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ABSTRACT Objective: The central and autonomic nervous systems are deemed complex dynamic systems,
wherein each system as a whole shows features that the individual system sub-components do not.
They also continuously interact to maintain body homeostasis and appropriate react to endogenous and
exogenous stimuli. Such interactions are comprehensively referred to functional brain–heart interplay
(BHI). Nevertheless, it remains uncertain whether this interaction also exhibits complex characteristics,
that is, whether the dynamics of the entire nervous system inherently demonstrate complex behavior, or if
such complexity is solely a trait of the central and autonomic systems. Here, we performed complexity
mapping of the BHI dynamics under mental and physical stress conditions. Methods and procedures:
Electroencephalographic and heart rate variability series were obtained from 56 healthy individuals
performing mental arithmetic or cold-pressure tasks, and physiological series were properly combined
to derive directional BHI series, whose complexity was quantified through fuzzy entropy. Results: The
experimental results showed that BHI complexity is mainly modulated in the efferent functional direction
from the brain to the heart, and mainly targets vagal oscillations during mental stress and sympathovagal
oscillations during physical stress.
Conclusion: We conclude that the complexity of BHI mapping may provide insightful information on the
dynamics of both central and autonomic activity, as well as on their continuous interaction. Clinical impact:
This research enhances our comprehension of the reciprocal interactions between central and autonomic
systems, potentially paving the way for more accurate diagnoses and targeted treatments of cardiovascular,
neurological, and psychiatric disorders.

INDEX TERMS Brain–heart interplay, complexity, EEG, heart rate variability, fuzzy entropy.

I. INTRODUCTION
Brain-heart interplay (BHI) refers to the continuous func-
tional communication that affects the activity of the
autonomous nervous system (ANS) and the central nervous
system (CNS). Studies on BHI can reveal perspectives
facilitating the understanding of several patho-physiological
conditions [1], [2], [3], [4]. The BHI represents the functional
outcome of a network of chemical, electrical, and anatomical
connections that link the CNS and ANS, and has been found
to originate in the central autonomic network (CAN) [1],
[4], [5], [6], [7], [8]. The CAN is not ascribable to a
specific brain region, since it encompasses the medullary

areas, midbrain, and amygdala, as well as peripheral
autonomic terminations and cortical regions (e.g. medial
prefrontal cortex, insula) [9], [10]. More specifically, the
CAN encompasses several forebrain and brainstem areas as
well as the medial prefrontal, insular, and cingulate cortices,
extending to the periaqueductal gray matter, hypothalamus,
amygdala, and other regions of the medulla (e.g. nucleus of
the tractus solitarius, nucleus ambiguous, and others) [7],
[11]. CAN areas have specific functions and together perform
the complex activity of autonomic regulation; for example,
high forebrain areas and the amygdala play primary roles in
homeostatic-interoceptive regulation [1], [7], [11].
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Physiological variations in functional BHI also occur
in relation to several external stimuli, including emotional
elicitation [12], sleep stages [13], cognitive load [14],
deep breathing [15], and other autonomic manoeuvres [16].
Moreover, BHI time series have been shown to be altered by
neuropathological conditions such as mild depression [10],
epilepsy [17], and schizophrenia [18].

In this context, the directionality of the phenomenon
assumes extreme importance, because most of the attention
has been directed toward the neural control of autonomic
functions, disregarding the control in the opposite direction
and the influence of ANS over CNS activity. Indeed,
neural interference on cardiovascular activity has been
evaluated in relation to sympathovagal stimuli [16] or
mood disorders [10], as well as in the cardiac initiation
of electroencephalographic responses in emotional [12] or
somatosensory [19] elicitation.

The estimation of functional BHI is associated with a
number of technical challenges regarding the methodological
approach to be exploited, since it involves multimodal (in
most cases EEG and HRV) and multivariate (EEG channels)
variables, directionality (the brain–to–heart interplay does
not correspond to the heart–to–brain interplay), nonlinearity,
and different dynamical features. Several methodologies
have been developed for this purpose, and they singularly
differ in the main issue addressed: [20], [21], [22] focus
on the directionality of the BHI phenomenon, [23], [24]
disentanglement between linear and nonlinear interactions; if
on one side heartbeat evoked potentials [19] are specific for
brain response to the cardiac cycle, other works [16] focus on
instantaneous heartbeat response to brain activity; moreover,
an ad–hoc synthetic data-generation (SDG) model has been
developed and exploited in different contexts considering the
peculiarities of the BHI phenomenon [10], [12].

