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Synopsis
Hepatic steatosis is associated with obesity and insulin resistance. Whether hepatic glucose utilization rate (glucose
phosphorylation rate; MRglu) is increased in steatosis and/or obesity is uncertain. Our aim was to determine
the separate relationships of steatosis and obesity with MRglu. Sixty patients referred for routine PET/CT had
dynamic PET imaging over the abdomen for 30 min post-injection of F-18-fluorodeoxyglucose (FDG), followed by
Patlak–Rutland graphical analysis of the liver using abdominal aorta for arterial input signal. The plot gradient was
divided by the intercept to give hepatic FDG clearance normalized to hepatic FDG distribution volume (ml/min per
100 ml) and multiplied by blood glucose to give hepatic MRglu (μmol/min per 100 ml). Hepatic steatosis was
defined as CT density of �40 HU measured from the 60 min whole body routine PET/CT and obesity as body mass
index of �30 kg/m2. Hepatic MRglu was higher in patients with steatosis (3.3 +− 1.3 μmol/min per 100 ml) than
those without (1.7 +− 1.2 μmol/min per 100 ml; P < 0.001) but there was no significant difference between obese
(2.5 +− 1.6 μmol/min per 100 ml) and non-obese patients (2.1 +− 1.3 μmol/min per 100 ml). MRglu was increased
in obese patients only if they had steatosis. Non-obese patients with steatosis still had increased MRglu. There
was no association between MRglu and chemotherapy history. We conclude that MRglu is increased in hepatic
steatosis probably through insulin resistance, hyperinsulinaemia and up-regulation of hepatic hexokinase, irrespective
of obesity.
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INTRODUCTION

Recent interest in the hepatic accumulation of the glucose ra-
diotracer, F-18-fluorodeoxyglucose (FDG), has focused on three
issues: firstly, the validity of using the steatotic liver as a refer-
ence region for tumour FDG uptake in PET/CT [1–5]; secondly,
the possible use of FDG PET/CT to diagnose hepatic inflam-
mation, especially non-alcoholic steatohepatitis (NASH) [5,6]
and thirdly, the determinants of hepatic glucose utilization (MR-
glu; i.e. hepatic phosphorylation rate of glucose to glucose-6-
phosphate via hexokinase; transport constant k3; Figure 1), es-
pecially in hepatic steatosis, insulin resistance and metabolic
syndrome [7–9].

Choi et al. [7] were the first to use FDG PET to study hep-
atic glucose kinetics. They showed a dramatic increase in MRglu
(metabolic rate for glucose) following acute administration of
glucose in healthy subjects, an increase that was presumably me-
diated by insulin acting on hepatic hexokinase (k3). Iozzo et al.
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[8], employing the euglycaemic hyperinsulinaemic clamp, con-
firmed that insulin increases hepatic phosphorylation of FDG
to FDG-6-phosphate (FDG-6-P). Interestingly, they showed that
the increase in k3 in response to hyperinsulinaemia was at least
as marked in patients with low insulin sensitivity as in healthy
sedentary subjects (normal insulin sensitivity) and athletes (high
insulin sensitivity), suggesting that k3 remains sensitive to in-
sulin in patients with insulin resistance. In contrast, the de-
phosphorylation rate of FDG-6-P by glucose-6-phosphatase (k4)
was very slow and insensitive to hyperinsulinaemia in patients
with reduced insulin sensitivity.

Insulin resistance is strongly associated with obesity, type 2
diabetes mellitus and hepatic steatosis [10–16]. Patients with in-
sulin resistance have raised blood insulin levels [17]. It is there-
fore surprising that Borra et al. [9] subsequently found hepatic
glucose uptake to correlate inversely with hepatic steatosis in pa-
tients with type 2 diabetes and to be higher in normal subjects
compared with type 2 diabetics.
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Figure 1 Model of FDG kinetics with reference to the liver
K1 is hepatic blood flow, k2 is a diffusion constant, k3 is hexokinase
and k4 is glucose-6-phosphatase. FDG is assumed to mix throughout
its intrahepatic distribution volume (compartments 1 and 2) via K1 and
k2 by 2 min post-injection. De-phosphorylation (via k4) in compartment
3 is assumed to be slow enough to ignore. Patlak–Rutland analysis
therefore measures k3.

