
RESEARCH ARTICLE

Randomization in survival studies: An

evaluation method that takes into account

selection and chronological bias

Marcia Viviane RückbeilID
1*, Ralf-Dieter Hilgers1, Nicole Heussen1,2

1 Department of Medical Statistics, RWTH Aachen University, Aachen, Germany, 2 Center for Biostatistics

and Epidemiology, Sigmund Freud Private University, Vienna, Austria

* mrueckbeil@ukaachen.de

Abstract

The random allocation of patients to treatments is a crucial step in the design and conduct of

a randomized controlled trial. For this purpose, a variety of randomization procedures is

available. In the case of imperfect blinding, the extent to which a randomization procedure

forces balanced group sizes throughout the allocation process affects the predictability of

allocations. As a result, some randomization procedures perform superior with respect to

selection bias, whereas others are less susceptible to chronological bias. The choice of a

suitable randomization procedure therefore depends on the expected risk for selection and

chronological bias within the particular study in question. To enable a sound comparison of

different randomization procedures, we introduce a model for the combined effect of selec-

tion and chronological bias in randomized studies with a survival outcome. We present an

evaluation method to quantify the influence of bias on the test decision of the log-rank test

in a randomized parallel group trial with a survival outcome. The effect of selection and

chronological bias and the dependence on the study setting are illustrated in a sensitivity

analysis. We conclude with a case study to showcase the application of our model for com-

paring different randomization procedures in consideration of the expected type I error

probability.

Introduction

One of the main purposes of randomization is to improve comparability between treatment

groups by balancing observed and unobserved covariates in expectation [1]. Randomization

furthermore helps to mitigate the risk of selection bias and, depending on the randomization

procedure, can protect against imbalanced group sizes throughout the allocation process [1].

Despite the many benefits of randomization, there are also some limitations; for a comprehen-

sive discussion, see [2]: One issue that cannot be addressed by randomization is that patients

usually enter a clinical trial sequentially and are often treated immediately [1, 2]. Conse-

quently, new patients will be enrolled and assigned to therapies, while others have already

received treatment [2]. This delay in time entails several potential sources of bias: On the one

PLOS ONE | https://doi.org/10.1371/journal.pone.0217946 June 3, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rückbeil MV, Hilgers R-D, Heussen N

(2019) Randomization in survival studies: An

evaluation method that takes into account selection

and chronological bias. PLoS ONE 14(6):

e0217946. https://doi.org/10.1371/journal.

pone.0217946

Editor: Vance W Berger, NIH/NCI/DCP/BRG,

UNITED STATES

Received: February 28, 2019

Accepted: May 21, 2019

Published: June 3, 2019

Copyright: © 2019 Rückbeil et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: MVR, RDH and NH have received funding

from the European Union’s 7th Framework

Programme for research, technological

development and demonstration under the grant

agreement number FP7 HEALTH 2013-602552.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

http://orcid.org/0000-0003-0277-1282
https://doi.org/10.1371/journal.pone.0217946
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217946&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217946&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217946&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217946&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217946&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217946&domain=pdf&date_stamp=2019-06-03
https://doi.org/10.1371/journal.pone.0217946
https://doi.org/10.1371/journal.pone.0217946
http://creativecommons.org/licenses/by/4.0/


hand, the treatment success itself may be affected by unobserved time trends (chronological

bias) [3, 4]. These may result from, for example, improved treatment performance due to expe-

rience gain [5, 6], or changes in inclusion or exclusion criteria [4, 7]. On the other hand, the

sequential enrollment creates the risk for selection bias whenever blinding cannot be fully

attained [8, 9].

There are many different randomization procedures for randomly assigning patients to

treatments; for a detailed overview, see [1]. In general, randomization procedures that protect

well against selection bias perform poorly with regard to time trends [10]. This is caused by

the opposing behaviors of either forcing balanced groups or maintaining randomness: The

more balance is forced by a randomization procedure, the more robust it is with regard to

time trends [4] but at the same time the more susceptible it is to selection bias [11–13].

