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At present, electroencephalogram (EEG) signals play an irreplaceable role in the
diagnosis and treatment of human diseases and medical research. EEG signals need to
be processed in order to reduce the adverse effects of irrelevant physiological process
interference and measurement noise. Wavelet transform (WT) can provide a time-
frequency representation of a dynamic process, and it has been widely utilized in salient
feature analysis of EEG. In this paper, we investigate the problem of translation variability
(TV) in discrete wavelet transform (DWT), which causes degradation of time-frequency
localization. It will be verified through numerical simulations that TV is caused by
downsampling operations in decomposition process of DWT. The presence of TV may
cause severe distortions of features in wavelet subspaces. However, this phenomenon
has not attracted much attention in the scientific community. Redundant discrete
wavelet transform (RDWT) is derived by eliminating the downsampling operation. RDWT
enjoys the attractive merit of translation invariance. RDWT shares the same time-
frequency pattern with that of DWT. The discrete delta impulse function is used to test
the time-frequency response of DWT and RDWT in wavelet subspaces. The results
show that DWT is very sensitive to the translation of delta impulse function, while
RDWT keeps the decomposition results unchanged. This conclusion has also been
verified again in decomposition of actual EEG signals. In conclusion, to avoid possible
distortions of features caused by translation sensitivity in DWT, we recommend the use
of RDWT with more stable performance in BCI research and clinical applications.

Keywords: EEG feature analysis, brain-computer interface, redundant representation, translation invariance,
wavelet transform, deep learning, artificial intelligence

INTRODUCTION

As an important tool for physiological disease diagnosis and brain-computer interface (BCI)
research (Khan et al., 2014), the research on EEG signal processing is a hot issue in academic
and engineering field (Rahman et al., 2021). EEG can be used to diagnosis diseases such as
encephalopathy (Jacob et al., 2021), epilepticus (Miki et al., 2019), and depression (Sharma et al.,
2018). EEG is a kind of electrical signal obtained from human scalp, which has the advantages
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of convenient acquisition and low cost. Because it is a non-
invasive detection method, although the safety is high, the
information obtained is relatively weak in energy. In addition,
the actual measurements often contain interference from
other physiological processes (e.g., EMG) and a variety of
measurement noise (e.g., base-line wander). In order to extract
the characteristic components that can truly represent the brain
activity, it is essential to use signal processing methods to process
EEG signals (Wang et al., 2019).

In EEG signal processing, fast Fourier transform (FFT) is
the most classical analysis method besides statistical analysis
(Chen et al., 2016; Li et al., 2021; Li and Chen, 2021). Because
FFT uses a trigonometric basis composed of triangular waves, it
is extremely suitable for analyzing periodic components (Chen
et al., 2021). However, it cannot effectively analyze and extract the
non-stationary components in EEG. In view of the shortcomings
of FFT, some improved methods with good performance have
appeared in recent years (Guarascio and Puthusserypady, 2017;
Rajeswari and Jagannath, 2017; Huang et al., 2019), such as short
time Fourier transform (STFT) (Demetgul et al., 2022), time-
frequency representation (Sheela and Puthankattil, 2021), and
sparse representation (Chen et al., 2021). Among the massive
novel signal decomposition methods reported in the literature,
wavelet decomposition is the most effective one because of
its strict mathematical foundation and high computational
efficiency (Huang et al., 2021). Both of continuous wavelet
transform (CWT) and discrete wavelet transform (DWT) are
widely been applied to EEG signal processing in clinical
diagnosis, and DWT receives more applications because it is
more convenient to be used (Real et al., 2014; Cordes et al., 2021).

In state-of-the-art literature, the understanding of EEG
not only includes the step of signal decomposition, but also
incorporates the utilization of decision methods to identify
or classify the analysis results (Cao et al., 2019; Gu et al.,
2021). Currently, such decision methods are mainly based on
statistical learning methods, and artificial intelligence is the
main development direction (Amin et al., 2019). Huang et al.
(2020) proposed an intelligent method, based on the combination
of convolutional neural network and sparse representation, to
enable automatic EEG classification. Khademi et al. (2022)
proposed a hybrid AI-based model for motor imagery EEG signal
classification based on CNN and LSTM. Shoji et al. (2021) studied
the detecting of abnormal patterns and electrodes in EEGs by
using a model inspired by CNN.

