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The microbiome, by virtue of its interactions with the host, is implicated in various
host functions including its influence on nutrition and homeostasis. Many chronic
diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by
a disruption of microbial communities in at least one biological niche/organ system.
Various molecular mechanisms between microbial and host components such as
proteins, RNAs, metabolites have recently been identified, thus filling many gaps in
our understanding of how the microbiome modulates host processes. Concurrently,
high-throughput technologies have enabled the profiling of heterogeneous datasets
capturing community level changes in the microbiome as well as the host responses.
However, due to limitations in parallel sampling and analytical procedures, big gaps
still exist in terms of how the microbiome mechanistically influences host functions
at a system and community level. In the past decade, computational biology and
machine learning methodologies have been developed with the aim of filling the existing
gaps. Due to the agnostic nature of the tools, they have been applied in diverse
disease contexts to analyze and infer the interactions between the microbiome and
host molecular components. Some of these approaches allow the identification and
analysis of affected downstream host processes. Most of the tools statistically or
mechanistically integrate different types of -omic and meta -omic datasets followed
by functional/biological interpretation. In this review, we provide an overview of the
landscape of computational approaches for investigating mechanistic interactions
between individual microbes/microbiome and the host and the opportunities for basic
and clinical research. These could include but are not limited to the development of
activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic
interventions and generating integrated signatures to stratify patients.

Keywords: health, disease, microbiome-host interactions, molecular mechanisms, computational approaches,
machine learning, basic and clinical research
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INTRODUCTION: MICROBIOME-HOST
INTERACTIONS

Across different niches and ecosystems, micro-organisms
including bacteria, viruses, archaea inhabit a wide range of hosts
(Braga et al., 2016). This community of microbes imparts various
functions such as making nutrients accessible to the host (Martin
et al., 2019), modulating the host immune system (Mendes et al.,
2019), warding off pathogens (Pickard et al., 2017), maintaining
homeostasis (Ohland and Jobin, 2015; Penny et al., 2018)
among others. These functions are in turn driven primarily by
molecular interactions between microbial and host molecules
such as proteins, RNA and metabolites (Hughes and Sperandio,
2008; Braga et al., 2016). Deciphering these interactions could
not only reveal the microbe-host cross-talk but also provide
us with insights into formulating therapeutic strategies aimed
at maintaining health and/or ameliorating disease states. The
past decades have witnessed a surge in research interest to
study microbial communities (and their interactions) which
inhabit various niches – from the gut to the soil ecosystem.
This was made possible by technological advancements leading
to plummeting costs of 16S and metagenomic sequencing,
higher sequencing depth and resolution (Levy and Myers, 2016;
Jacob et al., 2019; Valli et al., 2020), novel in vitro systems
(Shah et al., 2016; Eain et al., 2017; May et al., 2017), and new
methodologies for high-throughput profiling of multiple -omic
data types such as metaproteomics, metabolomics, lipidomics
(Muller et al., 2013; Roume et al., 2015). However, due to
many other limitations related to scale, scope, feasibility and
sample availability for parallel omic read -outs, experimentally
determining the inter-species microbe-host interactions is a
challenging task (Fritz et al., 2013). Computational methods
can overcome some of these limitations thereby enhancing our
understanding of microbe-host interactions (Dix et al., 2016). In
this review, we outline some key concepts, tools, and methods
involved in computationally inferring the molecular mechanisms
mediating microbe-host interactions.

BIOLOGICAL NETWORKS: CONCEPTS
AND APPLICATIONS

Biological networks represent relationships (termed edges)
between any two biological entities (species, organisms, and
molecules, etc.) which are usually called as nodes. At the
level of molecules (genes, proteins, metabolites, RNAs, and
small molecules, etc.), biological networks could either denote
the physical interactions (e.g., protein–protein, protein-DNA,
and RNA-protein, etc.) between molecules or any measure
of association (e.g., co-expression and co-occurrence) between
molecules (Gosak et al., 2018). In this paper, we will
refer only to physical interactions. Physical interactions can
be classified based on various criteria such as molecular
types (protein–protein, protein-DNA, and RNA-protein, etc.),
experimental scale (high-throughput or low-throughput), source
(experimentally determined or computationally predicted),
directionality (directed or undirected), relational signs (positive

or negative relationships) and coverage (genome-wide or
targeted). Since biological networks provide the larger context in
which genes or proteins tend to exert their action, researchers
can thereby fine-tune their hypotheses. Networks have largely
been used in the domain of biological sciences (a) as a scaffold
to integrate either singular or multiple contextual -omic datasets
such as gene expression, proteomics, etc., measured in response
to intrinsic or extrinsic stimuli (Charitou et al., 2016), (b) as
a graph to trace potential signaling and regulatory pathways
connecting any two nodes (Azeloglu and Iyengar, 2015), (c) to
perform functional analysis at a local or global level (Emmert-
Streib and Glazko, 2011), (d) to reconstruct the networks of non-
model organisms from those of model organisms (Thompson
et al., 2015), (e) to discover drug and disease targets (Huang et al.,
2018), and (f) to infer globally or locally conserved signatures
such as modules, motifs, etc (Wong et al., 2012). Various
resources of molecular interactions and tools for integrative
network analysis have been compiled and developed by the
research community of network biologists. Since a very detailed
description of the resources and tools is out of scope of the
current review, readers are hereby referred to Pedamallu and
Ozdamar (2014), Miryala et al. (2018), Romano et al. (2019).

Due to their utility in capturing contextual backgrounds and
communication between molecular entities, biological networks
have been used to not only study intra-species interactions
but also inter-species cross-talks. Molecular ecological networks
(Deng et al., 2012; Heleno et al., 2014) are a case in point by
which the concept of networks are used to study the interactions
between molecules (derived from different species or even
kingdoms) in a larger ecological context (Yang et al., 2017;
Meyer et al., 2020; Yu et al., 2020; Zheng et al., 2020). At the
very core of it, a typical molecular ecological network inference
workflow (Zhou et al., 2010; Deng et al., 2012; Chen et al.,
2017) starts with the generation of meta -omic datasets (such as
metagenomics, metatranscriptomics, and metaproteomics, etc.)
followed by differential abundance testing between samples from
contrasting conditions. Various measures of correlations and
associations can then be applied to determine the distance
between samples based on the differences and similarities in
terms of the molecular features measured in the -omic datasets
across the sample classes. Such correlations or associations can
be used as a primary point of reference to investigate the
possibility of mechanistic interactions which could in turn be
driving the associative relationships. Furthermore, a network
based representation of the feature-space can be used to compare
samples with each other or to associate network properties such
as the presence of motifs and modules to higher-level ecological
traits/phenotypes. However, since molecular ecological networks
do not directly infer molecular mechanisms which is the topic of
this review, a detailed discussion on the topic is not undertaken.

COMPUTATIONAL METHODS IN
MICROBIOME-HOST INTERACTIONS:
FILLING THE GAPS

Computational methods bring in various advantages to the
analysis of interactions between the host and individual microbes
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FIGURE 1 | Overview of the four different categories of computational methods which help infer the molecular mechanisms of microbe-host interactions. Some
examples of data types corresponding to each of the four methods are depicted.

and/or the microbial community. These include their attributes
of (a) enhancing scalability, i.e., perform the computational
inferences for a large number of variables and samples,
(b) improving reproducibility (if complemented by inter-
operability, automation, proper version control and sufficient
documentation), (c) assessing performance by using a series
of metrics, (d) shortlisting and prioritizing interactions, (e)
and thereby (f) enabling the fine-tuning of hypothesis for
experimental and/or epidemiological studies. Although most of
the methods hitherto have focused on inferring the interactions
between individual microbial species (mostly well studied
pathogens) and the host, a few methods have been developed to
predict the interactions at a community level. In principle, many
of the methods which have been used to infer interactions of
single species can be scaled up (with appropriate modifications)
to infer community level interactions.

