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Abstract

Pharmacodynamic modeling has been increasingly used as a decision support tool to guide dosing regimen selection, both
in the drug development and clinical settings. Killing by antimicrobial agents has been traditionally classified categorically
as concentration-dependent (which would favor less fractionating regimens) or time-dependent (for which more frequent
dosing is preferred). While intuitive and useful to explain empiric data, a more informative approach is necessary to provide
a robust assessment of pharmacodynamic profiles in situations other than the extremes of the spectrum (e.g., agents which
exhibit partial concentration-dependent killing). A quantitative approach to describe the interaction of an antimicrobial
agent and a pathogen is proposed to fill this unmet need. A hypothetic antimicrobial agent with linear pharmacokinetics is
used for illustrative purposes. A non-linear functional form (sigmoid Emax) of killing consisted of 3 parameters is used. Using
different parameter values in conjunction with the relative growth rate of the pathogen and antimicrobial agent
concentration ranges, various conventional pharmacodynamic surrogate indices (e.g., AUC/MIC, Cmax/MIC, %T.MIC) could
be satisfactorily linked to outcomes. In addition, the dosing intensity represented by the average kill rate of a dosing
regimen can be derived, which could be used for quantitative comparison. The relevance of our approach is further
supported by experimental data from our previous investigations using a variety of gram-negative bacteria and
antimicrobial agents (moxifloxacin, levofloxacin, gentamicin, amikacin and meropenem). The pharmacodynamic profiles of a
wide range of antimicrobial agents can be assessed by a more flexible computational tool to support dosing selection.
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Introduction

Microbial resistance is rising at an alarming rate, rendering

many antimicrobial agents ineffective. There is an ever demanding

need to develop new antimicrobial agents and optimize available

agents to curb the rising resistance prevalence. There are

experimental and clinical evidence that dosing exposure could

have an impact on patient outcomes and the development of

resistance [1,2]. As a result, pharmacodynamic modeling has been

increasingly used as a decision support tool to guide dosing

selection in new drug development [3].

Microbial killing by unbound antimicrobial agents has been

traditionally classified categorically as concentration-dependent or

time-dependent. The pharmacodynamics of many antimicrobial

agents are well accepted to be linked to surrogate indices such as

peak concentration (Cmax)/minimum inhibitory concentration

(MIC), area under the concentration-time profile (AUC)/MIC or

the proportion of dosing interval in which the concentration is

above the MIC (%T.MIC) [4]. Dosing regimen design could be

based on results from traditional dose fractionation studies [5–7].

As long as the pharmacokinetics of the antimicrobial agent is

linear, the entire daily dose could be given once daily, half the

daily dose given twice daily, one-third the daily dose given three

times each day, etc. to achieve a similar daily AUC. Depending on

the difference in outcomes observed (if any), different categorical

pharmacodynamic characterization could be deduced. For

instance, if the once-daily regimen is the most effective, Cmax/

MIC would be most likely linked to outcomes. If the most frequent

dosing regimen is found to be the most beneficial, %T.MIC [or

minimum concentration (Cmin)/MIC] would likely be the most

useful pharmacodynamic surrogate index predicting outcomes. If

all the dosing regimens are similar, AUC/MIC would be deemed

to be associated with outcomes. This traditional approach has

been applied in a wide range of infection types, patient groups and

duration of therapy [1]; heterogeneous bacterial populations at the

infection site have also been considered [8].

While the dose fractionation design is intuitive and commonly

used, there may be situations where such a categorical approach to

pharmacodynamic assessment is overly restrictive. It is especially

so with new drugs (or drug classes) with complex pharmacokinetics

and pharmacodynamics. We propose an alternative approach to

pharmacodynamic characterization of the interaction between an

antimicrobial agent and a pathogen. Instead of relying on time-

dependent endpoints such as Cmax or MIC, the time course of a

PLoS Computational Biology | www.ploscompbiol.org 1 January 2011 | Volume 7 | Issue 1 | e1001043



bacterial population when subjected to an antimicrobial agent

exposure is captured by a dynamic mathematical model. The

advantages of such a modeling approach have been reviewed

previously [3,9]. The proposed pharmacodynamic characteriza-

tion can be subsequently linked to a novel computational method

to derive the dosing intensity of a dosing regimen, which would

facilitate objective comparison of various dosing regimens [10]. To

illustrate our approach in the clearest way possible, a hypothetic

drug is used via a series carefully constructed computer

simulations. The relevance of our approach is subsequently

supported by application to several experimental datasets we have

reported in the past.