Although wavelet transform has achieved great successes in
EEG signal processing, its shortcomings have been revealed
constantly (Luo et al., 2020). One of the most serious problems
is translational variability of DWT. This problem originates
from the numerical implementation of DWT. To decompose
a signal, the time-frequency atoms of DWT originate from
a prototype scaling function and prototype wavelet function.
A tree-structured filter bank is employed to implement the
multiscale decomposition. Within the filterbank, downsampling,
and upsampling operators are utilized, which results in the
number of representation coefficients in the wavelet subspace
being less than the number of reconstructed signal coefficients.
Therefore, the analysis results of the conventional DWT are

sensitive to the translation of the input signal. This phenomenon
is known in the literature as translation variability (Li et al.,
2021). This phenomenon exists not only in DWT, but also in
wavelet packet decomposition (WPT), because the latter also
uses downsampling operations in the decomposition process.
This effect is hazardous for salient feature extraction of EEG
measurements. To solve this problem, a redundant discrete
wavelet transform (RDWT) that removes the downsampling and
upsampling operations can be used. In this paper, we take wavelet
transform as an example to study the effect of TV on EEG
feature extraction. The sensitivity of DWT and RDWT to signal
shift is analyzed. It is pointed out that DWT is actually a linear
variant system, and there are extra noises in its wavelet subspaces.
The above conclusions are verified by numerical simulation and
analysis of real EEG signals.

MATERIALS AND METHODS

Fundamentals of Discrete Wavelet
Transform and Redundant Discrete
Wavelet Transform
During the past decades, the concept of wavelet emerges as a
prototype function ψ(t)with fast decaying behavior. The wavelet
transform is conducted between the inner product of an input
signal and wavelet atoms. The latter is formed by scaling and
shifting the prototype function and it is denoted as ψ(t).

cj(k) = 2j/2
∫
+∞

−∞

x(t)ψ(2jt-k)dt, (1)

where cj(k) denotes the k-th coefficient at J-level decomposition
stage. In the discrete wavelet transform (DWT), the analog signal
x(t) needs to be replaced by a discretized series x(n) of length
N. In a J-level DWT decomposition, a scaling subspace (wj+1(n))
and J wavelet subspaces ({wi(n)|1 ≤ i ≤ J} ) are generated. The
theoretical spectral passing band (SFB) of wi(n) is denoted
byTSPB{wj} = [fs/2j+1, fs/2j]. The number of samples at wi(n)
is N/2i , and the number of samples at wj+1(n) is N/2J . Due to
the two scale relationship of the wavelet function, the numerical
implementation of wavelet can be achieved by an iterative process
(Figures 1A,B). In order to make the total number of samples
of the wavelet sequence generated by DWT the same as the
number of samples of the input signal, down-sampling of the
decomposition process and up-sampling of the reconstruction
process are widely used, which is also referred as a typical example
the multi-rate signal processing (Figure 1C). Although this can
improve the efficiency of the algorithm, it also causes some
adverse effects.

Shortcoming of Discrete Wavelet
Transform
With the increase of the number of wavelet decomposition levels,
the number of coefficients of the subspace decreases, while the
total length of the reconstructed subspace remains unchanged.
This means that longer data needs to be recovered with fewer
coefficients, which results in a significantly greater chance of
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FIGURE 1 | (A) The decomposition process of wavelet transform; (B) the reconstruction process of wavelet transform; and (C) the theoretical spectral passing band
of wavelet transform.

errors in the reconstructed signal. One of the shortcomings is
translation variability, which exists in every wavelet subspace of
DWT. Wang et al. (2010) and Sahoo et al. (2021) used multi-
harmonic signals to verify the influence of the TV property on
DWT analysis results. In order to suppress the side effect of
translation variability on the subspace reconstruction results, the
main measure is to increase the number of wavelet coefficients of
the decomposition process, which means that the overcomplete
expansion is introduced. Redundant discrete wavelet transform
(RDWT) shares the same wavelet bases with DWT. The only
difference is the removal of the upsampling and downsampling
operations in the filterbank.

RESULTS

Demonstrations of Discrete Wavelet
Transform and Redundant Discrete
Wavelet Transform in Delta Impulse
Decomposition
To test the translation sensitivity of DWT and RDWT, we
employ discrete delta impulse function δ(n− L)as input of
wavelet decomposition. The mathematical definition of δ(n− L)
is defined as in Equation (2). The output can be regarded as
wavelet functions in each wavelet subspace.

δ(n− L) =
{

1, for n = L
0, for n 6= L

(2)

Scheme of Signal Decomposition
In this sub-section, a numerical simulation is provided to
illustrate the TV of DWT. A discrete delta impulse function
is synthesized as input of DWT. In the simulated signal, the

parameters are set as N = 1000 and L = 500. The time domain
waveform of δ(n− L) is plotted in Figure 2A. A J-level wavelet
decomposition is used to decompose δ(n− L).