CLASSIFICATION OF COMPUTATIONAL
METHODS IN MICROBIOME-HOST
INTERACTIONS

From a mechanistic view-point, the most widely studied
interaction types in interspecies cross-talks include (a) microbial
metabolite-mediated networks, (b) protein–protein interactions
(PPIs), and (c) RNA-mediated interactions. Accordingly, many
of the computational methods developed to investigate microbe-
host interactions have focused on the three above-mentioned
interaction types (Figure 1). As a fourth method approach,
integrated pipelines combine multiple microbial and host -omic
data types and networks to infer the cumulative functional effects
of inter-species interactions/communication on the host.

Approaches Inferring Mechanistic
Metabolic Interactions
The metabolomic layer (which comprises the enzymes,
metabolites, and the reactional interactions between them)
has a prominent influence on both health and disease states

associated with alterations in microbiota composition (Wong
et al., 2016; Martinez et al., 2017). Metabolic networks can
thus represent and capture the underlying mechanisms driving
various phenotypes (Pey et al., 2013; Samal et al., 2017; Zampieri
et al., 2019). Computational approaches aimed at inferring the
microbe-host co-metabolic networks can be classified into three
prominent categories namely (a) Community-wide metabolic
network modeling using metagenomic datasets: this approach
is based on the assumption that the metagenomic read-outs
represent the gene-distribution structure of the entire microbial
community. The autonomy of species – i.e., information about
which gene is derived from which species, are disregarded. Thus,
the metabolic network reconstructed using this approach consists
of relationships (reactions) catalyzed by enzymes (encoded by
the measured genes) between molecular entities (metabolites) at
a community level. (b) High throughput data driven approaches
using metabolic datasets – this data-driven methodology uses
targeted or untargeted profiling of metabolites from different
groups of samples. Subsequently, multi-variate modeling
methods and various statistical methods including simple
PCAs are applied to identify biomarkers which distinguish
different sample groups from each other. (c) Genome scale
reconstruction applying constraint-based modeling approaches
which are described below. The first two methods do not
provide direct mechanistic insights and hence are not covered
further in this review.

Genome-scale reconstruction models provide mechanistic
information by integrating multiple inputs. These inputs include
the curated genome scale metabolic models of both the host
and microbial species, high-throughput meta -omic datasets
including metabolites, reaction fluxes, biochemical traits and
accessory phenotypic data. However, due to the strenuous nature
of various steps involved in constructing the models and in
scaling it up to multiple species or multiple hosts, only a handful
of studies have applied this concept to infer microbe-host co-
metabolic interactions (Table 1). The AGORA (assembly of gut
organisms through reconstruction and analysis) collection is
a resource of genome-scale metabolic models for 773 human
gut bacterial species using a combination of metagenomics and
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experimental data from literature. Furthermore, the framework
employed by AGORA is amenable to scale-up given its easy
adaptability to novel species of interest. AGORA also serves
as a source of genome scale metabolic models reconstructed
in a standardized manner. Thus, various studies have in turn
used the genome scale models from the AGORA resource to
construct context-specific models (Bauer et al., 2017; Bunesova
et al., 2018; Tramontano et al., 2018; Pryor et al., 2019;
Yilmaz et al., 2019). Recently, the authors of AGORA and
their collaborators extended the framework to 7206 strains by
incorporating information on the drug-metabolizing potential of
the bacterial strains (Heinken et al., 2020).

The reported studies on genome-scale reconstruction models
have been distributed across many different ecological contexts
such as the human and rumen gut ecosystems (Islam et al.,
2019), microbe-plant interactions, human alveolar macrophages,
the effect of viral demands on the metabolism of human
macrophages, microbe-host interactions in Parkinson’s Disease
to name a few. Due to the mechanistic nature of such models,
they can be used as a template for further integrating other -omic
datasets. This not only refines the models thereby increasing their
predictive power but also assigns contextuality.

By incorporating the individual reconstructed metabolic
models of tomato (Solanum lycopersicum) and the tomato late
blight pathogen Phytophthora infestans, Rodenburg et al. (2019)
pointed out specific pathways which mediate the dependencies
of the pathogen on the metabolism of S. lycopersicum.
The individual metabolic models for S. lycopersicum and
P. infestans were derived by manually adding reactions and
sub-cellular localization of metabolites and reactions (based
on curation of literature) to the corresponding genome-
scale models. Furthermore, by over-laying dual RNA-seq
transcriptomic datasets from the host-pathogen duo into the
co-metabolic network, various metabolic changes characterizing
the scavenging nature of P. infestans were revealed. A similar
study was performed in a mammalian setting wherein co-
metabolic interactions and metabolic exchanges were inferred
between the respiratory pathogen Mycobacterium tuberculosis
and human alveolar macrophages (Bordbar et al., 2010). The
metabolic model for the alveolar macrophages was derived from
Recon1, the global human metabolic model (Thiele et al., 2013b).
Briefly, a curated version of Recon1 was overlaid with gene
expression data for healthy, inactivated alveolar macrophages and
combined with information on flux limits for major pathways
of central metabolism and a host of heterogeneous datasets
such as immunohistological staining, transporter proteins, etc
(Bordbar et al., 2010). The macrophage model was then
combined with that of Francisella tularensis and corrected for
compartment-specific reactions and metabolites. Unsurprisingly,
given the advancement in terms of data generated and metabolic
models made available, most of the genome-scale metabolic
reconstruction studies (Table 1) were carried out for the gut
ecosystem (Heinken et al., 2013; Heinken and Thiele, 2015; Ding
et al., 2016; Islam et al., 2019).

Other microbe-host co-metabolic studies have been
performed using publicly available tools based on constraint-
based modeling approaches. The Constraint-based

TABLE 1 | Studies using genome-scale metabolic models and constraint based
approaches to infer mechanistic co-metabolic interactions between microbial
and host species.