Methods

Basic assumptions
A hypothetic drug is used for illustrative purposes. The

pharmacokinetics of this drug is linear and characterized by a

one-compartment intravenous bolus model. The volume of

distribution of this drug is 20 liters, with an elimination half-life

of 1 hour and negligible protein binding. A daily dose of 6000 mg

can be given once daily (6000 mg q24h), twice daily (3000 mg

q12h) or 4 times daily (1500 mg q6h). The respective serum

concentration-time profiles and exposures achieved are as shown

in Figure 1 and Table 1. In addition, the target pathogen is

assumed to have a growth rate (Kg) of 1.0 h21 (microbial doubling

time of approximately 42 minutes); resistance is not expected to

incur a significant biofitness cost (no change in bacterial growth

rate over time).

General experimental design
Details of the experimental setup have been reported previously

[11–13]. Briefly, a heterogeneous bacterial inoculum (consists of

multiple sub-populations associated with different susceptibility - a

function of the total bacterial burden and the mutational

frequency to resistance of the isolate being studied) is exposed to

different and escalating drug concentrations; the drug concentra-

tion in each experiment is constant over time. Serial samples are

taken from various flasks over 24 hours to determine viable

bacterial burden by quantitative cultures. A dynamic mathemat-

ical model is fit to the data to derive the best-fit model parameter

estimates. The growth rate of the target pathogen can be derived

from placebo control experiments. Regrowth observed after an

initial decline in bacterial burden is attributed to adaptation of the

bacterial population under a selective pressure (i.e., enrichment of

Author Summary

Antimicrobial agents have been the mainstay of treatment
for a variety of infectious diseases such as urinary tract
infections and pneumonia. Due to the increasing incidence
of antimicrobial resistance, there is an ever demanding
need to develop new antimicrobial agents rapidly. These
agents can be given in different ways, both in terms of the
daily dose and dosing frequency. The traditional approach
to the design of antimicrobial agent dosing regimen relies
primarily on a categorical classification, which often could
be restrictive. We proposed a new computational method
to provide quantitative insights to the interaction between
an antimicrobial agent and a pathogen (pharmacodynam-
ics). With a more robust understanding of this relationship,
the effectiveness of different antimicrobial dosing regi-
mens can be compared efficiently, which would facilitate
new agent development by rationally guiding dosing
regimen selection. The relevance of our approach was
supported by a series of experimental validation using
different antimicrobial agents and bacteria. A higher
probability of resistance suppression could be achieved
with optimal dosing regimens, which may prolong the
clinical utility of new agents under development.

Figure 1. Dose fractionation designs of an identical daily dose.
doi:10.1371/journal.pcbi.1001043.g001
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sub-populations with reduced susceptibility over time, resulting in

resistance emergence during therapy). It should be stressed that

the term ‘adaptation’ is used here to denote adaptation at the

population level, not at the individual cell level (e.g., through

induction of efflux pumps or beta-lactamases). Namely, the entire

population adapts because of a selective pressure. Various specific

mathematical structures have been used, an example is shown in

one of our previous work [12]. Using the pharmacodynamic

profile of the most resistant cell in the population (i.e., the killing

function when tR‘), assessments are made as to which of the

proposed dosing regimens (detailed above) would have the greatest

bactericidal activity. A dosing regimen with a greater average kill

rate is expected to have a higher probability of suppressing the

development of resistance over time, when the majority of the

population can be controlled. Subsequently, the same inoculum of

bacteria is exposed to various fluctuating drug concentration-time

profiles in a hollow-fiber infection model. Experimentally observed

bacterial responses are used to support the validity the categorical

predictions of the mathematical model.