Functional BHI is intrinsically a time-varying phe-
nomenon, because it changes with its own dynamics in
response to different stimuli [1]. Brain and cardiovascular
time series are widely acknowledged to show highly nonlin-
ear and complex dynamics [25], [26], [27], [28], [29], and
BHI is known to extend to themultifractal domain [30]. In this
context, it is still unknown whether the time series associated
with BHI dynamics shows complex behaviour as well, and
if it is modulated by different conditions. In other words,
the nervous system as a whole has not been characterised,
accounting for its complex and nonlinear nature. Here,
we adopt the term complexity to refer to the degree of
regularity or predictability of the temporal patterns observed
in the signals of interest. Specifically, complexity refers to the
unpredictability of the present state of a physiological system,
identified by its time series, given a limited number of its past
samples [31].

The information-theory-based approaches are commonly
employed to quantify short-term complexity. In the frame
of time series analysis, these approaches originate from the
concept of conditional entropy, which is a measure of the
average remaining uncertainty or randomness in a time series,

taking into account its past values [31], [32]. To this extent,
conditional entropy-like metrics like approximate entropy,
sample entropy, and fuzzy entropy have been proposed to
quantify the complexity, irregularity, or unpredictability of
time series. However, they differ in their approaches and
sensitivity to the intricacies of the data.

Approximate entropy, introduced by Pincus [33], evaluates
the regularity or unpredictability of a time series by
comparing the likelihood of similar patterns of length m
repeating within a certain tolerance level r . While it has
been widely used to analyze the complexity of physiological
signals, it is sensitive to the choice of parametersm and r , and
its value may depend on the length of the time series. Sample
entropy [34] was introduced as a refinement of approximate
entropy by eliminating self-matches and providing a more
consistent estimation of the complexity of a time series.
Like approximate entropy, sample entropy compares the
occurrence of similar patterns within a tolerance level r , but it
is less sensitive to the choice of parameters and the length of
the time series. Fuzzy entropy (FuzzyEn) [35], [36] extends
the concept of entropy to incorporate the inherent fuzziness
or imprecision in real-world data. FuzzyEn employs fuzzy
membership functions to quantify the uncertainty and vague-
ness associated with complex systems more effectively than
other entropy measures. It is particularly advantageous when
dealing with noisy or imprecise data and provides a more
robust and nuanced understanding of the intricacies of real-
world time series. FuzzyEn also provides advantages related
to low dependency on data length [37].

These advantages come at the cost of defining and tuning
an extra parameter, the gradient of the fuzzy membership
function boundary, that is to be added to the usual param-
eter set comprehending similarity tolerance, embedding
dimension, and time series length. FuzzyEn has already
been exploited in physiological signal processing, specifi-
cally in EEG and HRV analysis in different experimental
paradigms [38], [39], to investigate brain activity complexity
in patients with Alzheimer’s disease [38], or cardiovascular
activity complexity differences between heart failure patients
and healthy controls [39].

In the present study, we performed a FuzzyEn analysis on
the BHI series to identify the complex brain-heart mapping
in physical and mental stress conditions. To explore the
temporal complexity of BHI, we exploited the output of the
SDG model [40], which provides time–resolved directional
BHI estimates at several frequency bands and scalp locations,
applied to two different datasets. The first is associated with
cognitive workload performed through consecutive mental
arithmetic calculations, and the second is associated with
the cold pressor test (CPT), an autonomic maneuver that
causes strong sympathovagal elicitation through thermal
stress.

More specifically, through CNS manipulation, experimen-
tal mental arithmetic approaches can activate the sympathetic
nervous system. Participants are usually required to complete
various cognitive tasks, often by clicking a button or
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performing algebraic calculations in a certain amount of
time [41]. Although mental arithmetic tasks have frequently
been investigated at the CNS [42], [43] and ANS [44] levels,
only a few studies have focused on their functional BHI
correlates [22]. In response to stress, variations in cardiac
output correlate with neural activity in the left temporal and
lateral frontal lobes [45], [46]. Additionally, the BHI appears
to grow in size, and the information flow from the scalp’s
post-central and central regions to the heart appears to grow
during mental arithmetic [47].