Study Context

Rodenburg et al.
(2019)

Integrated metabolic model of P. infestans infecting tomato
(S. lycopersicum)

Islam et al. (2019) Genome-scale metabolic model between key members in
the rumen microbiome and the viral phages

Hertel et al. (2019) Integrated constraint-based model revealing microbe-host
interactions in Parkinson’s Disease

Aller et al. (2018) Genome-scale model integrating biochemical demands
arising from virus production and human macrophage cell
metabolism

Ding et al. (2016) Simulation of co-metabolic model of different
enteropathogens in response to various host environments

Heinken and Thiele
(2015)

In silico microbe-host gut co-metabolic model to predict
effects of different host dietary schemes

Heinken et al.
(2013)

Experimentally validated gut co-metabolic model between
commensal bacterium B. thetaiotaomicron and mouse

Bordbar et al.
(2010)

Francisella tularensis infecting human alveolar macrophage
supported by high-throughput data from infected conditions

reconstruction and analysis (COBRA) toolbox (Heirendt
et al., 2019) is one such compendium of methods containing
various user-guided steps to reconstruct genome-scale metabolic
models. It is characterized by properties such as interoperability,
customized reconstruction, modeling, visualization, modeling,
simulation, and integration of -omic datasets in various contexts
(compartments, cell-types, etc.). By harnessing these properties,
researchers have used the COBRA toolbox to model and
investigate microbe-host metabolic interactions (Heinken et al.,
2013; Thiele et al., 2013a) in the context of mammalian health
with implications on human health. A representative study
of the gut ecosystem using the COBRA toolbox integrated
two previously published constraint-based models of mouse
and a gut commensal Bacteroides thetaiotaomicron (Heinken
et al., 2013). The B. thetaiotaomicron model was generated
by the manual curation of a seed model produced by Model
Seed (Henry et al., 2010) from the genome sequence annotated
using RAST (Aziz et al., 2008) (which is a prokaryotic genome
annotation tool). The mouse metabolic model was compiled by
integrating a previously annotated and reconstructed model with
gene essentiality data from experiments followed by corrections
for duplicate reactions. The two models were then brought
together by setting rules based on the subcellular localization of
metabolites and reactions. The integrated metabolic model could
capture many of the phenotypes exhibited in vivo namely the
dependence of B. thetaiotaomicron on glycans derived from the
metabolism of the host as well as the host diet itself (Heinken
et al., 2013). It is noteworthy to mention that the authors also
introduced novel methodologies such as Pareto analysis to
complement the power of the COBRA toolbox. Pareto analysis
is a bi-objective linear programming-based methodology which
enables the analysis and identification of growth dependencies
and trade-offs between the microbe and the host as captured by
their metabolic networks.
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A similar study (Hertel et al., 2019) was performed using
the COBRA toolbox in conjunction with other supplementary
tools such as the Microbiome Modeling Toolbox (Baldini
et al., 2019) which can integrate the individual reconstructed
models together into one reconstructed model in addition
to other useful properties (such as inferring interactions
by taxa, reconstruction of pairwise/community co-metabolic
networks, compartment-based modeling, pareto analysis, and
various downstream operations) to extend the constraint-based
modeling framework. The study integrated the microbiome
and longitudinal metabolomic datasets from patients with
Parkinson’s disease (Hertel et al., 2019). This microbiome-host
-omic integration study provided clues as to how alterations
in particular co-metabolized pathways (by both the host and
microbiome) such as sulfur metabolism could contribute to the
varying severity of the disease. In particular, the authors were able
to identify that changes in the co-metabolized pathways could be
driven by particular members of the gut microbiota. This opens
up possibilities to design gut microbiome-based therapies to treat
or even prevent Parkinson’s disease.

Approaches Inferring Protein–Protein
Interactions (PPIs)
Protein–protein interactions are one of the most well-studied
interaction types mediating inter-species communication
(Schweppe et al., 2015). Accordingly, a large number of
computational microbe-host interaction studies have focused
on PPIs. Congruently, PPI-based approaches have also been
propelled by the adoption of concepts from other domains of
computational biology and computational sciences in general.
Hence, PPI-based approaches can be sub-classified into four
predominant methods (Table 2) depending on the concepts
used (1) Machine learning based PPI methods, (2) Structural
feature based PPI methods, (3) Data/Literature mining based PPI
methods, and (4) Interolog based PPI methods. In this section, we
provide a brief overview of the concepts involved in each of these
methods (Table 2) and provide a few representative examples.

Structural Feature Based PPI Methods
Interactions between proteins are usually a by-product of
physical interactions between structural features of the proteins
and/or could be characterized indirectly by co-occurring
functional features of the proteins (Ding and Kihara, 2018).
Structural features of the proteins include their domain and
motif architectures/compositions, amino acid composition and
frequencies, post-translational modification signatures, amino
acid k-mers, mimicry motifs and 3D structural properties (Ding
and Kihara, 2018). Structural feature-based PPI prediction,
applied initially for intra-species PPIs, was subsequently extended
to inter-species studies. Essentially, the fundamental principle
on which structural feature-based PPI prediction methods work
involves the use of mechanistic evidence between structural
features to identify potentially interacting proteins. These
could include for example interactions between domains,
between domains and motifs, post-translational modifications
and pairwise structural similarity (Ding and Kihara, 2018). Such
structural studies have been confined to considerably well studied

TABLE 2 | Computational approaches and methods inferring protein–protein
interactions mediating inter-kingdom cross-talk between microbial
and host organisms.

Method and corresponding studies Reported use-case (host-microbe)

Machine learning based methods

Leite et al. (2018) Bacteria–phage

Tastan et al. (2009); Qi et al. (2010),
Dyer et al. (2011); Nouretdinov et al.
(2012), Shoombuatong et al. (2012);
Mei (2013), Hongjaisee et al. (2019)

Human–HIV

Kshirsagar et al. (2013) Human–F. tularensis, Human–Y. pestis,
Human–B. anthracis, Human-S. typhi

Wuchty (2011) Human–Plasmodium falciparum

Kösesoy et al. (2019) Human–Y. pestis, Human–B. anthracis

Cui et al. (2012); Emamjomeh et al.
(2014), Kim et al. (2017)

Human–Hepatitis C virus

HOPITOR (Basit et al., 2018) Generic (Human–virus PPIs)

Liao et al. (2011) Human–Schistosoma japonicum

Mei et al. (2018); Sun et al. (2018) Human–Francisella tularensis

Kargarfard et al. (2016) 3 hosts and 674 influenza strains

Cui et al. (2012); Dong et al. (2015),
Kim et al. (2017)

Human–Human papillomavirus

Lai et al. (2012) Human–Influenza A virus

Mei and Zhu (2014a) Human–HTLV retroviruses

Mei and Zhu (2014b) Human–Salmonella

Lian et al. (2019) Human–Y. pestis

Structural feature based methods (features used)

Dyer at al. (2007) (DDI) Human–Plasmodium falciparum

Nourani et al. (2016) (DDI) Human–multiple viruses

Sudhakar et al. (2019) (DDI and DMI) Human–multiple bacterial pathogens

Doolittle and Gomez (2011) (PSS) Human–Dengue virus, Aedes
aegypti–Dengue virus

Cui et al. (2016) (PSS) Human–HIV, Human–Francisella
tularensis

P-HIPSTer (Lasso et al., 2019) (PSS) Human–multiple viruses

Chen at al. (2019) (PSS) Human–Dengue virus 2, Human–West
Nile virus

Guven-Maiorov et al. (2017) (Mimicry) Human–Helicobacter pylori

Mahajan and Mande (2017) (DDI) Human–Francisella tularensis

Zhang et al. (2017a) (DMI) Grass carp–Grass carp reovirus

Mehrotra et al. (2017) (PSS, DDI, and
localization)

Human–Leptospira interrogans,
Human–Leptospira biflexa

Halehalli and Nagarajaram (2015) (DDI,
DMI)

Human–multiple viruses

SugarBindDB (Mariethoz et al., 2016)
(glycan mediated PPIs)

Generic

Rajasekharan et al. (2013) (PSS) Human–Chandipura virus

Carducci et al. (2010) (DDI) Human–papillomavirus type 16

Franzosa and Xia (2011) (PSS and
sequence identity)