Although an association between obesity, hepatic steatosis and
insulin resistance is well established, how the three conditions
are linked remains uncertain. There is strong evidence to sug-
gest that insulin resistances and hepatic steatosis are driven by
obesity-induced adipokines [18]. However, not all patients with
hepatic steatosis are obese and not all obese patients have hepatic
steatosis [19,20]. No previous study has separated the relation-
ships of obesity and hepatic steatosis with MRglu. The purpose
of the present study therefore was to examine the relationship
between hepatic steatosis and MRglu and determine the separate
relationships of obesity and hepatic steatosis with MRglu.

MATERIALS AND METHODS

Patients
Sixty patients (47 men, age range 28–84, and 13 women, age
range 40–67) having routine, clinical PET/CT, mostly for the
management of cancer, were prospectively recruited for the study.
These patients formed the population for a study on a separate
issue concerning signal-to-noise ratio in PET published else-
where [21]. They were classified as obese if body mass index
was �30 kg/m2 and as having hepatic steatosis if CT density was
�40 HU [22], as determined from the CT component of their clin-
ical PET/CT study. Twelve had metabolically active lymphoma,
8 had inactive lymphoma, 26 had FDG-avid non-haematological
malignancy and 14 more had normal PET/CT. Twelve had re-
ceived chemotherapy within 6 months of their scan, 19 had re-
ceived chemotherapy >6 months previously (range 8 months
to 10 years) and 29 patients had received no previous chemo-
therapy (chemotherapy-naı̈ve). Five patients had type 2 diabetes
mellitus. There were none with type 1 diabetes mellitus. Patients
with known or suspected high ethanol intake were not included.
There were a total of 16 patients with no FDG avid malignancy,
no hepatic steatosis and no recent chemotherapy, considered to
be ‘almost normal’. Ethical approval was given by a National Re-
search Ethics Committee and all patients gave written informed
consent.

Imaging
Patients fasted for 6 h. Blood glucose was measured immedi-
ately before FDG injection using a glucometer (ACCU-CHEK
Performa; Inform ll strips; Roche). Prior to routine whole body
imaging, dynamic PET imaging was performed following i.v. in-
jection of 400 MBq (+−10 %) FDG, acquiring 30 × 1 min frames,
using a Siemens Biograph 64-slice 16 Truepoint PET/CT scanner
(Erlangen, Germany). Following the dynamic study, the patient
had routine PET/CT at 60 min post-injection; 3D emission data
were acquired at 3 min per bed position (PET reconstruction:
four iterations; subset 8; Gaussian pre-filter; FWHM 5 mm; mat-
rix size 168 × 168; zoom 1).

Image analysis
Hepatic clearance was measured from the dynamic data using
Patlak–Rutland analysis. Using Hermes software (HERMES),
liver activity was summed from regions of interest (ROI) of 3 cm
diameter each on approximately 20 transaxial images, avoiding
any suspected focal pathology in each transaxial image. Blood
pool activity was obtained from ROIs of 1.6 cm diameter care-
fully placed within the wall of the abdominal aorta in each of
approximately 20 transaxial images. Other workers have valid-
ated the use of the abdominal aorta for Patlak–Rutland analysis
[23,24], including the liver [23].

Patlak–Rutland graphical analysis
After correction for physical decay of F-18, the ratio of hepatic-
to-aortic counts/frame was plotted against the ratio of integral of
aortic counts-to-aortic counts/frame (Figure 2). The latter ratio
has units of time (‘normalized time’). The gradient of the plot
is proportional to hepatic FDG clearance (Ki) and the intercept
is proportional to the distribution volume of un-phosphorylated
FDG throughout the liver (V(0)) with the same proportionality
constant (see Appendix A). Ki was divided by V(0) to give hep-
atic FDG clearance per unit FDG hepatic distribution volume.
In healthy liver, V(0) is almost unity [7,8,25], indicating that
FDG rapidly penetrates not only the hepatic interstitial space but
also hepatocytes. Ki/V(0) is therefore effectively FDG clearance
per unit volume of lean liver and, according to standard equa-
tions linking K1, k2, k3, k4, Ki and V(0), is equal to k3 [7,8,25].
FDG does not penetrate hepatic fat, the presence of which con-
sequently physically dilutes the FDG signal [26]. Hepatic fat may
account for up to 30 % of the liver (equivalent to CT density of ∼5
HU [26]) in which case hepatic FDG clearance measured as Ki
would underestimate clearance into lean liver by 30 %. Moreover,
the distribution of hepatic fat is heterogeneous [27]. Expressing
clearance as Ki/V(0) is therefore desirable for determining the re-
lationship between hepatic MRglu and hepatic steatosis. Ki/V(0)
was multiplied by the blood glucose concentration (μmol/ml)
to give MRglu in units of μmol/min per 100 ml, where 100 ml
represents 100 ml fat-free liver. We assumed a lumped constant
of unity [28].