Several studies, also by the present authors, have exten-
sively investigated the BHI changes during CPT elicita-
tion [16], [30], [48]. The CPT is a test for examining the
body’s autonomic functioning as well as the CNS response
to intense temperature and sub–threshold pain stimuli [49],
[50], [51]. Through the enhanced sympathetic activity of
the ANS, CPT activates physiological systems such as the
baroreflex to maintain the body in a homeostatic state [52].
Pragmatically, it typically entails submerging a distal limb
(hand or foot) for a duration between 1 and 5min in cold
water. Numerous cortical and subcortical brain regions are
involved in the brain correlates of CPT, such as frontal regions
in various frequency bands, posterior-parietal areas in the
alpha band, and peripheral bilateral temporal regions in the
beta band [16], [51], [53].

To summarise, this study evaluated two hypotheses: BHI
has complex dynamics, and BHI complexity is modulated by
physiological changes obtained under different experimental
conditions.

II. EXPERIMENTAL DATA AND SIGNAL PREPROCESSING
This section provides a description of the experimental proce-
dure for data gathering. This study received formal approval
from the qualified ethics committee of the University of Pisa
under protocol number 0036590/2021.

A. MENTAL ARITHMETIC
The first dataset used in our study was the EEG
during mental arithmetic tasks dataset [54], which is
publicly available and has already been preprocessed.
We obtained it from the Physionet.org data reposi-
tory (https://physionet.org/content/eegmat/1.0.0/ ) [55]. This
dataset consists of concurrent recordings of electrophysiolog-
ical brain (EEG) activity, using a 10-20 standard 19 electrodes
cap, and a 1-lead cardiovascular (ECG) activity, sampled at
a frequency of 500Hz. The recordings were obtained from
36 healthy volunteers who underwent a 180s resting phase
and a 60s mental cognitive workload task, i.e., performing
mental arithmetic (MA).

Recordings from four volunteers were rejected owing to
gross artefacts on visual inspection; eventually, data from
32 participants (24 females) were retained for further process-
ing; their average age was of 18± 2.01 years. The eligibility
criteria were normal or corrected-to-normal visual acuity,
normal colour vision, no clinical manifestations of mental or

cognitive impairment, and no learning disabilities. The use
of psychoactive medication, drug or alcohol addiction, and
psychiatric or neurological complaints were also considered
as exclusion criteria.

To preprocess the EEG series, a power line notch filter at
50Hz and a [0.5 Hz − 45Hz] bandpass filter were applied
before independent component analysis, which was used to
identify artifacts (such as those caused by eyes, muscles, and
cardiac pulsation) that were subsequently rejected. Finally,
the channel series were re-referenced to the common average,
which is the most appropriate method for BHI studies [56].
Further details of signal acquisition and preprocessing can be
found in a previous study [54].

As reported in that study [54], volunteers were expected
to perform arithmetic tasks consisting of multiple mental
subtractions. Based on the number of arithmetic operations
completed per minute and the corresponding ease of complet-
ing the task, the cohort was divided into two groups. For one
group of participants (group BC), the task was particularly
difficult, whereas for the second group, the task was not
particularly challenging (group GC). After preprocessing,
10 participants were included in the BC group, with a mean
number of operations of 7 ± 3.6, while 22 participants were
included in theGC group, with amean number of subtractions
of 21 ± 7.4.

B. COLD PRESSOR TEST
The second dataset was collected from 30 healthy right-
handed individuals (26.7 years on average; 15 males) who
volunteered to participate in the study. The participants were
seated on a comfortable chair and underwent an initial 3min
resting state followed by the actual cold pressor stimulation,
which consisted of submerging their non–dominant (left)
hand into cold water, maintained at approximately 4 ◦C.
Participants were asked to hold the position for up to 3min,
which was considered as the time threshold for not eliciting
pain perception [50] however, they were free to remove their
hand if they felt uncomfortable. For this reason, six partic-
ipants did not reach 2min of cold pressor stimulation, and
their data were discarded from further analysis. Physiological
signals were recorded using a 128-electrode EEG and a
1-lead ECG obtained with a sampling frequency of 500Hz.
Researchers may obtain raw data through reasonable mail
requests if ethical requirements are met. After the CPT phase,
participants were required to maintain a resting position for
another 3min, thus undergoing a recovery phase.