Human–multiple viruses

Sahu et al. (2014) (DDI) Arabidopsis-Pseudomonas syringae

Zhou et al. (2018) (DDI) Human–Dengue virus, Aedes
aegypti–Dengue virus

Kim et al. (2017) (DDI) Human–multiple viruses

Kerr et al. (2015) (Computational
docking)

Human–Dengue virus 2, Human–West
Nile virus

Evans et al. (2009) (DMI) Human–HIV

Doxey and McConkey (2013) (Mimicry) Human–Francisella tularensis

(Continued)
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TABLE 2 | Continued

Method and corresponding studies Reported use-case (host-microbe)

Mei and Zhang (2020) (Mimicry) Human-S. typhimurium and
Human-Human respiratory syncytial
virus

Data/Literature mining based methods

Thieu et al. (2012) Generic

Viruses.STRING (Cook et al., 2018) 319 hosts and 239 viruses

Li et al. (2018) Human–Epstein-Barr virus

Saik et al. (2016) Human–Hepatitis C virus

García-Pérez et al. (2018) Human–Influenza A virus

“Interolog” based methods

Krishnadev and Srinivasan (2008); Lee
et al. (2008)

Human–Plasmodium falciparum

Krishnadev and Srinivasan (2011) Human–E. coli, Human–
S. typhimurium, Human–Y. pestis

Tyagi et al. (2009) Human–Helicobacter pylori

Cui et al. (2016) Human–HIV, Human–Francisella
tularensis

Schleker et al. (2012) Human–Salmonella,
Salmonella–A. thaliana

Li et al. (2012) A. thaliana–Ralstonia solanacearum

Wallqvist et al. (2017) Human–Coxiella burnetii

Cuesta-Astroz et al. (2019) Human and 15 eukaryotic parasites

Zhou et al. (2014); Cui et al. (2016) Human–Francisella tularensis

Barh et al. (2013) Human–Corynebacterium
pseudotuberculosis,
Human–Corynebacterium diphtheriae,
Human–Francisella tularensis,
Human–Corynebacterium ulcerans,
Human–Y. pestis, and Human–E. coli

DDI, domain–domain interaction; DMI, domain-motif interaction; PSS, pairwise
structural similarity. Supplementary Table 1 provides further details into the novelty
of the methods and results.

species pairs involving H. sapiens and prominent viral and
bacterial pathogens (Table 2). Along with pairwise structural
similarity-based methods using 3D protein complexes, domain–
domain interaction (DDI) and domain-motif interaction (DMI)
based methods are one of the most commonly used methods
within the structural feature based methodological framework
for predicting inter-species PPIs. Due to the ease of annotating
domains and motifs, DDI- and DMI-based methods have been
harnessed widely (Table 2). While DDI based methods have been
applied to infer PPIs for a large number of species-pairs including
Human–Plasmodium falciparum (Dyer et al., 2007), Human–
Francisella tularensis (Zhou et al., 2013; Mahajan and Mande,
2017), Human–Leptospira interrogans (Mehrotra et al., 2017),
Human–Leptospira biflexa (Mehrotra et al., 2017), Human–
papillomavirus type 16 (Carducci et al., 2010), Arabidopsis–
Pseudomonas syringae (Sahu et al., 2014), Rice–Xanthomonas
oryzae (Kim et al., 2008), they have the inherent disadvantage of
not being able to explicitly discern directionality.

On the other hand, DMIs provide directionality for PPIs,
thus indicating the flow of signal transduction (Akiva et al.,
2012; Gibson et al., 2015). For example, if a microbial protein A
contains a domain known to be interacting with a motif on the

host protein B, it is graphically represented as A > B, translating
into “microbial protein A modulates host protein B.” Due to their
specificity, DMI-based methods are preferred over DDI based
methods for research questions seeking to answer the role of post-
translational modifications elicited on host proteins by microbial
proteins or vice versa. However, due to the short sequence
length of protein sequence motifs, even the most stringent search
strategies have the tendency to result in thousands of false-
positive hits while performing motif searches on a proteome-wide
basis (Perkins et al., 2010; Idrees et al., 2018). Therefore, proper
quality controls need to be applied to filter out false-positives
based on structural properties such as the occurrence of truly
interacting motifs within disordered regions and outside globular
domains (Perkins et al., 2010; Idrees et al., 2018; Figure 2).

Several studies (Table 2) have been conducted to apply the
principles of DMIs to predict PPIs for multiple microbe-host
species-combinations including grass carp-grass carp reovirus
(Zhang et al., 2017a), human-multiple bacterial pathogens
(Sudhakar et al., 2019) and human-multiple viruses (Evans et al.,
2009; Halehalli and Nagarajaram, 2015). By integrating DMI
predictions between grass carp and grass carp reovirus (GCRV)
proteins with differential gene expression and tissue-specific
gene expression followed by functional enrichment, Zhang
et al. (2017a) were able to pinpoint several signaling pathways
modulated by GCRV. The authors also highlight an enrichment
of host genes expressed in the intestinal niche suggesting that
GCRV might have a higher influence on the gut. Recently, we
conducted a study (Sudhakar et al., 2019) using DDI and DMI
based methods to identify cross-talks between several bacterial
pathogens including Salmonella and autophagy – a prominent
biological process involved in host cellular homeostasis. Firstly,
to identify microbial proteins targeted by selective autophagy,
we scanned the bacterial proteins for the presence of the
recognition motifs corresponding to the selective autophagy
receptors p62 and NDP52 and the autophagy adapter protein
LC3. Conversely, to infer the modulation of host autophagy
by the bacterial pathogens, DMI and DDI based methods were
used to identify the bacterial proteins which are able to bind
to/modulate the 37 core autophagy host proteins. By overlapping
the two above-mentioned sets of predictions, bacterial proteins
involved in interplays were identified. Such bacterial proteins
are also targeted by the host autophagy machinery for clearance
and degradation. This was followed by experimentally verifying
the effect on autophagy of a Salmonella protease involved in
human-Salmonella interplay.

A variation of the motif-based methodologies is the use
of motifs to characterize pathogen mimicry. This essentially
involves the identification of eukaryotic linear motifs on
microbial proteins which in turn can hijack host proteins
and thereby promote antagonistic binding (Hurford and Day,
2013; Via et al., 2015). Motif-mediated molecular mimicry
therefore rewires the host signaling and regulatory networks
by titrating essential host proteins and enabling the microbe
to create favorable micro-environments in the host cell by
altering immune responses for example (Cusick et al., 2012).
In addition to motifs, molecular mimicry can also be mediated
at the level of protein, structural and interface levels. At the

Frontiers in Microbiology | www.frontiersin.org 6 May 2021 | Volume 12 | Article 618856

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-618856 May 5, 2021 Time: 18:19 # 7

Sudhakar et al. Computational Inference of Microbiome-Host Interactions

FIGURE 2 | Graphical representation of a typical integrated workflow predicting interactions between microbial and host proteins and their effect on host processes.

protein level, specific studies investigating the role of molecular
mimicry in the pathogenesis of prominent bacterial pathogens
(Doxey and McConkey, 2013) including Salmonella typhimurium
and Human respiratory syncytial virus (Mei and Zhang, 2020)
have been carried out (Table 2). At the interface level, Guven-
Maiorov et al. (2017) devised a computational method to infer
mimicry induced by a prominent gastric cancer causing pathogen
Helicobacter pylori. Besides DDI and DMI based methods,
researchers have also used other structure-based methodologies
such as pairwise structural similarity (PSS) to predict inter-
species PPIs. PSS methods at their very core are based on

the premise that proteins possessing similar structures have a
greater probability of interacting with the same set of protein
partners (Ding and Kihara, 2018). This has been applied to
infer the interactions with the host of various pathogens such
as Dengue virus (Doolittle and Gomez, 2011), HIV (Cui et al.,
2016), Francisella tularensis (Cui et al., 2016), West Nile virus
(Chen et al., 2019), Chandipura virus (Rajasekharan et al., 2013),
and other viral pathogens (Franzosa and Xia, 2011; Lasso et al.,
2019).