Therefore, there cannot be a universally best randomization procedure. Instead, the choice of

a suitable randomization procedure always depends on the specific requirements of the study

at hand [10]. In the case of two treatment groups and a normally distributed outcome, several

models have been proposed to study the isolated effect of selection bias [12, 14–16] or the iso-

lated effect of time trends [4]. Another model was introduced to compare more than two

treatment groups in the presence of selection bias [17]. Recently, an approach for the com-

bined assessment of chronological and selection bias in the case of a normally distributed

outcome was published [10]. For survival outcomes, a single model has been proposed for

the case where survival data follow an exponential distribution and an F-test is performed to

compare two treatments [9]. This model is limited to the evaluation of selection bias only and

does not account for time trends. In addition, the F-test is rarely considered in clinical trials,

as it can only be used in very specific situations. Instead, methods that do not impose any

distributional assumptions on the survival times are often used in practice [18–20]. There-

fore, the previous evaluation method can only be applied to a very limited extent to most sur-

vival studies.

The objective of this paper is to provide a method for the evaluation and comparison of dif-

ferent randomization procedures that is applicable to most studies with a survival outcome

and thus enable researchers to make a scientifically sound choice. We propose a semi-paramet-

ric bias model based on the hazard functions to model the simultaneous effect of selection and

chronological bias. Based on this model, we derive an approximation formula that describes

the impact on the distribution of the log-rank statistic [21, 22]. The relevance to consider bias

when selecting a randomization procedure and the dependence on the specific scenario is

shown in a sensitivity analysis. We conclude with a case study to illustrate the application of

our evaluation method to compare different randomization procedures if selection bias and

time trend are anticipated. The performance of the different randomization procedures is eval-

uated by means of the expected type I error probability.

Prerequisites and setting

We consider a randomized, two-arm, parallel group trial where a control (C) and an experi-

mental (E) treatment are compared with regard to a survival outcome. With an intended 1:1

allocation ratio, a total of n patients are enrolled over an accrual period of length A� 0. The

maximum duration of follow-up is of length F, with F> A, so that all patients who have not

yet had an event until then are regarded as right-censored. We assume that throughout the

accrual period, patients enter the trial sequentially according to a uniform distribution. Fur-

thermore, there is a random censoring mechanism that can be modeled by a probability
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distribution Scen which is independent of the survival distributions. Let d denote the number

of observed events, where d� n, with the distinct ordered event times τ1 < τ2 < . . .< τd.
We assume that patients are assigned to treatments according to a randomization sequence

z = (z1, . . ., zn) 2 {0, 1}n and treated immediately. Particularly, the ith patient who enters the

trial is assigned to treatment zi 2 {0, 1}. If zi = 0, the respective patient is assigned to the control

treatment, otherwise to the experimental treatment. The randomization sequence z can be

interpreted as the realization of a random variable Z whose probability distribution depends

on the randomization procedure used. The available randomization procedures can be classi-

fied into (I) unrestricted and (II) restricted randomization procedures. Among the restricted

randomization procedures, there are (a) procedures with forced final balance [1] and (b) pro-

cedures with a maximum tolerated imbalance (MTI procedures) [23]. Within this paper we

consider the following randomization procedures:

(I). Complete randomization (CR): Patients are randomized to treatments by tossing a

fair coin.

(I). Efron’s biased coin design with bias probability p (EBC(p)) [24]: Patients are random-

ized to treatments by coin toss. The coin is biased with probability p in favor of the less

frequently assigned treatment or fair whenever the same number of patients have been

assigned to both treatments.

(IIab). Random allocation rule (RAR): Exactly n/2 patients are randomized to the control

treatment and n/2 patients to the experimental treatment so that final balance is

achieved with a maximum tolerated imbalance of n/2. All possible randomization

sequences are equally likely.

(IIab). Permuted block randomization with block size k (PBR(k)): Patients are randomized

in blocks of size k, with a random allocation rule being used within each block. The

procedure achieves final balance and has a maximum tolerated imbalance of k/2.