Mathematical modeling
The saturable killing rate of an antimicrobial agent is

characterized by a sigmoid Emax model, commonly used in

many investigations [8,14–18]. A new computational approach is

proposed to facilitate objective comparison. The average kill rate

of a dosing regimen can be conceptualized as the dosing intensity.

It is derived by converting instantaneous drug concentration to

instantaneous kill rate using the parameter estimates of the kill

function, and subsequently integrating all instantaneous kill rates

with respect to time over a dosing interval [19].

D~
1

t

ðt

0

Kk
:C(t)H

C(t)HzC50
H

dt

where D{dosing intensity (average kill rate)

t{dosing interval

Kk{maximum kill rate

C(t){ concentration of antimicrobial agent at time t

H{sigmoidicity of the kill function

C50{concentration of antimicrobial agent to

achieve 50% maximal kill rate

The average kill rate can be used quantitatively to compare the

effectiveness of various dosing regimens, in relation to the growth

rate of the target pathogen. This approach assumes eradication of

the bacterial population cannot be achieved within one dosing

interval; a large killing rate shortly after dose administration is as

important as a large killing rate towards the end of the dosing

interval. The importance of the average kill rate (D) is that

complete eradication of the entire bacterial population and

prevention of resistance emergence will be observed, if D.Kg for

the most resistant cell in the population. The preceding statement

assumes that no physiological changes (e.g., induction of efflux

pumps or beta-lactamases) take place in bacteria as a result of

exposure to the antimicrobial agent. All simulations were

performed using the ADAPT II program [20], and graphs were

plotted with Mathematica 6.0 (Wolfram Research, Inc., Cham-

paign, IL).

Results

Pharmacodynamic profiles
Using the same structural form, three typical pharmacodynamic

profiles can be shown (Figures 2–4). These distinct pharmacody-

namic profiles are characterized by 3 parameter estimates and

represent unique (extreme) situations. In reality, intermediate

profiles (e.g., partially concentration dependent killing) are also

possible and could be objectively described by these parameter

estimates. The growth rate of the target pathogen is shown

concurrently for comparison. Finally, the concentration ranges of

antimicrobial agent attained by different dosing regimens are also

shown in each situation.

In Figure 2, the maximal killing rate is significantly higher than

the growth rate of the target pathogen. The concentration-effect

relationship is also fairly linear in the concentration ranges

achieved by all the dosing regimens. Therefore, attaining a high

concentration for a brief period of time would not be much more

advantageous, as compared to lower concentrations for a more

prolonged time frame. As a result, dosing frequency is not

expected to have a huge impact of the overall bactericidal activity,

as long as the daily dose is kept constant. Using conventional

nomenclature, this pharmacodynamic profile is concentration

dependent killing, and AUC/MIC would be considered the most

important. This pattern is consistent with our experience with data

reported for moxifloxacin [21] and levofloxacin against Escherichia

coli (unpublished data).

In Figure 3, the maximal killing rate is still significantly higher

than the growth rate of the target pathogen. However, the

concentration-effect relationship is non-linear in the concentration

range achieved by the dosing regimens. The killing rate rises

sharply beyond a certain threshold (i.e., approximately 75 mg/l -

the peak concentration of the q6h dosing regimen). A dosing

regimen attaining a concentration beyond this threshold could

encounter a more than proportional increase in killing rate, even

for a brief period of time. Consequently, less frequent dosing (to

achieve a concentration transiently above the threshold) is

expected to result in a greater overall bactericidal activity. Using

conventional nomenclature, this pharmacodynamic profile is

concentration dependent killing, and Cmax/MIC would be

considered the most important.

An important point should be raised here. The above example

is illustrated with only one daily dose (6000 mg daily). Using a

qualitative (yes / no) outcome assessment (e.g., mortality, clinical

cure, resistance suppression), different categorical interpretations

may be arrived at with the same pharmacodynamic profile. To

further exemplify this point, the average kill rate is graphed as a

function of both daily dose and dosing interval, using a 3-

dimensional surface response as detailed previously [22]. In

addition, a cross sectional view is undertaken when the average kill

Table 1. Dose fractionation designs of an identical daily dose.