As a means of ensuring proper quantitative evaluation of de
novo PPI predictions, emerging computational methods such as
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machine learning have been used in conjunction with structural-
feature based PPI prediction methods. In order to avoid
repetitions, methods using ML for evaluating the performance of
structural feature dependent PPI predictions are discussed in the
next subsection.

Machine Learning Based PPI Methods
Due to their ability to discern complex patterns among a
large number of features in big datasets, machine learning
(ML) methods have found favor in various applications of
computational biology and bioinformatics (Shastry and Sanjay,
2020) including the prediction of microbe-host molecular
interactions. A variety of supervised and unsupervised methods
have been used to predict the interactions between microbial and
host proteins (Table 2). In general, supervised machine learning
methods utilize features from “gold-standard” interaction
datasets to identify potential protein–protein interaction pairs
from the user provided list of microbial and host proteins
(Zhang et al., 2017b). In supervised methods, the “gold-standard”
datasets are either compiled from high-throughput experimental
methodologies or from curated lists of interactions from the
literature (Zhang et al., 2017b). In the case of ML being used
in combination with “interolog” based methods (explained in
section 5.2.4), “gold-standard” PPI datasets can also be retrieved
from other related or unrelated microbe-host species pairs
depending on the scope of the study. Some of the features used
to infer de novo PPI predictions include protein properties such
as post-translational modifications, chemical composition, tissue
distribution, molecular weight, domain/motif compositions,
ontologies, gene expression, amino-acid frequencies, homology
to human binding partners, and relevance of proteins in host
network. By using these features, supervised methods are able to
discern truly interacting protein pairs from all possible pairs of
microbial and host proteins (Zhang et al., 2017b).

Supervised methods can also be differentiated by the
kind of ML methodology/model used for the task of rightly
classifying truly interacting protein pairs. Several supervised
studies employing individual ML models [such as I2-regularized
logistic regression (Mei et al., 2018), random forests (RF)
(Kösesoy et al., 2019), etc], support vector machine (SVM)
(Cui et al., 2012; Shoombuatong et al., 2012; Kim et al.,
2017) have been applied to infer PPIs between microbial and
host species. SVMs use a framework of searching and finding
the best hyperplane (aka decision boundary represented by a
mathematical equation) to separate sample with different labels
corresponding to a class. Several variations of the SVM exist to
handle data with underlying linear or non-linear relationships
(Byvatov and Schneider, 2003).

Using four different ML models namely RF, SVM, Artificial
Neural Networks (ANN) and K-Nearest Neighbors (K-NN), and
multiple lines of -omic evidence including experimental PPIs
as predictive features, Leite et al. (2018) devised a model based
on a supervised protocol to accurately predict bacterium-phage
interactions. The model, a type of ensemble learning, due to its
generic nature, can also be used to predict interactions between
any two given species, given the availability of informative feature
sets. Ensemble learning (Che et al., 2011), combines multiple

individual classifiers to achieve a final classification and has been
used to predict PPI based HIV-human and hepatitis C virus-
human networks (Mei, 2013; Emamjomeh et al., 2014). Ensemble
classification methods outperform individual classifiers based on
several use-cases (Krawczyk, 2015; Haque et al., 2016; Yijing et al.,
2016; Lin et al., 2019) and can be generalized into three distinct
categories namely bagging, boosting and stacked generalization.
The last of the three approaches, stacked generalization, was used
by Emamjomeh et al. (2014) to predict PPIs between human
and the hepatitis C virus. While bagging assigns training sets to
individual classifiers based on a random selection of the initial
training dataset with replacement for subsequent sampling runs,
boosting involves the creation and evaluation of classifiers in
a sequential manner, with the succeeding classifier assigning
more weights to the misclassification errors committed by the
preceding classifier. The ”boosted” weights are then normalized
for all the instances in the entire dataset which is then used as
the training dataset for the next classifier after which the final
classification step is carried out based on the weighted individual
classifiers. The stacked generalization methodology is designed
to overcome some of the errors committed by the individual
classifiers even if they are used in the ensemble framework. The
stacked approach achieves this by using a “stacks” of base learners
so that its output is the input for a meta-learner which knows
how best to combine the base learners’ outputs. The training
data may or may not overlap between the two stacks and can be
specified accordingly.

Various auxiliary algorithms have been used in conjunction
with machine learning methods to predict inter-species PPIs.
An example of such a study includes the use of a novel protein
sequence based feature extraction method called Location Based
Encoding (LBE) with different classifier models including RFs.
Such integrated methodologies have been used to predict protein
interactions with the human host of two important pathogens –
Bacillus anthracis and Yersinia pestis (Kösesoy et al., 2019). LBE
is a methodology which complements the ML approaches for
PPIs by differentiating proteins only based on the locations of the
amino acids in the sequence (Li et al., 2009).

Supervised methods are sometimes constrained due to the
small size of “gold-standard” datasets that restricts the inference
and prediction of proteome-wide PPIs between the full list of
proteins of any two given species. Mei and Zhu (2014a) harness
the power of multi-instance AdaBoost, a type of boosting-based
ensemble learning protocol, which is a multi-instance learning
based ML method, to reconstruct proteome-wide Human T-cell
leukemia virus-human PPI networks using homology knowledge
derived protein features. AdaBoost improves classification
performance by combining multiple weak classifiers into one
strong classifier. It works in part by assigning more weight to
instances which can only be classified with greater difficulty than
to instances which can be easily classified (Kim et al., 2012).
The dearth of true interacting protein-pairs has also prompted
researchers to use unsupervised or semi-supervised approaches
to infer microbe-host PPIs. Qi et al. (2010) complement the list of
true interactions with a list of protein-pairs wherein association
evidence exists with no interaction evidence between the proteins
of a pair. Supervised learning is performed thereafter with a
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multilayer perceptron network and by using the true interaction
list. Subsequently, the semi-supervised approach uses the same
network layers of the supervised classifier but instead trains
on the protein-pairs with association evidence only. By using
this hybrid approach, the authors report improved performance
for predicting interactions between HIV and human proteins
(Qi et al., 2010).