δ(n− L)

{DWT
−→ wJ,0(n), wJ,1(n), . . . ,wJ,L(n)
RDWT
−→ wr

J,0(n), w
r
J,1(n), . . . ,w

r
J,3(n)

(3)

To show the differences in the decomposition results,
we compare the subspaces in the frequency domain. The
Daubechies-8 (DB8) basis function, which has been widely
used in engineering applications, is selected for DWT and the
decomposition stage is set as 3. Without loss of generality,
the sampling frequency in the numerical simulation is set to
1,000 samples per second. Decomposition results of the wavelet
subspaces are shown in Figure 2B. From the decomposition
results, it can be seen that when the input signal is shifted, the
results of wavelet transform are quite different. Correspondingly,
we plot the fast Fourier spectrum of each decomposition result
(Figure 2C). From the FFT spectra, it can be found that
differences among these subspaces are not negligible. It is
generally believed that each subspace of the wavelet transform
has a well-defined spectral passing band, but from the numerical
simulation, due to the existence of translational variability, this
property is conditional. On the other hand, it can also be found
that this translation variability has some periodicity. For example,
as shown in the FFT spectra of w1(n), four sequentially shifted
inputs correspond to two different spectrograms. The periodicity
of TV for wj (1 ≤ j ≤ J + 1) can be summarized as below.

Periodicity of TV for wj =

{
2j 1 ≤ j ≤ J
2j j = J + 1

(4)

In order to investigate the effect of translations of input
signal on the decomposition results, another integer variable L̃
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FIGURE 2 | (A) Shifted versions of discrete delta impulse function; (B) time domain waveforms of wavelet subspaces generated by DWT; and (C) the FFT spectra of
the decomposed wavelet subspaces generated by DWT.

is introduced. That is, the input signal is set as shifted versions of
δ(n− L) to the right by a specific sample point L̃. By applying the
DWT and RDWT, we have the following decomposition results.

δ(n− L− L̃)


DWT
−→ w̃0,L̃(n), w̃1,L̃(n), w̃2,L̃(n), w̃3,L̃(n)
RDWT
−→ w̃r

0,L̃
(n), w̃r

1,L̃
(n), w̃r

2(n), w̃
r
3,L̃

(n)
(5)

To investigate the translation sensitivity of the two wavelet
transforms, we should compare the similarity between
decomposition results in Equation (3) and those in Equation
(5). As shown in Figure 3, when the input signal is shifted in
turn, the shape of both the time domain waveform and the FFT
spectrum of the wavelet subspace are exactly congruent. It can
be inferred that in this case, the wavelet transform has a well-
defined definition of the spectral passing band. By comparing
the analysis results of Figures 2C, 3C, it is clear that all the
decomposition results of DWT can be regarded as distorted,
because no wavelet subspace has the same spectrum as the results
of Figure 3C.

Demonstrations of Redundant Discrete
Wavelet and Redundant Discrete Wavelet
Transform in Electroencephalogram
Signal Decomposition
Description of Dataset
In order to evaluate the effect of translational variability
on the decomposition of actual EEG signals, test data
from clinical patients are used. The data for the analysis

were obtained from the EEG dataset delivered publicly
on the Internet by Neurology and Sleep Centre, Hauz
Khas, New Delhi. These recorded signals were sampled at a
frequency of 200 Hz.

Comparisons of Redundant Discrete Wavelet and
Redundant Discrete Wavelet Transform in
Electroencephalogram Signal Analysis
The EEG signal investigated in this subsection was collected from
ictal stages. The time domain series and its FFT spectrum are
shown in Figure 4A. Since the anti-aliasing filter is used in the
signal acquisition process, the signal characteristics are mainly
concentrated in the lower frequency band.