(IIab). Berger’s maximal procedure with final balance and a maximum tolerated imbalance

of b (MP(b)) [25]: The set of randomization sequences generated by the random allo-

cation rule is restricted to those for which the imbalance in group sizes never exceeds

b. Among those sequences, all are equally likely.

(IIb). Big stick design with a maximum tolerated imbalance of b (BSD(b)) [26]: Patients are

randomized to treatments by tossing a fair coin. If the imbalance in group sizes reaches

a maximum tolerated imbalance b, the next patient is deterministically assigned to the

treatment with fewer patients.

(IIb). Chen’s biased coin design with a maximum tolerated imbalance of b and bias

probability of p (CHEN(b, p)) [27]: Patients are randomized to treatments using

Efron’s biased coin design with bias probability p. If the imbalance in group sizes

reaches b, the next patient is deterministically assigned to the treatment with fewer

patients.

Let hC and hE denote the hazard functions associated with the control and experimental

treatment. Assuming independent survival times and a constant hazard ratio over time, i.e.,

HR = hE(t)/hC(t) for all t> 0, the log-rank test [21, 22] can be used to test the hypothesis that

HR = 1. Conditioning on the number of patients at risk within the control and experimental

group before each event, let Oj denote the number of observed events and ej the number of

expected events in the control group at the jth event time τj for j 2 {1, . . ., d}. Under the null

hypothesis, the log-rank statistic asymptotically follows a standard normal distribution [28],
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that is

LRðzÞ ¼

Xd

j¼1

ðOj � ejÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

j¼1

ejð1 � ejÞ

v
u
u
t

�
asymp:

N ð0; 1Þ: ð1Þ

Under the alternative hypothesis, the log-rank statistic asymptotically follows a non-standard

normal distribution. Possible approaches to obtain approximations for the expected value and

variance have for example been proposed by Schoenfeld (1981) [29] or Freedman (1982) [30].

Bias model

The following bias model is a generalization of the model described in [9] which also incorpo-

rates time trends and can be applied not only to exponentially distributed survival times. For a

randomization sequence z, let hi(t, z) denote the hazard function of patient i at time t. We

assume that the hazard function is affected by a biased selection of patients and an unobserved

time trend such that

hiðt; zÞ ¼ hCðtÞ exp ðzi lnðHRÞ þ ZiðzÞ þ yiÞ; ð2Þ

where ηi(z) and θi are functions that quantify the strength of selection and chronological bias.

In contrast to the additive bias model for continuous outcomes [10], this newly defined bias

model for survival outcomes has a multiplicative effect on the hazard functions.

Selection bias

We consider the phenomenon of allocation bias [31], a specific type of selection bias, using the

model assumptions from [14, 15]: We assume that all previously randomized allocations are

unblinded and therefore known to the investigator, as is the intended allocation ratio of 1:1.

Since knowledge of previous allocations may enable an investigator to predict upcoming

allocations, this bears the risk for a biased selection of patients. Further, we assume that the

investigator guesses upcoming treatments independently of the underlying randomization

procedure, employing the convergence strategy by Blackwell and Hodges [14]. Let Z 2 R be a

factor for the strength of selection bias. Based on the observed number of allocations to the

control NC
i� 1
ðzÞ and experimental NE

i� 1
ðzÞ treatment before the enrollment of patient i, we

assume that the investigator predicts the next treatment whenever there is an imbalance in

group sizes. This translates into the following biasing strategy

ZiðzÞ ¼ Z sgn ðNE
i� 1
ðzÞ � NC

i� 1
ðzÞÞ;

where sgn is the sign function. Note that for η = 0, there is no selection bias effect on the hazard

rate from Eq (2). Assume that long survival is desirable. Then, for any randomization proce-

dure targeting balanced group sizes, an effect of η> 0 reflects the situation where the hazard

rate of control patients is worsened in expectation while the hazard rate of experimental

patients is improved in expectation. Conversely, an effect of η< 0 equates a biasing strategy

where the hazard rate of control patients is improved in expectation while the hazard rates of

experimental patients is worsened in expectation.