Dosing regimen Cmax (mg/l) AUC24 (mg.h/l) % T.4mg/l

6000 mg q24h 300 433 25

3000 mg q12h 150 433 42

1500 mg q6h 75 433 67

Note: AUC24 may not be identical in drugs with an elimination half-life of
$4 hours. The discrepancy is due residual drug at the end of the 24 hour
period, which is more prominent with a drug of long half-life. One simple way
to circumvent the discrepancy is to focus on AUC 0–infinity (total cumulative
exposure) instead of AUC 0–24.
doi:10.1371/journal.pcbi.1001043.t001
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rate equals to the growth rate of the pathogen (D = Kg = 1.0 h21).

When the average kill rate of a dosing regimen is greater than the

growth rate of the target pathogen (i.e., D.Kg), resistance

suppression is generally anticipated. On the other hand, if the

average kill rate of a dosing regimen is less than the growth rate of

the target pathogen (i.e., D,Kg), resistance amplification is

expected over time. Given that AUC and Cmax are highly

correlated in clinical or animal studies (where drug clearance

cannot be easily modified), it may be difficult to discriminate

whether AUC/MIC or Cmax/MIC is the pharmacodynamic

variable most closely linked to outcomes. Our analysis revealed

that there could be experimental evidence supporting both

conclusions in the same antimicrobial agent-pathogen combina-

tion. The daily dose(s) to be examined in fractionation studies

should also be carefully considered in the analysis. The dose

exposure used may not be the same for different outcomes (e.g.,

survival, 1-log drop in microbial burden, or resistance suppres-

sion), and thus may have contributed (at least partially) to

enthusiastic debates in the literature [23–26]. Other investigators

have also reported different pharmacodynamic characterization at

different dose levels of the same drug. Fractionation of the

minocycline dose at the human dose equivalents showed no

difference between once, twice, or three times a day dosing against

Staphylococcus aureus (i.e., AUC/MIC was the most important). In

contrast, fractionation of the dose with a static effect indicated that

once daily dosing was superior (i.e., Cmax/MIC was the most

important) [27]. In addition, these conflicting patterns are also

consistent with our own experience examining the pharmacody-

namics of the aminoglycosides. Using a dose fractionation design,

there were data to support gentamicin AUC/MIC was the most

important against Pseudomonas aeruginosa [11]; but amikacin Cmax/

MIC appeared to be the most important against Acinetobacter

baumannii [13].

Finally in Figure 4, the maximal killing rate is only slightly

higher than the growth rate of the target pathogen. The

concentration-effect relationship is non-linear in the concentra-

tion range achieved by the dosing regimens, but the threshold

which the killing rate rises sharply (i.e., approximately 5 mg/l)

Figure 2. Concentration dependent killing; AUC/MIC most important. Kk = 60.0 h21. C50 = 600.0 mg/l. H = 1.0. Black solid line depicts the
relationship between drug concentration and killing rate; black dotted line represents the microbial growth rate. Arrows below represent
concentration ranges achieved with various dosing regimens (red – once daily; green – twice daily; blue – four times daily). Two intersecting planes
are shown: a translucent surface and an opaque mesh surface (where the average kill rate = 1.0 h21). The 3-dimensional mesh surface is made up of a
collection of data points; each datum point is characterized by a value on the x, y and z axes, corresponding to the daily dose (x), dosing interval (y)
and average kill rate (z). For a dosing regimen to suppress resistance development, it is imperative that the average kill rate (D) is more than the
growth rate (Kg) of the target pathogen. To identify promising dosing regimens (combinations of dose and dosing interval) to suppress resistance
development, D must be greater than Kg (the region where the translucent surface is above the opaque mesh plane). White area depicts dosing
regimens (combinations of daily dose and dosing interval which the average kill rate is .1.0 h21. Using a daily dose of 6000 mg, the average kill rates
for different regimens are: 1.463 h21 (q24h), 1.610 h21 (q12h), and 1.690 h21(q6h).
doi:10.1371/journal.pcbi.1001043.g002
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could be readily attained by all 3 dosing regimens. Under such

circumstances, a transiently high concentration achieved in a less

frequent dosing regimen does not translate to a higher kill rate,

and killing is compromised when the concentration falls below

the threshold for a prolonged period of time. Consequently, a

more rational dosing strategy is to maintain concentrations above

the threshold for as long as possible. Using conventional

nomenclature, this pharmacodynamic profile is time dependent

killing, and %T.MIC (or Cmin/MIC) would be considered the

most important when the investigations are performed in the

‘critical’ daily dose range. In the extremes of the daily dose range

(i.e., more than 14000 mg or less than 2000 mg daily), AUC/

MIC could still be interpreted as an important surrogate index

linked to outcomes observed. This pattern is consistent with our

experience with data reported for meropenem against Pseudomonas

aeruginosa [28].