Data/Literature Mining Based PPI Methods
Even though many databases have been compiled to collect,
curate and store microbe-host PPIs (Kumar and Nanduri, 2010;
Durmus Tekir et al., 2013; Cook et al., 2018; Gao et al., 2018;
Singh et al., 2019), these are mostly confined to well-studied
pathogens and are predominantly comprised of interactions from
high-throughput experiments. Contrastingly, in the literature,
there exist inter-species PPIs from low-throughput experiments
with some of them from non-model organisms, and commensal
microbes, but mostly distributed over several individual studies.
Very often, the inter-species PPI databases and repositories do
not capture these sparse interactions. Hence, researchers have
adapted and modified data- and text-mining tools to search
for and extract microbe-host PPIs from existing literature.
Retrieving such PPIs not only helps in increasing the number
of true positive and true negative interactions (which helps
aid the predictive performance of algorithms) but also extends
our knowledge of existing microbe-host interactions. Motivated
by the above explained need to mine-out microbe-host PPIs,
Thieu et al. (2012) combine and compare the performance
of a language based method based on a link grammar parser
to a supervised ML methodology (SVM) and report that the
combined approach results in a higher classification accuracy
when compared to existing literature mining methods. As
part of a bigger analytical framework aimed at uncovering
the cellular mechanisms involved in human B lymphocytes
during Epstein-Barr virus infection, Li et al. (2018) use a big-
data mining methodology to identify a diverse range of inter-
species molecular interactions including PPIs. Similar text/data
mining approaches were also executed to extract PPI-mediated
interactions of the human host with multiple viruses such as
Hepatitis C virus (Saik et al., 2016) and Influenza A virus (García-
Pérez et al., 2018; Table 2).

Interolog Based PPI Methods
For most species-pairs of interest, especially those belonging
to the category of non-model organisms, there is a scarcity
of experimentally verified PPIs. This has necessitated the
development of novel bioinformatic methods, one of which
is the inference of interactions from existing experimentally
determined inter-species PPIs (Kshirsagar et al., 2015). These
types of methodologies are usually based on the principle of
homology (hence the term “interolog”: meaning interacting
orthologs) – either at the level of proteins or protein structural
features or both. Protein features used for homology based
extrapolation include but are not limited to domains, motifs,
amino-acid k-mers, and 3D structural properties (Kshirsagar
et al., 2015). Interolog based approaches have been applied
to harness the large volume of experimentally verified PPIs

for model organisms including prominent bacterial/viral
pathogens. Despite the potentially large coverage that can be
achieved by such approaches, there exist several disadvantages
of using interolog approaches as a silver bullet for inferring
inter-species PPIs especially for novel species-pairs. These
disadvantages are attributed to different pathogenic mechanisms
between the microbes in the context of infecting different host
species, different cellular localizations, and varying activity
levels (expression, post-translational modifications, etc.) of
the orthologous microbial proteins. Such differences lead
to accessibility bottlenecks i.e., the ability of the proteins to
physically access host proteins and thereby interact. Hence,
interolog based approaches need to be complemented with
additional filtering and quality control steps such as selecting
proteins from infection-relevant cellular compartments,
expression/activity measurements, etc.

Interolog based methods have been used to infer inter-
species PPIs for many prominent pathogens and parasites
(Table 2). Different versions of the interolog approach have
been used to extrapolate PPIs corresponding to interactions
between the human host and various pathogens such as
Plasmodium falciparum (Krishnadev and Srinivasan, 2008; Lee
et al., 2008), Escherichia coli (Krishnadev and Srinivasan, 2011),
S. typhimurium (Krishnadev and Srinivasan, 2011; Schleker et al.,
2012), Y. pestis (Krishnadev and Srinivasan, 2011), Helicobacter
pylori (Tyagi et al., 2009), HIV (Cui et al., 2016), Francisella
tularensis (Zhou et al., 2014; Cui et al., 2016), Coxiella burnetii
(Wallqvist et al., 2017), Corynebacterium pseudotuberculosis
(Barh et al., 2013), Corynebacterium diphtheriae (Barh et al.,
2013), and Corynebacterium ulcerans (Barh et al., 2013). Using
PPIs from the STRING database as the starting interaction set,
Cuesta-Astroz et al. (2019) used the interolog methodology to
predict PPIs between 15 different eukaryotic pathogens and the
human host. To assign species-specific and lifecycle- specific
contextuality, the authors confined the analysis to proteins
from particular cellular compartments which are relevant to the
infection process. From the analysis of the ensuing PPI networks,
various invasion and evasion mechanisms adopted commonly
and specifically by particular parasites were inferred (Cuesta-
Astroz et al., 2019). Schleker et al. (2012) present another version
of the interolog approach to predict human-Salmonella and
A. thaliana-Salmonella PPI networks. As a source of template
PPIs, publicly available interaction databases are used along
with databases containing 3D structures between Pfam domains.
As an add-on to the sequence based orthology of proteins,
domain based orthology is also performed in order to reduce
the false positive rates. Several additional filtering strategies such
as restriction to predicted transmembrane proteins, relevance in
host network and functional attributes such as gene ontology are
used to make the PPIs more specific.

Approaches Inferring RNA Mediated
Interactions
The role of RNAs, especially non-coding RNAs such as
long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)
in mediating molecular microbe-host interactions have been
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reported in the literature (Li et al., 2015b; Agliano et al.,
2019). RNA molecules are either secreted by the microbial cell
into the host cell or are packaged into vesicles along with
other molecules which are then taken up by the host cell by
endocytosis (Weiberg et al., 2014; Huang et al., 2019; Ahmadi
Badi et al., 2020). Such microbial RNAs then modulate host
cell activity by either binding to DNA, messenger RNAs or
proteins. Thus, by salvaging and titrating host components,
microbial RNAs modulate regulatory and signaling networks
and subsequently host cell activity (Duval et al., 2017; Agliano
et al., 2019; Shirahama et al., 2020). However, in contrast to
PPI based methods, even though RNA-mediated microbe-host
interactions are well studied from an experimental point of
view, very few methods or studies exist that have systemically
and systematically applied computational analysis (Table 3).
As such, the resources which exist in the domain of RNA-
mediated microbe-host interactions comprise of databases such
as ViRBase (Li et al., 2015b) which is predominantly a
source of experimentally verified virus–host non-coding RNA-
associated interactions. In addition, it also contains predicted
binding sites of virus non-coding RNAs on host proteins and
RNAs. A prominent study which comprehensively examines
and evaluates the role of RNAs in microbe-host interactions
is that of Saçar Demirci and Adan (2020) who investigated
the roles in infection of miRNA-like sequences encoded within
the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) genome. They used a modified version of izMiR
(Allmer et al., 2016), a SVM based ML method to predict
pre-miRNAs which are homologous to the human precursor
miRNAs from miRbase. The SVM based ML method identified
several viral hairpin sequences which were smaller in length
compared to the human miRNA precursors while many of
the human and viral miRNA precursors were similar in length
and shared identical minimum free energy, a feature used
by the izMiR workflow (Allmer et al., 2016). Based on this
observation, a revised classifier trained using only the known
human miRNAs was used on the entire SARS-CoV-2 hairpin
dataset which resulted in the identification of potential hairpins
from which mature miRNA candidates were extracted. As a
next step, the psRNATarget tool (Dai et al., 2018) was used
to predict de novo the human genes targeted by the inferred
viral miRNAs. Functional analysis of the human genes targeted
revealed that the SARS-CoV-2miRNAs can affect various host
processes including transcription, defense systems, Wnt and
EGFR signaling pathways.

TABLE 3 | Examples of studies utilizing computational approaches to infer
RNA-mediated interactions between microbes and hosts.