The right choice of a selection bias function depends primarily on whether the blinding of

the investigator can be guaranteed. If it can be excluded with certainty that the investigator will

become aware of past treatment assignments, for example if enrollment and randomization are
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carried out by an external institution, it is permissible to assume no selection bias at all. How-

ever, this very strict assumption will not be fulfilled in most studies. If blinding cannot be

implemented or is at risk, a selection bias function should be defined. The selection bias effect

η characterizes the heterogeneity of the medical condition within the study population and

should be chosen accordingly. An assessment of the heterogeneity can be made on the basis of

clinical experience or the anticipated treatment effect and by taking into account the precision

of the inclusion and exclusion criteria.

Chronological bias

There are multiple causes for chronological bias in the form of time trends, such as improved

performance of the treating physician or staff (learning curve), or an amendment of the enroll-

ment criteria [7, 32]. Following [4], possible options for the time trend function θi include

stepwise, linear, or logarithmic time trends

Stepwise yi ¼ y 1fi>kg; k 2 f1; . . . ; n � 1g;

Linear yi ¼ y ði � 1Þ=ðn � 1Þ;

Logarithmic yi ¼ y lnðiÞ= lnðnÞ;

where y 2 R is a parameter that quantifies the strength and direction of the underlying time

trend. Assuming long survival is desirable, an effect of θ> 0 indicates that the hazard rate

worsens over the course of the trial, while, conversely, θ< 0 indicates that the hazard rate

improves over the course of the trial. For θ = 0 no time trend effect is assumed.

The choice of a time trend function should be based on the anticipated temporal changes

that could affect the treatment success. For example, the assessment of whether a learning

curve can occur depends on the experience of the treating physicians as well as on the novelty

of the method under investigation. The risk assessment for an amendment of inclusion criteria

or a change in classification of a disease due to medical progress should be related to the length

of the accrual period. After a time trend function has been selected, a suitable time trend effect

θ must be specified. If data from similar studies are available, the time trend effect can be esti-

mated from these observations. If no such data is available, the time trend effect can be quanti-

fied on the basis of medical experience or the anticipated treatment effect.

Influence of bias on the log-rank statistic

If the survival distributions of the patients are influenced by selection or chronological bias as

introduced in our bias model from Eq (2), this also affects the distribution of the log-rank sta-

tistic. We derive an approximation formula to compute the rejection probabilities in the pres-

ence of bias depending on the randomization sequence. The dependence of the type I error

probability on the sample size, the bias effects and the randomization procedure is showcased

in a sensitivity analysis. We conclude with a case study to illustrate how our evaluation method

can be applied to select a suitable randomization procedure on the basis of the expected type I

error probability. All computations were performed on a computer with an Intel i7-4710MQ

CPU Quad-core (2.5 GHz) and 16 GB RAM under a Windows 7 (64-bit) operating system.

The code was written in R version 3.5.1. [33], using the randomizeR package version 2.0 [34].

Distribution of the log-rank statistic in the presence of bias

Conditioning on the realized randomization sequence z, we demonstrate that if ln(HR) is in

Oðn� 1=2Þ and (θi + ηi(z)) can be expressed in terms of ln(HR), the log-rank statistic is
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asymptotically normal with the mean depending on z and variance 1, i.e.,

LRðzÞ �
asymp:

N ðEbiasðzÞ; 1Þ: ð3Þ

The arguments used are the same as those used by Schoenfeld [29]. Let Si and fi denote the sur-

vival distribution and density function corresponding to the ith patient where i 2 {1, . . ., n}.