Patlak–Rutland analysis is valid when transport of tracer
is unidirectional along a single transport pathway. Mixing of FDG
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Figure 2 Examples of time compared with counts/frame curves
for the aortic blood pool (top), liver (middle) and Patlak–Rutland
plot based on these curves (bottom)
Note that the gradient of the plot (�y/�x) is proportional to FDG clear-
ance with the same proportionality constant as that relating the inter-
cept to the distribution volume.

between intrahepatic blood and hepatocytes (compart-
ments 1 and 2, Figure 1) is rapid because K1 and k2 are high
[7,8,25]. Conversely, the de-phosphorylation rate of FDG-6-P
via glucose-6-phosphatase appears to be very slow [8,25]. So
the only effective transport constant is k3, which reflects the
clearance of FDG by conversion to FDG-6-P.

Mixing of FDG between compartments 1 and 2 was assumed
to have been completed within 2 min of FDG injection so the
first 2 frame values were not included in the Patlak–Rutland plot.
Inspection of the plots revealed that they were essentially linear
from 3 to 30 min (Figure 2), consistent with this assumption.
This mixing time may seem short but is consistent with previ-
ously reported values of K1 and k2, which respectively range
from 0.01 to 0.015 and 0.013 to 0.016 s− 1 [7,8,25], and which
therefore give an equilibration rate constant of 0.023–0.031 s− 1.
This gives a time to 95 % equilibration of FDG between com-
partments 1 and 2 of 97–130 s. Munk et al. [25] also obtained
Patlak–Rutland plots that were linear within a very few minutes of
injection.

Statistical analysis
Normal distributions of data were confirmed using the Shapiro–
Wilk test, so parametric statistics were used. Values were ex-
pressed as mean +− S.D. Correlations were quantified using Pear-
son’s analysis. Significance of differences between patient groups
was tested using Student’s unpaired t test.

RESULTS

Patient demographics are briefly summarized in Table 1.

Effect of chemotherapy
Mean CT density in 29 chemotherapy-naı̈ve patients was 46 +− 9
HU compared with 43 +− 9 HU in 12 with a history of re-
cent chemotherapy (P = 0.33). Patients with distant chemo-
therapy had a mean CT density of 47 +− 11 HU (P = 0.8
compared with chemotherapy-naı̈ve patients). Corresponding
values of BMI were 28 +− 5, 28 +− 8 and 26 +− 4 kg/m2 (P > 0.1).
There was no significant difference in MRglu between patients
with recent chemotherapy (2.6 +− 1.3 μmol/min per 100 ml) and
chemotherapy-naı̈ve patients (2.3 +− 1.4 μmol/min per 100 ml;
P = 0.52).

Prevalence of hepatic steatosis in obese and
non-obese patients
CT density correlated inversely with BMI (CT density = 69–
0.83*BMI; r = 0.49; P = 0.0001; Figure 3). Of the 60 patients,
19 (32 %) had steatosis and 18 (30 %) were obese. Thirty-four
had neither steatosis nor obesity, whereas 11 had both. Of the 19
with steatosis, 8 (42 %) were not obese, whereas of the 18 who
were obese, 11 (61 %) had steatosis (Table 1).
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Table 1 Patient demographics (+−S.D. where indicated)

CT density (HU) BMI (kg/m2)

�40 >40 <30 �30

Male/female 16/3 32/9 32/10 16/2

Age (years) 60 +− 13 60 +− 12 62 +− 12 57 +− 13

Blood glucose (mmol/l) 6.4 +− 1.5 5.7 +− 0.6 6.3 +− 1.5 5.7 +− 0.7

Obese/non-obese 11/8 7/34 – –

Steatosis/no steatosis – – 8/34 11/7

PET FDG-avid/non-avid 13/6 21/20 23/20 11/6
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Figure 3 Relationship between CT density and BMI in all patients

Blood glucose levels
Blood glucose levels were slightly but significantly higher in
patients with steatosis (6.4 +− 1.5 mmol/l) compared with those
without (5.7 +− 0.6 mmol/l; P = 0.012) and in obese subjects
(6.3 +− 1.5 mmol/l) compared with non-obese (5.7 +− 0.7 mmol/l;
P = 0.035; Table 1).