Discussion

In all 3 typical pharmacodynamic profiles described, the same

structural form of killing rate was used (a sigmoid Emax model).

Different profiles were simply reflected in the values of the model

parameters, which could be derived from actual experimental data

observed between an antimicrobial agent and a pathogen within a

short timeframe (e.g., 24 hours). Of note, knowledge of specific

mechanism(s) of resistance was not necessary as inputs. As shown

above, an antimicrobial agent can be shown to exhibit both

concentration and time-dependent killing, but the proposed model

was flexible enough to describe different distinct pharmacody-

namic profiles (and any intermediates in between).

Antimicrobial kill kinetics has been previously examined using a

related approach. In one study, concentration dependency of

bacterial killing was primarily attributed to the sigmoidicity

Figure 3. Concentration dependent killing; Cmax/MIC most important. Kk = 40.0 h21. C50 = 100.0 mg/l. H = 4.0. Black solid line depicts the
relationship between drug concentration and killing rate; black dotted line represents the microbial growth rate. Arrows below represent
concentration ranges achieved with various dosing regimens (red – once daily; green – twice daily; blue – four times daily). White area depicts dosing
regimens (combinations of daily dose and dosing interval which the average kill rate is .1.0 h21. Using a daily dose of 6000 mg, the average kill rates
for different regimens are: 2.650 h21 (q24h), 2.168 h21 (q12h), and 0.689 h21(q6h). Using a conventional dose fractionation design with 16000 mg
daily (e.g., 16000 mg q24h, 8000 mg q12h, 4000 mg q6h, etc.), all regimens are expected to suppress the bacterial population, thus AUC/MIC is likely
to be concluded as the pharmacodynamic index associated with resistance suppression. In addition, if a daily dose of 2000 mg is selected (e.g.,
2000 mg q24h, 1000 mg q12h, 500 mg q6h, etc.), all regimens are expected to be associated with regrowth, and therefore AUC/MIC is also likely to
be deemed as the pharmacodynamic index associated with resistance development. However, if a daily dose of 6000 mg is chosen (e.g., 6000 mg
q24h, 3000 mg q12h, 1500 mg q6h, etc.), a less frequent dosing regimen (e.g., q24h) is anticipated to have a higher likelihood of suppressing
resistance, and as such Cmax/MIC is likely to be concluded as the pharmacodynamic index associated with resistance suppression. Therefore, the
strict use of surrogate indices in pharmacodynamic modeling is not always optimal as they may be subjected to selection basis of the concentration
range examined.
doi:10.1371/journal.pcbi.1001043.g003
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constant (i.e., H in our model) [29]. Drugs exhibiting concentra-

tion-dependent killing was associated with a low sigmoidicity

constant. In our opinion, all drugs exhibit concentration-

dependent killing in the concentration range corresponding to

20%–80% of maximal killing rate (regardless of the magnitude of

sigmoidicity). It is equally important to consider Kk and C50, in

order to get a complete and accurate pharmacodynamic

assessment of an antimicrobial agent. As reviewed previously by

Czock et al [30], the effect of the sigmoidicity constant could be

influenced by the ratio of Kk/Kg (similar illustrations were also

shown in Figures 3 and 4). In addition, whether such

concentration-dependent killing is clinically relevant is further

dependent on whether the concentration-dependent killing

concentration range is achievable in humans with acceptable

toxicity, potentially resulting in other categorical descriptions on a

continuous spectrum such as ‘‘partially concentration-dependent’’

(where there is partial overlap of the concentration ranges) or

‘‘time-dependent’’ killing (where there is minimal overlap of the

concentration ranges). Thus C50 is also not irrelevant as pointed

out previously [30]. Consequently, we resorted to a more

comprehensible approach by taking into consideration additional

pertinent variables. We attempted to develop a more robust

computational tool covering a wider spectrum of relevant

scenarios in new drug development.