On one side, an R-beat detection from the ECG series was
applied using the well-known Pan–Tompkins algorithm [57],
which was followed by an automated and visually inspected
artefact rejection, all implemented in Kubios Software [58].

On the other side, EEG signals were preprocessed through
the HAPPE pipeline, which has been extensively described
elsewhere [59] and implemented through the EEGLAB
toolbox in MatLab software (MathWorks Inc.) [60]. Briefly,
38 more external channels were rejected, and a bandpass
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filter between 1Hz and 100Hz and a notch filter at 50Hz
were applied. Subsequently, bad channels were removed
after identification as the most external 1% tail of a joint
distribution based on high-order statistical moments. The
HAPPE pipeline implements a wavelet-enhanced indepen-
dent component analysis to detect and remove periodic
artifacts (e.g. eye blinks, heartbeats, respiration), followed by
an automated ICA-based algorithm to remove the remaining
artifacts (e.g. muscular and motor) [59]. Eventually, the
electrodes removed as external joint distribution tails were
spherically interpolated, and the final 90 channels were re-
referenced to the common average as the most appropriate
method for BHI studies [56].

C. SIGNAL PROCESSING
The time-resolved power spectral density (PSD) of the EEG
series was calculated using a short-time Fourier transform,
employing a 1000 samples Hamming window (equivalent
to 2 seconds) and a 0.5 second step, yielding a 2Hz PSD
series. The PSD was then integrated into four classical EEG
frequency bands: δ[1 − 4)Hz, θ[4 − 8)Hz, α[8 − 12)Hz,
β[12 − 32)Hz, and γ [32 − 45)Hz. The time-resolved
PSD of the HRV series was analogously estimated with
a 2Hz sampling rate, using a smooth pseudo-Wigner-Ville
distribution integrated from 0.04 Hz to 0.15 Hz (LF band) to
estimate sympathovagal activity, and from 0.15 Hz to 0.4 Hz
(HF band) to estimate vagal activity.

D. BRAIN-HEART INTERPLAY ESTIMATION
BHI quantification was performed using the SDG model
presented in a previous study [40]. In this approach, the EEG
series refer to a multi-oscillator [61] model whose amplitudes
are generated by a first-order exogenous autoregressive
(ARX) model, with the exogenous term denoting information
transfer from the heart to the brain. In contrast, the RR series
are modelled by extending an integral and pulse frequency
modulation (IPFM) model proposed previously [62], where
the control function of sympathetic and vagal activity
quantifies information transfer from the brain to the heart.

In summary, for each combination of EEG bands and HRV
frequency components, a dynamic directional BHI series
was computed. The main idea behind the conceptualization
of this model is that the electrophysiological signals of the
two systems are not independent of each other, and the
functional coupling terminology attempts to formalize these
interactions. Thus, a positive value of Cα→HF (tn) indicates
that the EEG band α at time tn has a positive effect (i.e.,
it leads to a linearly proportional increase) on the PSD
from the HRV series in the HF range. This is quantified
through the inverse model formulation, which estimates
the control function term in the IPFM model related to
heartbeat dynamics (i.e., brain-to-heart interplay) and the
exogenous term of the ARX model associated with EEG
dynamics (i.e., heart-to-brain interplay). The inverse model
formulation and derivation of the entire BHI biomarker
suite are extensively described in previous studies [10],

TABLE 1. BHI indices extracted through the model.

[12], [40], and an easy-to-use MATLAB implementation is
freely available [63]. The computational model runs over
the entire experimental window and takes the PSD extracted
as described in Section II-C as input. At each time instant
that the PSD is sampled, the model provides a corresponding
time-varying BHI estimation that is sampled coherently with
the PSD sampling. This approach ensures that the BHI
estimation is accurately synchronized with the physiological
signals being analyzed. The directional BHI indices listed in
Table 1 were calculated for further consideration.