For comparison, the input signal is sequentially shifted by
one sample for a total of four times, and the translated signals
are decomposed by DWT and RDWT. Wavelet subspaces and
their FFT spectra, derived by DWT, are shown in Figures 4B,C.
In each wavelet subspace, time domain waveforms, derived
from translations of the signal, are different in shape. The
energy in the high frequency band w1 is comparatively
small, but their differences are prominent. Although time
domain waveforms in the low frequency band w4 are also
affected by TV, the differences are relatively small. Wavelet
subspaces and their FFT spectra, derived by RDWT, are shown
in Figures 4D,E. The decomposition results show that the
waveforms of the decomposition results of each shifted input
signal are exactly congruent due to the exact shift invariance
of RDWT. Summarizing the above analysis results, we can see
that TV will cause additional noise in the wavelet subspace,
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FIGURE 3 | (A) Shifted versions of discrete delta impulse function; (B) time domain waveforms of wavelet subspaces generated by RDWT; and (C) FFT spectra of
the decomposed wavelet subspaces generated by RDWT.

and the actual SPB is different from the theoretical SPB. The
influence of TV on the transient feature extraction in the
high frequency subspace is particularly significant. Therefore,
in the actual use of wavelet transform, we should try our best
to avoid the adverse effects of TV on the analysis results. In
other words, we recommend using RDWT. In the literature,
RDWT has been applied successfully in biomedical signal
processing (Zeng et al., 2020; Kumar et al., 2021; Madan
et al., 2022). However, it should be pointed out that the TV
property of DWT here is for the wavelet subspace, and the
wavelet transform satisfies the perfect reconstruction property for
the whole signal.

DISCUSSION

Comparison on Essential Differences of
Redundant Discrete Wavelet and
Redundant Discrete Wavelet Transform
Traditionally, scholars believe that the nature of the wavelet
transform is completely determined by the wavelet basis function.
In this paper, we show that the properties of the wavelet transform
are also affected by the structure of the filter bank. This issue has
rarely been studied systematically.

From the comparison of the above analysis results, it is
consolidated that TV has a significant impact on the analysis
results of discrete wavelet transform. DWT can be regarded is an
example of linear time variant system, while RDWT is an example

of LTI system. Therefore, even if they have the same time-
frequency pattern for the same input signal, the decomposition
results in the same subspace are still different.

Although DWT and RDWT are both linear transforms, their
sensitivities to input signal shifts are quite different. This property
is referred to the linear time-invariant (LTI) property in the
theory of signals and systems. Let x(t) and y(t) be the input and
output of a linear transform.

x(t)
Linear System
−→ y(t) (6)

Let τ be the translation in the time domain, the response of
x(t − τ) through the linear system is denoted by ỹ(t).

x(t − τ)
Linear System
−→ ỹ(t) (7)

If the response ỹ(t) is a delayed version of y(t) in time, i.e.,
ỹ(t) = y(t − τ) for arbitrary time delay τ , the system is known
as linear time invariant (LTI). While for a linear time variant
(LTV) system, the above equation cannot be satisfied. According
to this definition and the results of numerical simulation, we can
conclude that DWT is a concrete example of LTV and RDWT
is a concrete example of LTI. Therefore, DWT can be regarded
as an approximation of RDWT, which has higher computational
efficiency, but it causes distortion on the decomposition results.

In this paper, we take the DB8 wavelet basis as an example to
show that DWT has the problem of TV. The DB8 wavelet basis is
chosen because it is widely used in biomedical signal processing.
However, without loss of generality, for any basis function, as
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FIGURE 4 | (A) Time domain waveform and FFT spectrum of the investigated EEG signal; (B) wavelet subspaces generated by DWT; (C) FFT spectra of wavelet
subspaces generated by DWT; (D) wavelet subspaces generated by RDWT; and (E) FFT spectra of wavelet subspaces generated by RDWT.

long as the DWT decomposition method is used, TV is inevitable,
even if the support length of the wavelet basis is increased.

Alternative Solutions to Enhance Time
Invariance
Although RDWT satisfies the exact translation invariant property
in signal decomposition, it also greatly increases the amount
of computation. Based on the beneficial idea of improving TV

by redundancy, many approximate translation invariant wavelet
transforms have been developed. The most typical example is
the dual-tree complex wavelet transform, which uses one times
redundancy to achieve almost perfect translation invariance
(Celik and Tjahjadi, 2010; Huang et al., 2021). On the other
hand, because it is difficult to construct a new wavelet basis
in the time domain, scholars are more and more inclined
to design wavelet transform directly in the frequency domain
(George et al., 2020). Typical examples include the harmonic
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wavelet transform (Musha and Kumazawa, 2007) and the rational
dilation wavelet transform (Sharma et al., 2021). No matter what
kind of construction idea, it has been proved to have a good
performance in the practice of EEG signal processing.

Translation Variability in Convolutional
Neural Network
The pooling operation in CNN can be regarded as the down-
sampling operation in wavelet transform. If the pooling operation
is deleted in the CNN, the CNN also has the property of
translation invariance, but this increases the complexity of CNN
training. On the other hand, a large number of practices have
shown that for images, the pooling operation does not cause a
significant decline in classification accuracy.
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