Hepatic FDG clearance and MRglu
Liver and aortic blood pool time-activity curves followed similar
time courses (Figure 2). Relative to the intercept, Patlak–Rutland
analysis of dynamic hepatic and aortic blood pool activity there-
fore generated fairly shallow positive gradients that appeared to
be essentially linear from 3 to 30 min.

Mean MRglu in the almost normal 16 patients was
1.6 +− 1.2 μmol/min per 100 ml. In all 60 patients, there were
strong negative correlations between CT density and FDG clear-
ance (r = − 0.52; P < 0.0001) and between CT density and MR-
glu (r = − 0.56; P < 0.0001; Figures 4 and 5). In contrast, BMI
correlated weakly but significantly with MRglu (r = 0.32; P =
0.013) and showed an insignificant correlation with clearance
(r = 0.21; P = 0.11).

Consistent with the above correlations, MRglu was higher in
patients with steatosis (3.3 +− 1.3; n = 19) than in those without
(1.7 +− 1.2; n = 41; P < 0.001) but the difference between obese
(2.5 +− 1.6; n = 18) and non-obese patients (2.1 +− 1.3; n = 42)
was not significant (P = 0.2) (Figure 6). There was no signific-
ant difference in MRglu between 8 non-obese (2.9 +− 1.4) and
11 obese (3.5 +− 1.1) patients with steatosis (P = 0.27) (Fig-
ure 7). However, MRglu in these 11 obese patients with ste-
atosis was higher than in 7 obese patients without steatosis
(0.8 +− 0.7; P < 0.001). Similar results were obtained with respect
to FDG clearance instead of MRglu (Figures 6 and 7). Thus, clear-
ances were 0.51 +− 0.16 ml/min per 100 ml in steatosis compared
with 0.30 +− 0.21 ml/min per 100 ml in patients without steatosis
(P < 0.001) and 0.39 +− 0.23 ml/min per 100 ml in obese pa-
tients compared with 0.36 +− 0.21 ml/min per 100 ml in non-obese
patients (P = 0.62).

Of five patients with type 2 diabetes mellitus, four, all with
steatosis (CT densities: 36, 37, 37 and 38 HU), had high values
of FDG clearance (0.57 +− 0.11 ml/min per 100 ml) and MRglu
(4.5 +− 1.3 μmol/min per 100 ml). In contrast, one patient without
steatosis (CT density 50 HU) had low values (0.13 ml/min per
100 ml and 0.8 μmol/min per 100 ml respectively).

DISCUSSION

Hepatocytes, but not other cells, contain glucose-6-phosphatase,
which de-phosphorylatesglucose-6-phosphate and FDG-6-P via
pathway k4 (Figure 1). In the fasting state, hepatic glucose pro-
duction exceeds hepatic glucose uptake as a result of hepatic gly-
cogenolysis and the production of glucose-6-phosphate, thereby
maintaining the blood glucose level. FDG, however, is not in-
corporated into glycogen so the hepatic FDG-6-P concentration
depends on the balance of k3 and k4. Based on modelling of hep-
atic FDG kinetics, k4 has been shown to be low [8] or indeterm-
inate [7] in the fasting state. Dephosphorylation of FDG-6-P is
therefore slow and this is compounded by the relatively long time
required, via hexokinase, to generate sufficient phosphorylated
FDG for k4 to be clearly detectable. FDG clearance and MRglu
are therefore effectively determined by k3. Previous studies using
Patlak–Rutland analysis to measure hepatic glucose utilization
rate [8,9,25] recorded linear plots, as we have done, confirm-
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Figure 4 Relations of hepatic FDG clearance with BMI (left panel) and CT density (right panel)
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Figure 5 Relations of hepatic glucose utilization rate (MRglu) with BMI (left panel) and CT density (right panel)

ing a very low rate of FDG de-phosphorylation. Moreover, these
studies found Patlak–Rutland analysis to be robust for measur-
ing MRglu and independent of errors arising from the liver’s
dual blood supply that complicate measurement of the transport
constants using modelling [25,29].