E. DERIVATION OF COMPLEXITY MAPPING FOR
BRAIN-HEART INTERPLAY SERIES
As mentioned previously, the complexity of the BHI
time–resolved series u(i) : 1 ≤ i ≤ N calculated using the
SDGmodel was quantified using the FuzzyEn algorithm [35].
To achieve this, a specific embedding dimension m must be
used to reconstruct the system phase space, and the distance
dmij between two vectors in such a phase space is formulated
as follows:

dmij = max
k∈(0,m−1)

{
|u(i+ k) − E [u(i)] − (u(j+ k) − E [u(j)])|

}
(1)

where (i, j = 1 : N − m, j ̸= i), and E is the expectation
operator. The fuzzy membership function µ(dmij , n, r) was
used to define the similarity degree Dmij , as described
in Eq. 2:

Dmij = µ(dmij , n, r) = exp
(

−(dmij )
n

r

)
(2)

where n and r are the gradient of the boundary and the
width of the exponential function, respectively. At this point,
FuzzyEn of an N -point time series can be formulated as
follows:

FuzzyEn(m, n, r,N ) = lim
N→∞

[lnφm(n, r) − lnφm+1(n, r)]

(3)

where φm(n, r) is the function

φm(n, r) =
1

N − m

N−m∑
i=1

[
1

N − m− 1

N−m∑
j=1,j̸=i

Dmij

]
(4)

The parameter r was set to r = ρ · SD, and n was set
to 2, in accordance with previous studies [35], [64], where
ρ is the tolerance set to 0.2 and SD is defined as the
series standard deviation. The pseudo-optimal embedding
dimensionm = 3 is calculated by maximising the probability
that the estimate is valid [65]. This work is inspired by our
preliminary study [66].
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F. STATISTICAL ANALYSIS
For each experimental dataset, FuzzyEn was calculated
separately, thereby obtaining a single estimate for each
subject and experimental condition. Prior to the complexity
quantification through the FuzzyEn algorithm, we statisti-
cally assess whether a BHI time series showed nonlinear
and complex dynamics by testing two null hypotheses. The
first test hypothesized linearity using the nonlinearity test
proposed by Barnett and Wolff [67], which uses the third-
order moment and bispectrum of the time series, as well as
the amplitude-adjusted Fourier transform algorithm to extract
surrogate time series [68]. The second test hypothesized
chaotic dynamics by testing for a positive Lyapunov exponent
using the Jacobian method described by Ellner et al. [69],
as implemented by Bensaida [70]. Of note, physiological
noise underlying BHI dynamics may contribute to a positive
Lyapunov exponent. Only time series that were verified
as both nonlinear and chaotic underwent the FuzzyEn
implementation. Approximately 99% of the experimental
time series were associated with a nonlinear dynamical
system and with a positive Lyapunov exponent, and less than
1% of the series were discarded.

Non-parametric statistical analysis for repeated measures
was implemented to investigate the differences in BHI com-
plexity between the experimental conditions. The Friedman
test was used as a group-wise statistical test with CPT data
comparing resting state, cold pressor test, and recovery phase
together. Pairwise comparisons were implemented using a
non-parametric Wilcoxon test for paired samples on MA
data, comparing resting phase to mental calculation, and on
CPT data, comparing R vs CPT, R vs recovery, and CPT vs
recovery.

We generally set the statistical significance at α = 0.05.
As the pairwise comparisons on CPT data were repeated
three times, we corrected the statistical threshold by applying
Bonferroni correction, having α1

= α/3 = 0.01667.
All statistical comparisons were performed on FuzzyEn
estimates for each EEG channel. To account for multiple
comparisons on the channel dimension, we performed a
p–value correction using cluster–mass permutation correc-
tion, while also assessing the physiological plausibility of the
results [71].

Finally, we compared the normalized FuzzyEn values
(task condition relative to rest state) between the BC and
GC groups using the non-parametric Mann-Whitney test
for independent samples. This aimed to explore potential
differences in BHI complexity based on the difficulty or
performance of the calculation task within the MA dataset.