The validity of Eq (3) can be shown by conditioning on the realized randomization sequence

z = (z1, . . ., zn), as well as the information as to which patients are at risk before event time τj,
j = 1, . . ., d. Assume that ln(HR) is in Oðn� 1=2Þ and that the sum of the two bias functions (θi +

ηi(z)) can be expressed in terms of ln(HR). As in Eq (1), let ej(z) denote the expected number

of events at event time τj in the control group under the null hypothesis and let μj(z) be the

true expected number of events under the bias model (2). Then, if Y1, . . ., Yn are the observed

event or censoring times

ejðzÞ¼
Xn

i¼1

1fYi � tjgð1 � ziÞ

Xn

i¼1

1fYi�tjg

; mjðzÞ ¼

Xn

i¼1

hiðtj; zÞ1fYi�tjgð1 � ziÞ

Xn

i¼1

hiðtj; zÞ1fYi�tjg

:

By rewriting μj(z) as a function of ln(HR) and expanding in a Taylor series around zero, it can

be shown the log-rank statistic convergences in probability to

Xd

j¼1

ðOj � mjðzÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

j¼1

mjðzÞð1 � mjðzÞÞ

v
u
u
t

þ

Xd

j¼1

ðmjðzÞ � ejðzÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

j¼1

ejðzÞð1 � ejðzÞÞ

v
u
u
t

: ð4Þ

The first term from (4) is asymptotically standard normal, thus yielding the asymptotic vari-

ance of 1. To obtain the asymptotic value of the second term consider the two functions

pðt; zÞ ¼

Xn

i¼1

ð1 � ziÞSiðt; zÞ

Xn

i¼1

Siðt; zÞ
; φðt; zÞ ¼

Xn

i¼1

ð1 � ziÞfiðt; zÞ

Xn

i¼1

fiðt; zÞ
:

Then ej(z) can be approximated as

ejðzÞ �

Xn

i¼1

Siðtj; zÞScenðtjÞð1 � ziÞ

Xn

i¼1

Siðtj; zÞScenðtjÞ
¼ pðtj; zÞ;

and μj(z) as

mjðzÞ �

Xn

i¼1

hiðtj; zÞSiðtj; zÞScenðtjÞð1 � ziÞ

Xn

i¼1

hiðtj; zÞSiðtj; zÞScenðtjÞ
¼

Xn

i¼1

fiðtj; zÞð1 � ziÞ

Xn

i¼1

fiðtj; zÞ
¼ φðtj; zÞ:
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Expanding the second term from (4) by 1/n and applying the law of large numbers yields:

EbiasðzÞ �

1=n
Xd

j¼1

ðφðtj; zÞ � pðtj; zÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=n
Xd

j¼1

pðtj; zÞð1 � pðtj; zÞÞ

v
u
u
t

ffiffiffi
n
p

�

Z1

0

ðφðt; zÞ � pðt; zÞÞVðt; zÞ dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1

0

pðt; zÞð1 � pðt; zÞÞVðt; zÞ dt

v
u
u
u
t

ffiffiffi
n
p

;

where V(t, z) is the mixture density

Vðt; zÞ ¼

Xn

i¼1

fiðt; zÞScenðtÞSuniðtÞ

n
;

with Scen denoting the survival function of the random censoring mechanism and Suni the sur-

vival function of the censoring mechanism due to end of follow-up, i.e.,

SuniðtÞ ¼

1; for t < ðF � AÞ;

1 � ðt � ðF � AÞÞ=A; for ðF � AÞ � t < F;

0; for t � F:

8
>>><

>>>:

Consequently, if selection or chronological bias are present and the equality of two

survival distributions is investigated using the log-rank test, formula (3) can be used to

obtain an approximation of the rejection probability depending on the randomization

sequence z.

Sensitivity analysis

The influence of the randomization procedure on the rejection probability of the log-rank

test in the presence of selection or chronological bias is shown for different bias effects and

sample sizes to illustrate the dependence on the study setting. We limit our considerations

to scenarios in which the null hypothesis is true, i.e., the rejection probability corresponds to

the type I error probability. The scenarios are simulated by drawing a Monte-Carlo sample

of randomization sequences for each randomization procedure. The scenario dependent

type I error probability of each randomization sequence is then calculated using approxima-

tion (3). The number of randomization sequences per Monte-Carlo sample is chosen to

ensure a precision of at least 2 � 10−4 for the expected type I error probability with 99.5%

certainty.