We measured MRglu by multiplication with blood glucose
rather than plasma glucose. Ki and V(0) are lower when based
on plasma sampling than whole blood but Ki/V(0) is the same.
However, the distribution ratio of FDG between erythrocytes and
plasma exceeds 0.8 [30] and plasma glucose is only approxim-
ately 10 % higher than blood glucose. This means that plasma
FDG clearance is only approximately 10 % lower than blood
clearance and V(0) based on plasma sampling is similarly less
than when derived from blood sampling. To compare our values
of MRglu with literature values, we need therefore to take into
account that previous studies expressed Ki as blood clearance
and some as plasma clearance. We also need to take into account
that previous studies expressed Ki in terms of total liver volume,

including fat. Notwithstanding these limitations, our mean value
of MRglu in almost healthy patients of 1.6 μmol/min per 100 ml
is similar to values in healthy subjects reported by Choi et al.
[7] (2.1 μmol/min per 100 ml; n = 10) and Iozzo et al. [8]
(1.3 μmol/min per 100 ml; n = 16), but less than that of Borra
et al. [9] who obtained a mean value in eight healthy subjects
of 3.6 μmol/min per100 ml. Choi et al. [7] found V(0) to be
0.88 ml/g in healthy subjects, both fasting and after a glucose
load, whereas Iozzo et al. recorded a value in healthy subjects
of ∼0.8 ml/ml. V(0), however, will be lower in hepatic steatosis
because fat will increase V relative to V(0). Interestingly, in the
study of Iozzo et al. [8], V(0) was lower in subjects with low
insulin sensitivity, 0.75 ml/ml, perhaps because they had higher
hepatic fat burden. Munk et al. [25] performed Patlak–Rutland
analysis in pigs and obtained V(0) of 1.05 ml/ml but they ap-
peared to count whole blood rather than plasma.

Dividing Ki by V(0) has the advantage that it reflects MR-
glu in terms of lean hepatic volume and avoids the issues of
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Figure 6 Hepatic FDG clearance and MRglu are increased in
patients with hepatic steatosis (HS + ) compared with those
without (HS − )
In contrast, there are no significant differences between obese (Ob + )
and non-obese (Ob − ) patients (*P < 0.001; bars = S.E.M.).

Figure 7 Hepatic FDG clearance and MRglu are increased in
patients with steatosis (HS + ) whether or not they are obese
(Ob + )
In contrast, obese patients only have increased clearance and MR-
glu when they also have steatosis (*P < 0.001; øP < 0.01; ¶P < 0.01;
#P < 0.05; †P < 0.05; symbols identify paired columns for t test;
bars = S.E.M.).

fat signal dilution [26], fat distribution heterogeneity [27] and
blood compared with plasma clearance. Jones et al. [31] and
Subramanian et al. [32] also expressed FDG clearance in terms
of distribution volume in the lungs in patients with chronic ob-
structive pulmonary disease, where there are similar problems
because of variations in airspace volume in COPD (cf. fat in
the liver).

The duration of our dynamic acquisition may be considered
limited but longer acquisition periods risk patient movement
artefacts, especially in patient volunteers rather than motivated

normal volunteers [7–9], and a possible influence of k4 as intra-
hepatic FDG-6-P increases, so 30 min seemed reasonable. Others
used 40 min [8,9] or 60 min [7].

Physiological hyperinsulinaemia, mediated through an acute
glucose load, increases the liver-to-blood FDG concentration ra-
tio in normal subjects [7]. Hepatic steatosis is associated with in-
sulin resistance [10–16]. According to the data of Iozzo et al. [8],
k3, but not k4, appears unaffected by insulin resistance. Thus, they
showed that compared with fasting values, k3 increased during
euglycaemic hyperinsulinaemic clamp in patients with reduced
insulin sensitivity as much as in subjects with normal insulin
sensitivity. So in insulin resistance, hexokinase is up-regulated
as a result of hyperinsulinaemia and increases hepatic glucose
clearance. Conversely, glucose-6-phosphatase is insensitive to
insulin in insulin resistance. Thus Iozzo et al. [8] found that dur-
ing hyperinsulinaemia, k4 was much higher in patients with low
insulin sensitivity compared with those with normal or high sens-
itivity. So in fasting subjects with insulin resistance, k3 and k4 are
both up-regulated. Up-regulation of k3 is therefore the probable
explanation for the increased MRglu of steatosis. An alternative
explanation is increased FDG uptake in metabolically active in-
trahepatic leucocytes in patients with undiagnosed NASH. This
is unlikely however because NASH affects only approximately
10 % of patients with hepatic steatosis [33], meaning that only
two or three patients in our population would have had NASH.