III. EXPERIMENTAL RESULTS
A. MENTAL ARITHMETICS TASK
The estimation of FuzzyEn on the BHI series gathered from
theMA dataset led to different topographical distributions for
the combinations of the four EEG and two HRV frequency
bands considered. Median across subjects topographies are

reported in Figure 1 and 2 of the Supplementary material,
related to resting state and MA task phase respectively. The
non-parametric statistical comparison of paired samples in
the two experimental phases (i.e. resting state and mental
arithmetic task) yielded the results presented in Figure 1.a.

The two phases did not significantly differ in terms of
BHI estimation in the top–down direction, going from the
brain to the heart, or in the opposite direction, considering
the HRV–HF frequency band. Significant differences were
found in the BHILF→brain complexity estimates, particularly
considering the θ and α bands, in the left dorso-parietal and
right frontal region for the θ band, and the left temporal and
bilateral frontal area for the α band.

Going more deeply into the analysis, the BHI indexes
calculated from the two experimental groups split by looking
at their arithmetic performances were compared, and the
results are presented in Figure 1.b. Specifically, the BHI
complexity net variations (for all combinations of frequency
bands and scalp locations) given by the experimental elici-
tation were extracted for each subject ((FuzzyEn(BHIMA) −

FuzzyEn(BHIR))/FuzzyEn(BHIR)) to isolate the effect of
mental arithmetic. Interestingly, significant differences were
found in the top–down direction, particularly involving
the HRV–HF frequency bands and all the EEG–derived
bands, except for the θ band. Specifically, the BHIδ→HF
complexity is different in the central–anterior and left
fronto-temporal scalp areas, whereas BHIα→HF complexity
differences highlight a central scalp region, and almost the
same central area with the addition of a left frontal electrode
is also highlighted by the statistical analysis of the BHIβ→HF
complexity. Notably, these significant differences arise from
higher BHIbrain→HF complexity estimations in the GC group
or alternatively lower estimations in the BC group. No further
difference, were detected in the bottom–up BHI direction.

B. COLD PRESSOR TEST
The estimation of FuzzyEn on the BHI series gathered from
the CPT dataset led to different topographical distributions
for the combination of the five EEG and two HRV frequency
bands considered. Median across subjects topographies are
reported in Figure 3, 4, and 5 of the Supplementary
material, related to resting state, CPT, and recovery phase
respectively. A non-parametric statistical analysis comparing
the experimental conditions (i.e. resting state, CPT, and
recovery phase) provided the results presented in Figure 2.

Figure 2.a reports the group–wise statistical comparisons
for paired samples performed using the non-parametric
Friedman test. The experimental phases do not differ in the
complexity of BHI when the vagal HF frequency band is
involved, both in the bottom–up and top–down directions,
exception given for a right frontal region in the BHIHF→γ

interplay. In contrast, several significant differences are high-
lighted considering the sympathovagal HRV-LF frequency
band. Specifically, in the bottom-up direction BHILF→brain
both the δ, θ and α band are diffusely significant. More
in detail, all the scalp except for an occipital region is
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FIGURE 1. Topographical representation of the statistical analysis performed on the MA dataset. The white regions indicate
non-significant comparisons, while the red and blue areas show significant differences in which the first or second group had
higher values, respectively. Panel a) shows the results of the non-parametric Wilcoxon test for paired samples, which compared the
median FuzzyEn of BHI extracted during the resting state (R) and mental arithmetic task (MA). Panel b) shows the results of the
non-parametric Mann-Whitney test for independent samples, which compared the normalised difference of the median FuzzyEn of
BHI series extracted from the good counter group (GC) and the bad counter group (BC). The normalised difference was calculated as
(MA - R)/R.

found significant in the BHILF→α complexity analysis,
whereas the left temporal and frontal are, as well as the
right temporal and dorso parietal are significant considering
the BHILF→θ complexity analysis. Intriguingly, statistically
significant differences were detected from the analysis of
BHIbrain→LF complexity considering the right hemisphere in
the EEG-α band, and a left centro-temporal region in the
EEG-θ band.
The post-hoc comparison results are shown in Figure 2.b

(R VS CP) in Figure 2.c (CP VS rec), and Figure 2.d (R
VS rec). The significant differences found in the group–wise
comparisons can be ascribed to a higher level of complexity
during the initial resting state considering the top-down BHI
direction. Indeed, both figures 2.a, and 2.c report significantly
higher BHI complexity during the resting state than during
both the CP (only the EEG-α band) and recovery phases
(in all frequency bands except for the γ band). Thus, the
strong sympathovagal elicitation provoked by CPT entails
a significant decrease in terms of BHI complexity, which
is quite diffuse across the scalp and the EEG spectrum, but
limited to the HRV–LF frequency band.