Two randomization procedures, PBR(8) and RAR, are compared in four scenarios with dif-

ferent sample sizes and bias settings. The comparison includes a small sample size of n = 40

and a large sample size of n = 200. We consider two different bias settings, one with a larger

time trend and one with a stronger selection bias effect:

Randomization in survival studies
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• CB-Setting: A linear time trend of θ = −0.6 and a selection bias effect of η = 0.05.

• SB-Setting: A stepwise time trend of θ = −0.05 after k = 0.5n and a selection bias effect of η =

0.1.

The common assumptions regarding the study design on which all four scenarios are based

are shown in Table 1.

The distributions of type I error probabilities of PBR(8) and RAR for the different scenarios

are shown in Fig 1. On the one hand, there are clear differences between the different random-

ization sequences within a randomization procedure, as can be seen from the variation in type

I error probabilities. On the other hand, there are also considerable differences between the

Table 1. Common assumptions of all four scenarios considered in the sensitivity analysis.

Parameter Notation Value

Significance level α 5%

Length of accrual period A 30 weeks

Total duration of the study F 90 weeks

Common exponential dropout rate λcen 0.02

Exponential hazard rates λC, λE 0.06

https://doi.org/10.1371/journal.pone.0217946.t001

Fig 1. Influence of the study setting on the distribution of type I error probabilities. The distributions are based on a sample of

2,500 randomization sequences per randomization procedure.

https://doi.org/10.1371/journal.pone.0217946.g001
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two randomization procedures and between the different scenarios under consideration. The

differences between PBR(8) and RAR are caused by the dependence of the rejection probabil-

ity on the randomization sequence. This is because the set of randomly drawn randomization

sequences depends on the probability distribution of the randomization procedure used. The

differences between the SB- and CB-setting confirm that selection and chronological bias act

differently on the type I error probability of the log-rank test. With regard to the sample size,

the results of RAR seem to be similar while the rejection probability for n = 200 compared to

n = 40 increases greatly in the case of PBR(8). Consequently, the rejection probabilities can

also be affected by the sample size.

In summary, we observe that the presence of selection and chronological bias affects the

type I error probability of the log-rank test. The extent of this influence depends on the type of

bias, the sample size and on the randomization sequence. Due to the dependence on the ran-

domization sequence, there is a dependence on the randomization procedure used. For this

reason, the choice of the randomization procedure has a direct effect on the expected type I

error probability of the log-rank test and thus on the susceptibility to selection and chronologi-

cal bias. The results of the four scenarios show that, depending on the interaction of bias and

sample size, a different randomization procedure should be chosen with respect to the

expected type I error probability. Consequently, no general recommendation for a randomiza-

tion procedure can be made and a suitable randomization procedure must always be chosen

individually with regard to the study in question.

Case study for acute myelogenous leukemia

We illustrate the application of our bias model in a case study which is based on the aml data

set from the boot package [35] in R version 3.5.1. [33]. The choice of the case study is moti-

vated by our desire to allow researchers to reproduce our results. The metric considered for

choosing a suitable randomization procedure is the expected type I error probability [15]. Our

simulation is designed to ensure a precision of at least 2 � 10−4 for the expected type I error

probability with 99.5% certainty. This requirement results in 7,500 randomization sequences

per randomization procedure. The rejection probability for each sequence is computed using

approximation (3).

For comparison, we include variations of the aforementioned seven randomization proce-

dures. Specifically, we consider CR, EBC(2/3), PBR(4), PBR(8), PBR(16), RAR, MP(3), MP(7),

MP(11), BSD(3), BSD(7), BSD(11), CHEN(3, 2/3), CHEN(7, 2/3), and CHEN(11, 2/3), where

the parameters are selected for the following reasons: According to Efron’s suggestion, the bias

probability of Efron’s biased coin design and Chen’s biased coin design is defined as 2/3 [24].

The block size of 4 is chosen as an example of permuted block randomization with small block

size, the block size of 8 as one with medium block size, and the block size of 16 as one with

large block size. Finally, the maximum tolerated imbalance of all MTI procedures is set to 3, 7

and 11, so that the maximum loss of power due to imbalance is at most 0.5%, 1%, and 2%,

respectively (determined using nQuery Advisor version 7.0).