Study Context

Saçar Demirci and
Adan (2020)

Analysis revealing the potential interactions between mature
micro-RNA like viral RNA sequences and host genes

ViRBase (Li et al.,
2015b)

Source of experimentally verified virus–host non-coding
RNA-associated interactions; also contains predicted
binding sites of virus non-coding RNAs on host proteins
and RNAs

Approaches Utilizing Pipelines
Integrating Multiple-Omic Datasets
Besides the computational methods based on particular types of
molecular interactions, some integrated pipelines (Table 4) have
been compiled to infer mechanistic microbe-host interactions. In
general, such pipelines (Figure 2) incorporate the prediction of at
least one molecular interaction type between microbial and host
molecular components followed by various other functionalities
such as integration of host responses. Table 5 provides a
non-exhaustive overview of the different tools, databases and
resources which are available in the public domain to compile
integrated workflows based on PPIs for example.

KBase (Arkin et al., 2018) is an integrated bioinformatics
platform enabling users to share datasets with the research
community as well as facilitating the integration, and analysis
of -omic datasets from microbes and plants by creating
computational workflows. Recently, we developed MicrobioLink
(Andrighetti et al., 2020), an integrated pipeline which carries
out de novo DDI and DMI based microbe-host PPI prediction
followed by quality control using information from disordered
region predictions from built-in tools such as IUPred (Mészáros
et al., 2018). The pipeline then utilizes network diffusion
principles and tools (Paull et al., 2013) to infer the molecular
mechanisms and signaling pathways which mediate the effect
of microbial proteins on host responses as measured by
transcriptomic or proteomic read-outs. Flexibility is provided for
users to feed in the desired datasets at any given step of the
pipeline. Given the advent of new computational tools in inter-
species interactions and pipeline management platforms, it is
expected that an increasing number of dedicated bioinformatic
workflows for microbe-host interactions will be developed in
the near future.

DISCUSSION: OPPORTUNITIES AND
CHALLENGES

Opportunities
Clinical and Translational Research
Since the aforementioned computational tools help researchers
narrow down on both microbial and host components involved
in mechanistic cross-talks, the tools may discover molecules
which can delineate different clinical phenotypes. In addition,

TABLE 4 | Integrated pipelines used to infer microbe-host interactions by
combining heterogeneous -omic datasets.

Methodology Functionalities

MicrobioLink
(Andrighetti et al.,
2020)

Integrating microbe-host protein interaction networks with
host responses and host regulatory/signaling networks
using network diffusion principles

KBase (Arkin et al.,
2018)

Integrated platform enabling data sharing, integration, and
analysis of -omic datasets from microbes, plants, and their
communities by creating computational workflows

Li et al. (2015a) Identifying critical effectors involved in host-pathogen
interactions by integrating multiple lines of -omic evidence
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TABLE 5 | A non-exhaustive catalog of resources, tools and databases to compile
protein–protein interaction based workflows for inferring microbe
(microbiome)-host interactions.

Step in workflow Resource/Tool/Database

Source of
proteomes
(sequence
information)

UniProt (The UniProt Consortium, 2018), HumanPSD
(Hodges et al., 2002), YPD (Payne and Garrels, 1997),
PombePD (Costanzo et al., 2001), WormPD (Costanzo
et al., 2001), and SWISS-PROT (Bairoch and Apweiler,
1996)

Source of
proteomic datasets
(expression
information)

ProteomicsDB (Schmidt et al., 2018), Human Protein Atlas
(HPA) (Thul and Lindskog, 2018), PRIDE (Perez-Riverol
et al., 2019), PeptideAtlas (Desiere et al., 2006),
MassIVE.quant (Choi et al., 2020), jPOSTrepo (Okuda et al.,
2017), iProX (Ma et al., 2019), and Panorama Public
(Sharma et al., 2018)

Proteomic
annotations
(structural features)

InterPro (Mitchell et al., 2019), Pfam (El-Gebali et al., 2019),
ELM (Gouw et al., 2018), and PDB (Burley et al., 2017)

Protein sub-cellular
localization
(databases and
prediction tools)

ComPPI (Veres et al., 2015), HPA (Thul and Lindskog,
2018), LocDB (Rastogi and Rost, 2011), LocSigDB (Negi
et al., 2015), COMPARTMENTS (Binder et al., 2014),
eSLDB (Pierleoni et al., 2007), SCLpred-EMS (Kaleel et al.,
2020), DeepLoc (Almagro Armenteros et al., 2017),
PSORTdb (Peabody et al., 2016), SecretomeP (Bendtsen
et al., 2004), and Signal P (Armenteros et al., 2019)

Base information
for prediction of
PPIs

Domain-domain predictions – DOMINE (Raghavachari
et al., 2008) and Domain-motif predictions – ELM (Gouw
et al., 2018)

Quality control of
inferred PPIs (using
disordered region
prediction)

IUPred (Mészáros et al., 2018), PrDOS (Ishida and
Kinoshita, 2007), D2P2 (Oates et al., 2013), PONDR-FIT
(Xue et al., 2010), DISOPRED (Ward et al., 2004), MFDp2
(Mizianty et al., 2013), and Meta-Disorder (Kozlowski and
Bujnicki, 2012)

Network resources OmniPath (Türei et al., 2016), IntAct (Orchard et al., 2014),
Reactome (Fabregat et al., 2018), STRING (Szklarczyk
et al., 2017), HTRI (Bovolenta et al., 2012), and DoRothEA
(Garcia-Alonso et al., 2018)

Network diffusion
approaches

NBS (Hofree et al., 2013), HotNet (Vandin et al., 2011),
TieDie (Basha et al., 2013; Paull et al., 2013), RegMod (Qiu
et al., 2010), and stSVM21 (Cun and Fröhlich, 2013)

Databases for host
gene expression

GEO (Clough and Barrett, 2016) and ArrayExpress
(Parkinson et al., 2007)

they can also be possible targets for therapeutic interventions.
In other words, mechanistic predictions combined with clinical
meta-data have a dual-purpose – they provide information on
molecular components which could both represent and drive
clinical phenotypes (Younesi, 2015) and thereby could potentially
minimize our reliance on association-based biomarkers alone
which need not explain causality (Levenson and Mori, 2014).
The discovery of such mechanistic knowledge warrants the
combinatorial use of different methodologies including machine
learning and molecular interaction analysis. While many
community level studies have been conducted on meta -omic
datasets for the clinical classification of patients and the discovery
of associative biomarkers (Wen et al., 2017; Yu et al., 2020;
Clos-Garcia et al., 2019; Conteville et al., 2019), they have not
incorporated mechanistic inferences. On the other hand, most
mechanistic studies (Tables 2, 3) have been carried out on

particular pathogens/microbial species without including clinical
meta-data and/or clinical classifications.

Multi-omic approaches integrating heterogeneous -omic
datasets from patients have been implemented for several
diseases including IBD (Lloyd-Price et al., 2019) which are
associated with microbial dysbiosis. However, these studies do
not provide the required mechanistic insights for formulating
therapeutic interventions. Beltran and Brito (2019) devised an
integrated methodology to unravel the molecular mechanisms
underlying the microbe-host interactions associated with
various diseases such as colorectal cancer, IBD, obesity and
type-2 diabetes. The aforementioned study represents one of
the first and few initiatives to use community-wide microbe-
host interaction predictions using meta -omic datasets from
patients to discover mechanistic interactions driving the clinical
phenotypes. By combining orthology based approaches to
extrapolate interactions from experimental PPIs, machine
learning and patient derived -omic datasets, the authors
identified a subset of inter-species PPIs which are associated
with disease phenotypes (Beltran and Brito, 2019). Thiele
et al. (2020) published a novel study by integrating different
levels of information (dietary information, physiological
parameters, organ weights, and organ connectivities, etc.) and
datasets such as molecular -omics (proteomics, metabolomics,
metabolites produced by the gut microbiota) in an organ
specific manner to arrive at a whole-body-model of human
metabolism. Although not fully mechanistic, with this model, the
authors were able to predict biomarkers of inherited metabolic
diseases and host-microbiome co-metabolism. Such integrated
studies and workflows combining statistical and mechanistic
inference of multi -omic datasets awaits further adoption and
application in the research on various diseases associated with
microbial dysbiosis.