In addition, increasing BHI complexity during CPT phase
should be the reason for the significant comparisons high-
lighted in figures 2.a, 2.b and 2.c in bottom–up BHILF→brain
statistics. The blue areas are reported in Fig. 2.b, which shows
differences between the resting phase andCP, reflecting lower
values during rest than in CP, particularly in the BHILF→θ

and BHILF→alpha complexity, whereas the red regions are
reported in fig. 2.c, reflecting higher values during CP with
respect to recovery, in all BHILF→brain band complexities,and
diffuse across the scalp. Eventually, the BHIHF→γ significant
differences highlighted in Fig. 2.a, looking at Fig. 2.d seem

to be associated to a decrease in complexity from the resting
state to the recovery phase.

IV. DISCUSSION AND CONCLUSION
The high level of complexity in EEG and HRV time series
has been extensively studied under several conditions, and
the central and autonomic nervous systems are widely
known to have a physiological interplay whose dynamics
are affected by, and reasonably affect, patho-physiological
changes; nevertheless, complexity at the BHI level has not
yet been properly assessed. To this end, in this study,
the complexity modulation of a functional BHI series was
investigated using two different datasets with diverse exper-
imental environments. Time–resolved functional directional
BHI has been estimated with an ad hoc model combining
EEG and HRV series [40] for both heart–to–brain and
brain–to–heart directions and considering multiple frequency
bands accounting for cerebral and cardiovascular activity.
Complexity in the BHI time series was quantified using the
FuzzyEn algorithm owing to its reported robustness to noise
and low sensitivity to parameter selection, together with its
specificity, being a complexity measure, compared to the
more commonly used approximate or sample entropy.

The experimental results confirm that the functional BHI
series may be considered as the output of a nonlinear system
whose complexity is modulated by physiological changes.
Moreover, such complexity modulation seems to occur in
both the directions of the phenomenon (i.e. heart–to–brain
and brain–to–heart), over non–specific brain regions, and
over different EEG and HRV frequency bands.

More specifically, a cognitive workload task such as the
repetitive subtractions required in the MA dataset led to
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FIGURE 2. Topographical representation of the statistical analysis performed on the CPT dataset. Panel a) shows the results of the non-parametric
Friedman test for paired samples, which compared the median FuzzyEn of BHI extracted during resting state (R), cold pressor test (CP), and recovery
phase (rec). White regions indicate non-significant comparisons, while red areas represent significant differences. Panels b), c), and d) show the
results of the non-parametric Wilcoxon test for paired samples, comparing the median FuzzyEn of BHI during R-vs-CP (b) , CP-VS-rec (c), and
R-VS-rec (d). White regions represent non-significant comparisons, red areas indicate significant differences in which the first group had higher
values than the second, and blue sections represent the opposite.

a significant increase in BHI complexity in the direction
from the heart to the brain, involving the sympathovagal
component LF of the cardiovascular activity spectrum and
diffuse regions of the scalp particularly considering the EEG–
θ and α oscillations (see Fig. 1). Intriguingly, statistically
significant regions were detected by comparing the BHI
complexity of the two experimental groups, individuated
by [54] and differentiated according to their arithmetic
performance (the number of calculations reached in the same
amount of time). Specifically, the GC group showed higher
BHI complexity in the direction from the brain to the heart,
involving EEG– δ (in a central region), α (in right parietal
area), and β (in similar scalp locations) frequency bands.
This may suggest that the cognitive workload such as the
MA diffusely affect ascending BHI complexity, and different
amounts of stress are induced by the same task in two separate
groups of people. Indeed, previous studies have already
analysed the MA dataset, and there is a general consensus
regarding the low levels of stress in the GC group (i.e., the
one with better arithmetic performance) and the high stress

levels in the BC group [72], [73], [74], [75], [76]. Keeping
this in mind, future studies should aim to further evaluate
whether the stress level modulates BHI complexity more than
the cognitive load per se.