Setting. We consider a fictitious study that aims at assessing the efficacy of maintenance

chemotherapy consisting of cytarabine and 6-thioguanine for acute myelogenous leukemia.

The effect estimates are based on the differences observed in a study by Embury et al. [35, 36].

The study population consists of patients with acute myelogenous leukemia (AML) who have

never been treated for AML and who are in a state of complete remission after induction ther-

apy. The primary outcome is the time a patient remains in complete remission (in weeks) and

a difference between maintenance chemotherapy and control treatment (no maintenance che-

motherapy) shall be detected with a power of 80% at a significance level of α = 5%. Using the
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aml data set, the estimated hazard ratio is HR = 0.4003. Under the assumption of exponentially

distributed survival times, the hazard rate for the control treatment is estimated as λC = 0.0431,

which results in a hazard rate of λE = 0.0173 for maintenance chemotherapy. The study is

designed for an accrual period of 18 weeks and a total duration of 52 weeks. The common

exponential dropout rate throughout the study is assumed to be λcen = 0.0077, thus, resulting

in a total required sample size of n = 64 patients (determined using nQuery Advisor version

7.0). A summary of the study design is shown in Table 2.

Considerations relating to the randomization procedure. To achieve a state of complete

remission, all patients receive induction therapy before continuing with either maintenance

chemotherapy or no further chemotherapy. It is suspected that, in addition to the maintenance

chemotherapy, the induction therapy also has an influence on the time a patient remains in

complete remission [36]. Furthermore, it was observed that the duration of induction therapy

until complete remission could be significantly shortened by changes in treatment regime

[36]. This indicates that there is a risk of a learning curve or other medical progress in induc-

tion therapy. To account for this uncertainty, we define a small logarithmic time trend effect:

yi ¼ 0:125 lnðHRÞ lnðiÞ= lnðnÞ:

This time trend function reflects the situation where the maximum difference in treatment

success, attained between the first and last patient enrolled, is of magnitude one eighth as

strong as the treatment effect (θ = 0.125 ln(HR)).

With regard to the definition of a selection bias function, the following considerations

should be taken into account: The concealment of past treatment assignments is not possible,

as it is impossible to conceal whether or not a patient received chemotherapy and a placebo

chemotherapy would be unethical. Since the only inclusion criterion for patients is to be in a

state of complete remission after induction therapy for acute myelogenous leukemia, the study

population will be very heterogeneous. For this reason, a strong selection bias effect, one fifth

as strong as the anticipated treatment effect is assumed (η = 0.2 ln(HR)):

ZiðzÞ ¼ 0:2 lnðHRÞ sgnðNE
i� 1
ðzÞ � NC

i� 1
ðzÞÞ:

Evaluation of the randomization procedures. The mean type I error probabilities and

standard deviations corresponding to each randomization procedure are summarized in

Table 3. In general, the mean type I error probability is increased compared to the nominal

Table 2. Setting of the AML study.

Parameter Notation Value

Significance level α 5%

Nominal power 1 − β 80%

Sample size n 64

Length of accrual period A 18 weeks

Total duration of the study F 52 weeks

Common exponential dropout rate λcen 0.0077

Hazard rate maintenance chemotherapy λE 0.0173

Hazard rate control treatment λC 0.0431

Hazard ratio HR 0.4003

Selection bias effect η 0.1831

Logarithmic time trend effect θ -0.1144

https://doi.org/10.1371/journal.pone.0217946.t002

Randomization in survival studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0217946 June 3, 2019 10 / 14

https://doi.org/10.1371/journal.pone.0217946.t002
https://doi.org/10.1371/journal.pone.0217946


significance level of 5%. The randomization procedures which display the smallest increase are

CR, BSD(7), and BSD(11) with mean type I error probabilities of 5.2%. RAR, MP(11), and MP

(7) perform only slightly inferior with mean type I error probabilities of 5.4%, 5.4%, and 5.5%,

respectively. The increase is most severe for PBR(4) with a mean type I error probability of

8.1%. Based on the expected type I error probabilities, one of the randomization procedures

CR, BSD(7), or BSD(11) is most suitable for the given survival study. Since the maximum loss

of power due to imbalance is best controlled by BSD(7), this gives BSD(7) an advantage over

CR and BSD(11).

