑦

are not of the same length, then the shorter vector is zero-
padded. Cross correlation returns value between −1 and +1.
If both signals are identical to each other, the value will be
1; if they are totally different from each other, then the cross
correlation coefficient is 0, and if they are identical with the
phase shift of 180∘, then the cross correlation coefficient will
be −1 [15].

2.1.3. Magnitude Squared Coherence. The coherence func-
tions estimate the linear correlation of signals in frequency
domain [15]. The magnitude squared coherence is defined as
the square of the modulus of the mean cross power spectral
density (PSD) normalized to the product of the mean auto
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PSDs [44]. The coherence 𝐶
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(𝑓) between two channel time
series is computed as
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Here, cross spectral density, which is also known as cross
power spectrum, is the Fourier transform of the cross
correlation function
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where 𝑅
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2.2. Data Description and Data Filtering

2.2.1. Data Description. The datasets that we are analyzing
have been recorded from three different countries of Euro-
pean Union. Specialist at the memory clinic referred all
patients to the EEG department of the hospital. All patients
passed through a number of recommended tests: minimental
state examination (MMSE) [45], the Rey Auditory Verbal
Learning Test [46], Benton Visual Retention test [47], and
memory recall tests [48]. The results are scored and inter-
preted by psychologists and a multidisciplinary team in the
clinic. After that, each patient is referred to hospital for EEG
assessment to diagnose the symptoms of AD. Patients were
advised to be in a resting state with their eyes closed during
the test. The sampling frequency and number of electrodes
for three datasets are all different. Detailed information is as
follows.

2.2.2. Database A. The EEG dataset A contains 17 MiAD
patients (10 males; aged 69.4 ± 11.5 years) and 24 healthy
subjects (9 males; aged 77.6 ± 10 years). They all are of
British nationality. This data was obtained using a strict
protocol from Derriford Hospital, Plymouth, UK, and has
been collected using normal hospital practices. EEG signals
were obtained using the modified Maudsley system which
is similar to the traditional 10–20 international system [49].
EEGs were recorded for 20 sec at a sampling frequency of
256Hz (later on sampled down to 128Hz) using 21 electrodes.

2.2.3. Database B. This EEG dataset is composed of 5 MiAD
patients (2 males; aged 78.8 ± 5.6 years) as well as 5 healthy
subjects (3males; aged 76.6± 10.0 years).They all are of Italian
nationality. Several tests, for instance, MMSE, the clinical
dementia rating scale (CDRS), and the geriatric depression
scale (GDS), were conducted to evaluate the cognitive state
of the patients. The MMSE result for healthy subjects is
29.3 ± 0.7, while for MiAD patients is 22.3 ± 3.1. EEGs were
recorded for 20 sec at a sampling frequency of 128Hz using 19
electrodes at the University of Malta, Msida MSD06, Malta.

2.2.4. Database C. This dataset consists of 8 MiAD patients
(6 males; aged 75 ± 3.4 years) and 3 healthy subjects (3 males;
aged 73.5 ± 2.2 years). They all are of Romanian nationality.
The AD patients have been referred by a neurologist for EEG
recordings. All subjects are diagnosed with AD by means
of psychometric tests (MMSE, CDR, and OTS), neuroimag-
ing (CT), and clinical examination (gender, age, disease,
duration, education, and medication). The MMSE result for
healthy subjects is 28–30, while for MiAD patients it is 20–
25. EEG data is recorded using a large equidistant 22-channel
arrangement conforming to the international federation of
clinical neurophysiology (IFCN) standards [50] for digital
recording of clinical EEG from the Ecological University of
Bucharest. The time series are recorded for 10 to 20 minutes
at a sampling frequency of 512Hz using 22 electrodes. The
signals are notch-filtered at 50Hz. Further details about the
data can be found in [51].

For current research work, we have obtained a version
of the data that is already preprocessed of artifacts by
using independent component analysis (ICA), a blind source
separation technique (BSS). Details of these procedures can
be found in [52]. For ICA processed data, the least corrupted
20 s recordings have been selected for further analysis.

2.2.5. Data Filtering into Five Frequency Bands. EEG time
series are classified into five frequency bands. Each frequency
band has its own physiological significance [6, 53] as follows.