In the only other study we are aware of to measure MRglu in
hepatic steatosis by dynamic FDG PET imaging [9], an inverse
association between hepatic fat content and glucose utilization
was found in patients with type 2 diabetes mellitus, contradicting
our findings. However, they measured hepatic FDG concentration
in absolute units so total liver volume, against which MRglu was
expressed, included fat, which may partly explain this discrep-
ancy. Nevertheless, the range of MRglu they reported is strikingly
similar to the range in our five diabetics.

Although obesity is associated with insulin resistance, we
found that MRglu was not increased in obese individuals who
did not have steatosis. Conversely, non-obese patients with ste-
atosis had increased MRglu. These data show that steatosis, and
not obesity per se, is associated with increased glucose utilization
and probably with insulin resistance.

Non-alcoholic fatty liver disease (NAFLD) is very common
and generally thought to be a complication of obesity. It is es-
timated that the prevalence of NAFLD in Caucasians is approx-
imately 75 % in obese subjects [14] and approximately 15 % in
non-obese subjects [19]. The overall prevalence of obesity is 20–
25 %, so the prevalence of NAFLD in the general population
is approximately 30 %. Of our 60 patients, 19 (32 %) had ste-
atosis. However, although our patients were not healthy and their
numbers small, we found that 42 % of these 19 with steatosis
were not obese, a rather high value that cannot be attributed to
chemotherapy.

In conclusion, hepatic glucose utilization is increased in hep-
atic steatosis, independently of obesity, probably as a result of
insulin resistance, hyperinsulinaemia and up-regulation of hep-
atic hexokinase.
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APPENDIX A

According to the theory of the Patlak–Rutland plot

FDG (t) + FDG6P (t)
C (t)

= Ki · T + FDG (t)
C (t)

(1)

where FDG and FDG6P are un-phosphorylated and phosphorylated
FDG concentrations in the liver, C is FDG concentration in blood
and T is normalized time [

∫
C(t)ċdt/C(t)]. Note that FDG(t)/C(t) is

V(0) and the intercept of the plot.
Re-arranging eqn (1)

FDG6P (t) +FDG (t)
C (t)

− FDG (t)
C (t)

= Ki · T (2)

Dividing through by FDG(t)/C(t) [i.e. V(0)],

[FDG6P (t) + FDG (t)]/C (t) − [FDG(t)]/C (t)
FDG (t) /C (t)

= Ki · T
V(0)

(3)

Let h and a be the proportionality constants relating hepatic
and arterial tracer concentrations to hepatic (HFDG and HFDG6P) and
abdominal aortic (A) counts, respectively, then

[h · {HFDG (t) + HFDG6P (t)}/a · A (t)] − [h · HFDG (t) /a · A (t)]
h · HFDG (t) /a · A (t)

= K i · T
V (0)

(4)

h and a cancel out so

[{HFDG (t) + HFDG6P (t)}/A (t)] − [HFDG (t) /A (t)]
T · [HFDG (t) /A (t)]

Ki
V(0)

(5)

([{HFDG(t) + HFDG6P(t)}/A(t)] − [HFDG(t)/A(t)])T is the gradient of
the plot based on raw counts and HFDG(t)/A(t) is the intercept.
Therefore, by dividing the gradient by the intercept, ROI of any size
can be used for the Patlak–Rutland analysis and there is no need
for attenuation correction of either hepatic or abdominal aortic
counts.
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9 Borra, R., Lautamäki, R., Riitta Parkkola, R., Komu, M., Sijens, P.E.,
Hällsten, K., Bergman, J., Iozzo, P. and Nuutila, P. (2008) Inverse
association between liver fat content and hepatic glucose uptake
in patients with type 2 diabetes mellitus. Metab. Clin. Exp. 57,
1445–1451 CrossRef PubMed

10 Deivanayagam, S., Mohammed, B.S., Vitola, B.E., Naguib, G.H.,
Keshen, T.H., Kirk, E.P. and Klein, S. (2008) Nonalcoholic fatty liver
disease is associated with hepatic and skeletal muscle insulin
resistance in overweight adolescents. Am. J. Clin. Nutr. 88,
257–262 PubMed
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