Discussion

Although it is widely acknowledged by regulatory authorities that well-conducted randomized

controlled trials yield a higher level of evidence compared to observational studies [37–39], the

importance attributed to randomization itself is usually limited to good implementation rather

than a well conceived design [10]. This is reflected in the predominant use of permuted block

randomization [40], which is usually chosen without a sound explanation [7, 23]. For this rea-

son, we strive to strengthen awareness of the fact that the choice of randomization procedure

affects the extent to which a study is susceptible to certain types of bias. This was confirmed

both in our sensitivity analysis and in the considered case study. In order to enable scientists to

select a randomization procedure that is suitable for their individual study, appropriate bias

models and easy-to-use evaluation methods are needed.

Our results extend previous evaluation methods for normally and exponentially distributed

outcomes to the simultaneous consideration of selection and chronological bias in survival

studies with an accrual and follow-up period as well as different types of censoring. In doing

so, the consideration of selection and chronological bias is not necessarily limited to the bias

model considered here. For example, it is possible to define different time trend functions

to reflect other more complex study settings. Likewise, one can consider alternative biasing

strategies, e.g., under the assumption that the investigator guesses upcoming allocations taking

into account the conditional allocation probabilities of the employed randomization procedure

Table 3. Summary statistics of type I error probabilities by randomization procedure.

Randomization procedure mean value standard deviation

BSD(3) 0.055 0.003

BSD(7) 0.052 0.003

BSD(11) 0.052 0.002

CHEN(3, 2/3) 0.065 0.006

CHEN(7, 2/3) 0.062 0.006

CHEN(11, 2/3) 0.062 0.007

CR 0.052 0.002

EBC(2/3) 0.062 0.006

MP(3) 0.062 0.005

MP(7) 0.055 0.004

MP(11) 0.054 0.004

PBR(4) 0.081 0.004

PBR(8) 0.070 0.005

PBR(16) 0.062 0.005

RAR 0.054 0.004

The summary statistics are based on a sample of 7,500 randomization sequences per randomization procedure.

https://doi.org/10.1371/journal.pone.0217946.t003
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[8, 12]. The presented evaluation method addresses the influence on the distribution of the

log-rank statistic, since the impact of bias on the test decision is one of the most important

measures [7]. While the metric we used was the expected type I error probability, other evalua-

tion metrics such as the power can also be considered for quantifying the performance of a

randomization procedure [10].

The most commonly used methods for analyzing survival data are the Cox proportional

hazards model and the log-rank test [19, 20], which in turn is equivalent to the score test of the

discrete Cox proportional hazards model when the treatment group is the only covariate con-

sidered [41]. The approximation formula can thus also be used to gain an impression of the

impact of bias if the final analysis shall be carried out by using a Cox regression model. There-

fore, the proposed evaluation method is applicable to a majority of survival studies. We have

shown that the assessment of whether and to what extent selection and chronological bias pose

a risk must be carried out individually for each survival study at the trial planning stage. For

this reason, we recommend to always compare different randomization procedures before

conducting a clinical study. This leads to an improved study design and thus serves the greater

goal of increasing the level of evidence. By implementing our results in the R-package random-

izeR [34], we provide a free software tool that makes such a comparison possible for everyone.

Conclusion

The presented results enable researchers in the planning phase of a survival study to make a

scientifically sound choice of a randomization design. Due to the frequent use of the log-rank

test and Cox’s proportional hazards model, our approach is applicable in most scenarios.

Supporting information

S1 File. R-code of the sensitivity analysis. This code can be used to perform the sensitivity

analysis and generate the box plots from Fig 1.

(R)

S2 File. R-code of the case study. This code can be used to generate the results from the case

study.

(R)

S3 File. R source package randomizeR_2.0.tar. Source code of the randomizeR package ver-

sion 2.0.
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