(i) Delta (𝛿: 1 ≤ 𝑓 ≤ 4Hz): these are characterized by
deep sleep and are correlated with different patholo-
gies.

(ii) Theta (𝜃: 4 ≤ 𝑓 ≤ 8Hz): these play an important
role during childhood. High theta activities in adults
are considered abnormal and associated with brain
disorders.

(iii) Alpha (𝛼: 8 ≤ 𝑓 ≤ 12Hz): these usually appear during
mental inactive conditions and under relaxation.
They are best seen during closing of eye and mostly
pronounced in occipital location.

(iv) Beta (𝛽: 12 ≤ 𝑓 ≤ 25Hz): these are visible in central
and frontal locations. Their amplitude is less than
alpha waves and they are mostly enhanced during
tension.

(v) Gamma (𝛾: 25 ≤ 𝑓 ≤ 30Hz): these are best charac-
terized by cognitive and motor functions.
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Bandpass filter is applied to each EEG channel to extract
the EEG data in specific frequency band [𝐹: (𝐹 + 𝑊)] Hz.
Butterworth filters were used (of 2nd order) as they offer good
transition band characteristics at low coefficient orders; thus,
they can be implemented efficiently [54].

2.3.Methodology. In this researchwork, a novelmethodology
using PCA and neural synchrony measurement of the brain
is proposed. We have compared our proposed method with
other methods which takes the average of synchrony mea-
sures for all channels in one region of the brain. Asmentioned
previously, we are comparing the right and left temporal
lobes with the frontal, central, and occipital areas; so, there
are a total of 7 comparisons of the brain ((left temporal-
right temporal (LT-RT)), (left temporal-frontal (LT-F)), (left
temporal-central (LT-C)), (left temporal-occipital (LT-O)),
(right temporal-frontal (RT-F)), (right temporal-central (RT-
C)), and (right temporal-occipital (RT-O))) for all frequency
bands (𝛿, 𝜃, 𝛼, 𝛽, and 𝛾). A brief description of these methods
is given below.

2.3.1. First Method (Taking Average of Synchrony Measures
for All Channels of One Region). First, we apply neural
synchrony measurement techniques to each channel pair
(time series of two channels) of two different regions for
all frequency bands and then we take the average of those
results. For instance, we apply phase synchrony measure to
each channel pair of right and left temporal lobes ((F

7
-F
8
),

(F
7
-T
4
), (F
7
-T
6
), (T
3
-F
8
), (T
3
-T
4
), (T
3
-T
6
), (T
5
-F
8
), (T
5
-

T
4
), and (T

5
-T
6
)) and then we take the average result of right

temporal-left temporal. We compare the left temporal lobe
with the frontal (FP

1
, FP
2
, 𝐹𝑃
𝑧
, F
3
, and F

4
), central (𝐹

𝑧
, C
3
,

𝐶
𝑧
, C
4
, and 𝑃

𝑧
), and occipital (P

3
, P
4
, O
1
, O
2
, and 𝑂

𝑧
) areas.

Similarly, we compare the right temporal lobe (F
8
, T
4
, and

T
6
) to the rest of the brain area.The same technique has been

used for the rest of the synchrony measures, that is, cross
correlation and coherence.

After getting the results, we compare the neural synchro-
nization of AD patients and healthy subjects, for all three
measurement techniques (phase synchronization, cross cor-
relation, and coherence), by Mann-Whitney 𝑈 test. Figure 2
shows all the steps of our Average method.

2.3.2. SecondMethod (PCABasedNeural SynchronyMeasure).
In this method, instead of applying synchrony measurement
techniques directly to the filtered data, first we apply principal
component analysis (PCA) technique to all channels of one.
This eliminates any redundant information that a region
could provide. For instance, we apply PCA to all three chan-
nels of left temporal lobe (F

7
, T
3
, and T

5
) and consequently it

provides a single signal without any redundant information.
Then, we apply PCA to all channels of right temporal lobe (F

8
,

T
4
, and T

6
). After that, we apply synchrony measure to these

two regions. Similarly, we apply PCA to all other channels of
a region: frontal (FP

1
, FP
2
, 𝐹𝑃
𝑧
, F
3
, and F

4
), central (𝐹

𝑧
, C
3
,

Cz, C4, and 𝑃
𝑧
), and occipital (P

3
, P
4
, O
1
, O
2
, and Oz) and

compute the synchrony measure with left and right temporal
lobes.The rest of the procedure is similar to the first proposed
method.