Research on Comparative Ecological Networks
The tools and resources listed in this review can be used to infer
and predict molecular interactions between species in several
contexts [microbe/microbiota in host, microbe/microbiota in
several hosts, microbe (vs) microbe, and microbiota (vs) microbe,
etc]. In almost all of the above-mentioned cases, molecular
interactions between the autonomous entities (be it species
or communities) could be driving the emergent phenotypes.
Since the tools discussed in this manuscript also concern
themselves with extrapolating interactions based on homology
between species-pairs, it could be a right fit to predict de novo
interaction relationships for species with very little experimental
interaction information.

For example, Crohn’s disease, a sub-type of IBD, is
characterized by the dysbiosis of the gut microbiome (Joossens
et al., 2011; Schaubeck et al., 2016; Shaw et al., 2016). This
results in persistent inflammation of the gut mucosal barrier
as a result of the unbalanced host responses (co-influenced by
host genetic factors as well) to the dysbiosed microbiome and its
various components such as proteins, metabolites, etc (Li et al.,
2014; Lavelle and Sokol, 2020). Some of the CD patients also
display lesions of the skin during or after therapeutic regimens
(Huang et al., 2012; Gravina et al., 2016). It is known that the
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skin also houses a complex microbial community which plays
a role in maintaining homeostasis (Schommer and Gallo, 2013;
Chen et al., 2018). Understanding the mechanisms by which CD
medications impact the microbe-host interactions in the gut as
well as the skin could help in avoiding the unintended side-effects
of therapy in CD.

Yet another relevant context to apply the tools discussed
herein is the inference of underlying molecular mechanisms
which mediate the evasion of immune responses by bacterial
pathogens in various hosts and their importance in transmission
between hosts. We recently showed that bacterial pathogens
and autophagy, a primary intracellular line of defense in
the host, are engaged in an evolutionary tug of war, as
evidenced by the presence of various interplays and cross-
talks (Sudhakar et al., 2019). Given the exposure of host
animals such as poultry and cattle to xenobiotic compounds
such as antibiotics, many zoonotic pathogens are under
constant selection pressure to evolve survival strategies to
modulate/evade/survive within the host animal (Harada
and Asai, 2010). This opens the door for impending risks
of transmission (from animal hosts to human hosts or
between various animal hosts) via the food chain of zoonotic
species which have been selected for survival over many
generations of persistence in the host (Farrell and Davies,
2019; Mollentze and Streicker, 2020). Microbe-host interaction
mechanisms are at the evolutionary cross-roads of such
transmission events between hosts. In this context, studying
such interactions is expected to provide deeper insights into
designing strategies to prevent and/or minimize spill-over
transmission events.

Challenges
Over the past decade, various advances in the domain of
computational analysis of microbe-host interactions have been
made. However, despite this progress, there remain many
challenges as described below. These challenges also present
opportunities and the need to come up with innovative
approaches and solutions.

Catching Up With Complex Infection Processes
Infection biology has taken new strides over the past years
with new molecule classes (Katiyar-Agarwal and Jin, 2010;
Rana et al., 2015; Duval et al., 2017; Long et al., 2017; Peters
et al., 2019; Acuña et al., 2020) and cell-types (Chattopadhyay
et al., 2018) being discovered as having a role in the infection
process. With that, novel interaction types between various
molecular classes are also unearthed (Silmon de Monerri
and Kim, 2014). In some cases, computational methods have
not caught up with molecular mechanisms. For example,
hepadnaviruses utilize host DNA ligases to generate covalently
closed circular DNAs which play a major role in mediating
viral infection and persistence (Long et al., 2017). Similarly
long non-coding RNAs are known to be involved in host-
pathogen interactions (Duval et al., 2017; Agliano et al.,
2019). However, till date, computational methods do not
exist to predict or infer the mechanisms by which the
viruses recruit the host DNA ligases or directly modulate the

biogenesis, conformation and activity of long non-coding RNAs.
Hence, computational method developments are always a step
behind the complexity associated with infection biology. This
gap is all the more prevalent for commensal organisms in
contrast to pathogens due to the constant and historically
prevalent study bias.

Lack of Experimental Datasets
Non-model organisms and non-pathogenic organisms such
as probiotics and commensals also suffer from a considerable
knowledge gap in terms of known/experimentally verified
molecular interactions. This affects the performance of
computational methods considerably due to the need for
large sets of true positives for the satisfactory performance
and assessment of predictive algorithms (Jiao and Du, 2016).
In addition, this also influences the coverage and accuracy of
interolog approaches since they harness already existing true
positive datasets for extrapolating to the species-pairs of interest
based on orthology.

False-Positives
As with any computational algorithm, microbe-host interaction
prediction methods also face the curse of false positives.
This issue could be exacerbated by the availability of
relatively small true positive (truly interacting) and true
negative (non-interacting sets) datasets (Jiao and Du, 2016).
Furthermore, the evolutionary distance and difference in
infection process between the template species-pairs and the
species-pair of interest as well as the absence of orthologous
molecular components involved in the interactions could
also contribute to the inflated false positive rates, reduced
performance and coverage.

Community-Wide Interaction Prediction
Most of the microbe-host interaction computational tools have
been directed at uncovering interactions corresponding to
individual microbe-host pairs. This is a major drawback of
existing methodologies, especially given the fact that phenotypes
related to health and disease are associated with changes in
community wide alterations (Clemente et al., 2012; Koboziev
et al., 2014; Wang et al., 2017; Bailey and Holscher, 2018;
Dominguez-Bello et al., 2019).

Modeling Dynamics of Microbe-Host Interactions
Last but not the least, current methods involved in microbe-
host interaction analysis are not equipped to handle the dynamic
nature of natural ecosystems and ecological niches in which the
interactions are embedded. Although it is a generic drawback
of many bioinformatic approaches, this challenge will need
coordinated efforts between modelers, experimental biologists
and bioinformaticians.

CONCLUSION

Since the advent and expansion of high-throughput sequencing
technologies, various observational studies of microbial
communities inhabiting various ecological niches (inside host
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organisms for example) have been carried out. This has
mostly resulted in associations with health- or disease-associated
phenotypes. However, there is a huge gap in terms of the
mechanisms mediated by these microbial communities and
how these mechanisms contribute to the observed phenotypes.
Despite the availability of experimental datasets which capture
some of these mechanisms such as PPIs, these are either confined
to model organisms or well-studied pathogens. Computational
approaches provide researchers with the tools to upscale
microbe-host interaction research by enabling them to make
de novo inter-species molecular interactions and to extrapolate
existing microbe-host interaction datasets to the species-pairs of
interest. Computational methods may aid the study of microbe-
host interaction by reducing the variable space, prioritizing
interactions, and eventually building hypothesis for further
experimental verification.
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