To extend these pharmacodynamic concepts previously re-

viewed, we put forth herein a novel concept to derive the dosing

intensity of a dosing regimen by comparing the average killing rate

to the growth rate of the target pathogen. A similar approach was

proposed in linking pharmacokinetics to drug effects in circular /

proliferative systems using the concept of reproduction minimum

inhibitory concentration (RMIC) and equivalent effective constant

concentration (ECC) [31]. As we have shown in Figure 2, in the

unique case of linear concentration-effect relationship, the

heuristics proposed previously (RMIC and ECC) would be

identical. Dosing frequency is not expected to have a major

impact of effectiveness, as long as the daily dose is kept constant

(i.e., AUC/MIC is the most important). To highlight a common

drawback in conventional modeling, our computational tool

illustrated the pharmacokinetic / pharmacodynamic concepts via

several theoretical and experimental case examples.

We believe our proposed approach would enhance the

applicability of these concepts in drug development and clinical

settings. Specifically, the pharmacodynamics of antimicrobial

agents are characterized as a continuum (as opposed to discrete

Figure 4. Time dependent killing; %T.MIC most important. Kk = 4.0 h21. C50 = 10.0 mg/l. H = 4.0. Black solid line depicts the relationship
between drug concentration and killing rate; black dotted line represents the microbial growth rate. Arrows below represent concentration ranges
achieved with various dosing regimens (red – once daily; green – twice daily; blue – four times daily). White area depicts dosing regimens
(combinations of daily dose and dosing interval which the average kill rate is .1.0 h21. Using a daily dose of 6000 mg, the average kill rates for
different regimens are: 0.818 h21 (q24h), 1.303 h21 (q12h), and 1.950 h21(q6h).
doi:10.1371/journal.pcbi.1001043.g004
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categories), allowing relatively simple numeric computational

methods to be applied. The efficiency to objectively compare the

effectiveness of a large number of dosing regimens (to be

investigated in pre-clinical or clinical studies) would be improved

as a result. Furthermore, we have also justified our rationale using

supportive data derived under more clinically relevant experi-

mental conditions (multiple sets of experimental data involving

fluctuating drug concentrations over at least 72 hours, as shown in

Table 2). Such an approach provides a fresh perspective on our

understanding of antimicrobial agent pharmacodynamics; the new

insights could resolve heated debates in the literature relating to

which pharmacodynamic surrogate index is the most closely

related to outcomes.

In this study, the mathematical model used was to characterize

the behavior of a heterogeneous bacterial inoculum, which consists

of multiple sub-populations associated with different susceptibility.

This modeling approach (involving a time-variant parameter to

account for adaptation of the bacterial population) would enable

us to better capture regrowth and / or emergence of resistance

over time. Nonetheless, the mathematical model is flexible and can

be modified easily to accommodate a homogeneous inoculum by

not allowing C50 (an index of bacterial population susceptibility) to

increase over time (no adaptation). Regardless of the approach

used, fundamental limitations in dose fractionation design and

categorical pharmacodynamic classification of antimicrobial

agents would still remain. However, the model does not account

for the immune system (which may play an important role against

small resistant populations) and bacterial stress response not

observed during the initial observation period. Both issues

(modeling the effect of the immune system and temporal bacterial

response leading to resistance) are currently under investigation.

In summary, pharmacodynamic modeling is an important

decision-support tool to guide the selection of dosing regimens.

The use of surrogate pharmacodynamic indices has taught us

much on the differences in the killing profiles of different

antimicrobial agents, resulting in several rational dosing strategies

to optimize patient outcomes. As we are dealing with drugs with

more complex pharmacokinetics and pharmacodynamics, it is also

clear that using simple surrogate pharmacodynamic indices may

not always be informative enough to make good decisions to

dosing selection. In the interest of further accelerating new drug

development and for the benefits of our patients, alternative

modeling and computational approaches, such as the one

proposed herein should be explored.
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