2.3.3. Principal Component Analysis (PCA). The basic pur-
pose of PCA is to reduce the dimensionality of a dataset
to convert it to uncorrelated variables providing maximum
information about a data while eliminating interrelated vari-
ables. In other words, it transforms the highly dimensional
dataset (of 𝑚 dimensions) into low dimensional orthogonal
features (of 𝑛 dimension) where 𝑛 < 𝑚 [55].

In our case, we apply PCA to all channels in one
particular region, for instance, the application of PCA for
the left temporal lobe as shown in Figure 3(a) using channel
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Figure 3: Application of PCA on left temporal lobe channels signals.

(F
7
, T
3
, T
5
) are converted into a single signal as shown in

Figure 3(b). The generated temporal signal contains almost
all information from the left temporal lobe while eliminating
any redundant information.

2.4. Statistical Analysis. To investigate whether there is a
significant difference between the EEG signals of MiAD
patients and the control subjects and also to prove the
probable significance of our proposedmethodology, we apply
the Wilcoxon rank sum (Mann-Whitney) test [56, 57] to our
datasets. A rank sum function is a nonparametric test which
allows us to check whether the statistics at hand, in our case
synchrony results, take different values from two different
populations. Lower 𝑃 values indicate higher significance in
terms of large difference in medians of two populations [15].

Since we are applying three different synchrony measures
to three different sets of data, first we consider our first
proposed method (taking average of synchrony values) to
compute the synchronymeasure.We apply all threemeasures
for all 7 different comparisons of brain for all frequency bands
and compute the results by Mann-Whitney test. Then, we
apply the same techniques on all, above mentioned, three
datasets using the second proposed method (PCA based
synchrony measures). This will enable us to compare our
results in two different perspectives as follows.

(i) Investigating three different synchrony measures at a
time will help us to compare which measure works
better for EEG signals.

(ii) Secondly, we are able to compare two different
methods for three synchrony measures using three
different datasets.

In addition to evaluating the statistical significance of our
proposed method, this will also help us to differentiate the
MiAD patients from healthy subjects.

3. Results and Discussions

The aim of the present study is to find the relationship of
EEG synchronization with AD and thus to explore further
dimensions in disconnection theorem of cognitive dysfunc-
tion in AD and also to investigate a better method to detect
any changes in EEG synchrony that can be considered a
biomarker for the early detection of AD. Here, we investigate
and discuss results in two different angles. First, we discuss
the role of synchrony measures to examine a change in
EEG synchrony in MiAD patients and later we confer the
significance of applying PCA before synchrony measures.

3.1. Functional Disconnection of Brain Regions due to Lower
Synchronization. We have observed that all of the synchrony
measures, tested in this paper, show a decrease in EEG
synchrony for MiAD patients as compared to healthy sub-
jects. However, cross correlation shows a higher number of
significant results at the 𝑃 = 0.01 level as compared to
phase synchrony and coherence. We have examined mostly
the areas that have shown less functional connectivity for
all three synchrony measures, which are; right temporal-
central (RT-C) for delta, theta, and alpha bands and also left
temporal-occipital (LT-O) for delta and alpha bands.The rest
of this paper discusses these two regions where we find highly
significant results compared to the rest of the regions.

First, we discuss dataset A for all three synchrony
measures with PCA based method. The 𝑃 values for cross
correlation in RT-C region are 2.47 × 10−4, 1.46 × 10−4, and
0.009 for delta, theta, and alpha bands, respectively. In LT-
O region, the smallest 𝑃 values for delta and theta bands are
8.50 × 10−5 and 6.8 × 10−5, respectively.The 2nd best measure
which has given us remarkable results is phase synchrony,
where we get 0.0067, 0.0403, and 0.0585 𝑃 values for delta,
theta, and alpha bands, respectively, in RT-C region. We get
0.0041 and 0.0271 𝑃 values for delta and alpha bands in LT-
O region. Lastly, the coherence function shows significant



The Scientific World Journal 7

results in RT-C region for delta band, 𝑃 value = 0.0378,
and in LT-O 9.8 × 10−4 and 0.05 for delta and alpha bands,
respectively. Coherence function does not provide significant
results and hence contradicts Bahar theory [58]where control
group showed higher values of evoked coherence in delta,
theta, and alpha bands in the left frontoparietal electrode
pairs as compared to AD patients.