The analysis of the CPT dataset, which has already been
extensively employed in studies of absolute changes in
functional BHI [16], [30], [48], yielded significant insights
into BHI dynamics. Previous studies have already shown that
BHI intensity is strongly affected by CPT elicitation [16],
[40], [48], cerebral and cardiovascular multifractal dynamics
are coupled [30], and BHI changes are not strictly limited
to the CPT phase, but the return to homeostatic equilibrium
persists during recovery [22], [48]. Now we also know
that CPT–elicited BHI changes extend to the complexity
domain in a very peculiar way, particularly in relation to the
sympathovagal HRV–LF frequency range. Significant group-
wise variations are detected in the brain–to–LF direction,
and the bottom sub-panels in Fig. 2 indicate that these
variations are entirely imputable to a significant decrease in
BHI complexity after the stimulation onset (CPT beginning),
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with respect to the resting state, that persists even during
recovery.

Conversely, in the opposite direction, a temporary sig-
nificant increase in complexity may occur during CPT,
which then returns to normal during the recovery phase.
These modulations primarily appear in both hemispheres
(based on group-wise comparisons) within a frequency
band ranging from 1 to 12Hz (encompassing δ, θ , and α

bands), and exhibit a higher level of detail in pair-wise
comparisons (i.e., restVSCPT andCPTVS recovery). Indeed,
in one study [48], a consistent and bidirectional significant
BHI intensity variation was found between the same EEG
frequency bands and the sympathetic activity, as in [16],
where unidirectional brain–to–heart information transfer was
investigated. Notably, a previous study [48] also reported
significant variations in the interplay between EEG bands
and vagal-specific activity from the resting state to CPT and
from CPT to recovery. This does not disagree with the results
reported here, since the HRV–LF frequency range is not a
specific biomarker, being related to both sympathetic and
vagal activity. Taken together, the results of the present study
and those in the related literature suggest that the variations in
BHI intensity found to be associated with the HRV–LF band
extend to the nonlinear and complex dynamics, whereas those
associated with the HRV–HF band do not.

The fact that the interplay between cerebral and cardio-
vascular dynamics shows a complex behaviour was a clear
finding in the present study, supported by both the knowledge
that the two systems per se have complex behaviours and
that the underlying interplay involves multiple structures
and can be associated with multiple feedback mechanisms
occurring (but not limited to) at the hormonal, mechanical,
and electrical levels. This observation is further supported
by the fact that functional BHI encompasses the multifractal
domain [30], thereby introducing an additional level of
complexity. Nevertheless, BHI complexity has not been
investigated to date, and the authors believe that its mod-
ulation should be further addressed in studies focused on
the several patho-physiological conditions associated to BHI
dynamic changes, including mental or mood disorders.

The limitations of this study are mainly related to the
limited parameter space investigated; indeed, an exhaustive
exploration of such a space would provide a better under-
standing of the phenomenon, and parameter optimisation
associated with the specific patho-physiological conditions
under study should be of interest.

The translational medicine aspects of quantitatively assess-
ing functional brain-heart interplay through EEG and ECG
signals can contribute to the diagnosis and treatment of
various disorders. For instance, BHI-related biomarkers has
been used to study the effects of neurological conditions like
epilepsy, Alzheimer’s disease, and Parkinson’s disease on
cardiac function [77], [78]. Similarly, it has been employed
to investigate the impact of cardiovascular diseases, such as
myocardial infarction and arrhythmias, on brain activity [79].
Furthermore, it has shown potential in predicting treatment

outcomes and monitoring the effectiveness of therapeutic
interventions [80].

In conclusion, this study showed that the BHI dynamics
have a complex behaviour which changes across the scalp,
spectrum, and experimental case, providing meaningful
insights into brain–heart neurophysiology and enriching
the set of biomarkers that may be used for dynamic
characterisation of the system as a whole.
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