Lower 𝑃 values at delta and alpha bands are shown by
Babiloni et al. [2] at frontoparietal couplings of electrodes
which indicates a lower synchronization in MCI and AD
subjects. Further to the previous findings, our results show a
higher difference of synchronization for temporal, occipital,
and central areas in MiAD patients at delta, theta, and
alpha levels. They show lower magnitudes of delta, theta,
and alpha bands in temporal, central, and occipital areas in
MiADpatients than the compared healthy subjects. Temporal
regions are characterized by short term and long term
memory and any neuronal change on these sites is a clear
indication of progression of AD.

Interestingly, we find a decrease in alpha band syn-
chronization for all three synchrony measures in almost all
regions. For instance, for cross correlation, 𝑃 value < 0.01
in almost all parts of the brain; for phase synchrony, the 𝑃

values are 0.058, 0.0038, 0.011, and 0.027 in RT-C, RT-O, RT-
F, and LT-O, respectively.This shows the importance of alpha
rhythm for the early detection of AD which is in accordance
with the phenomena that alpha rhythms are mainly modu-
lated by thalamocortical and corticocortical systems [56, 57].
Alpha band is mainly related to subjects global attentional
readiness and engagement of specific neural channels for the
elaboration of sensorimotor or semantic information [2].

As aforementioned, mostly the areas that show lower
dysfunctional connectivity are right temporal-central and
left temporal-occipital. A lower synchronization in these
connections, especially in RT-C region, for alpha band
indicates a disturbance in the perception and integration
of somatosensory information, visuospatial processing, and
cognitive disorder. This information is in line with clinical
findings presented in [59] for increasing visual and spatial
deficits in MCI and MiAD patients. Table 1 shows the sig-
nificant 𝑃 values in different parts of the brain in different
frequency bands for dataset A.

Similarly, for dataset B and dataset C, we found low 𝑃

values in the same regions for same frequency bands but not
as much significant as for dataset A. One thing in common
in all three datasets is that they show lower 𝑃 values in alpha
frequency bands in the RT-C region. Table 2 shows the total
number of significant values in case of PCA and Average
method.

3.2. Significance of PCA Approach over Average Approach.
Our second hypothesis was to show the significance of using
PCA techniques to eliminate the redundant information
from the data that can give biased results, before applying
synchrony measures. As expected, we found a big difference
in results with and without PCAmethod.We have found that
more than 90% of the values are better in case of PCAmethod
as compared to Average method for all of three datasets.

Table 1:𝑃 values for dataset A, different frequency bands in different
brain connections.

Synchrony
measure Brain connections Frequency

regions 𝑃 values

Cross
correlation

RT-C
Delta (𝛿) 2.47 × 10

−4

Theta (𝜃) 1.46 × 10
−4

Alpha (𝛼) 0.009

RT-O
Delta (𝛿) 6.9 × 10

−5

Theta (𝜃) 2.7 × 10
−5

Alpha (𝛼) 0.0029

RT-F
Delta (𝛿) 5.01 × 10

−4

Theta (𝜃) 6.8 × 10
−5

Alpha (𝛼) 0.0062

LT-C
Delta (𝛿) 4.3 × 10

−5

Theta (𝜃) 3.8 × 10
−5

Alpha (𝛼) 0.0192

LT-O
Delta (𝛿) 8.5 × 10

−5

Theta (𝜃) 6.8 × 10
−5

Alpha (𝛼) 0.0052

LT-F
Delta (𝛿) 2.2 × 10

−4

Theta (𝜃) 5.4 × 10
−5

Alpha (𝛼) 0.0091

LT-RT
Delta (𝛿) 3.3 × 10

−4

Theta (𝜃) 6 × 10
−5

Alpha (𝛼) 0.0253

Phase
synchrony

RT-C
Delta (𝛿) 0.0067
Theta (𝜃) 0.0403
Alpha (𝛼) 0.05

RT-O Delta (𝛿) 0.0041
Alpha (𝛼) 0.0271

Coherence
RT-C Delta (𝛿) 0.0378

RT-O Delta (𝛿) 0.0378
Alpha (𝛼) 0.0192

Table 2: Total number of significant values in case of PCA and
Average method.

Synchrony
measure Method 𝑃 < 0.01

(Total values)
𝑃 < 0.05

(Total values)
Cross
correlation

PCA 26 35
Average 22 30

Phase
synchrony

PCA 8 11
Average 2 8

For instance, for dataset A, in case of PCA method, we
have found 8 significant values below 0.01 (𝑃 < 0.01) and 11
significant values below 0.05 (𝑃 < 0.05), while only 2 values
below 0.01 (𝑃 < 0.01) and 8 values below 0.05 (𝑃 < 0.05) in
case of Average method for phase synchrony measure were
found. Similarly, for cross correlation measures, although the
difference is not very high, yet the PCA method has shown
more significant values. For example, the number of 𝑃 values
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Figure 4: Boxplots show the results of three synchrony measures for PCA and Average methods.

below 0.01 (𝑃 < 0.01) is 26, while almost all 35 values were
below 0.05 (𝑃 < 0.05); for Average method 22 values are
below 0.01 and 30 values are below 0.05 (𝑃 < 0.05). As
aforementioned, coherence function does not perform better
as compared to other two synchrony measures but again we
found more significant results in case of PCA method as
compared to the Average method.

The reults are also shown by boxplot in Figure 4 that show
the difference of 𝑃 values for all three synchrony measures
in all 7 brain comparsions for dataset A. They compare the
results of synchronymeasures for PCA andAveragemethods.

Similarly, for dataset B and dataset C, the results of PCA
method aremore significant as compared toAveragemethod.
This clearly shows that using PCA method before synchrony
measures has two advantages as follows.

(i) As the redundant information is eliminated from
the datasets, the results are not biased and are more
reliable.

(ii) Secondly, it proves that application of PCA generates
more significant results as compared to average syn-
chrony measure method.

4. Conclusion

The aim of the current study was to show the significance of
applying PCA method to eliminate redundant information
from the datasets to get more reliable results. In this study,

three different datasets were selected with different specifica-
tions and three different synchrony measures are applied to
prove the significance of our approach. Moreover, we have
compared our proposed method with Average methods to
compute synchronization in MiAD patients as well as in
control subjects.

Results revealed that cross correlation measure showed
higher difference in synchronization of MiAD and control
subjects as compared to phase synchrony, while coherence
function did not perform very well. They have also indicated
that alpha and theta bands play amajor role in identifying the
change in synchronization from MiAD and control subjects
especially in right temporal-central region (RT-C) and also in
left temporal-occipital (LT-O) region.

Furthermore, the original contribution of this research
work is the comparison of previous methods of applying
synchrony measures with PCA based method. Our proposed
method proved the importance of eliminating redundant
information, from EEG time series, that may come from
consecutive electrodes. It should be noted that comparison
with previous findings is problematic due to the significant
differences in the utilized methodology and the utilization
of different kinds of synchrony measures on different kinds
of datasets. However, our results are consistent with most
of the studies on the loss of average EEG synchrony in
different parts of the brain for MiAD patients and are also
in accordance with the clinical findings.

Furthermore, we have successfully shown the importance
and significance of our proposed method, to detect lower
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synchronization in MiAD patients, as compared to the
Average method for all three datasets.

Future work will involve the study of much significant
results of lower synchronization in case of dataset B and
dataset C as compared to dataset A. In this paper, we have
implemented PCA to eliminate the redundant and irrelevant
information from the EEG signals and also applied signal
processing techniques to extract the features that are useful
for the early diagnosis of Alzheimer’s disease. In this ongoing
research project, the next step is the implementation of
classification algorithms to recognize the data patterns that
can be used for the identification anddiagnosis ofAlzheimer’s
disease in clinics.
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