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Purpose: Using machine learning method to predict and judge unknown data offers opportunity to improve accuracy by exploring
complex interactions between risk factors. Therefore, we evaluate the performance of machine learning (ML) algorithms and to
compare them with logistic regression for predicting the risk of renal function decline (RFD) using routine clinical data.
Patients and Methods: This retrospective cohort study includes datasets from 2166 subjects, aged 35–74 years old, provided by an
adult health screening follow-up program between 2010 and 2020. Seven different ML models were considered – random forest,
gradient boosting, multilayer perceptron, support vector machine, K-nearest neighbors, adaptive boosting, and decision tree - and were
compared with standard logistic regression. There were 24 independent variables, and the baseline estimate glomerular filtration rate
(eGFR) was used as the predictive variable.
Results: A total of 2166 participants (mean age 49.2±11.2 years old, 63.3% males) were enrolled and randomly divided into a training
set (n=1732) and a test set (n=434). The area under receiver operating characteristic curve (AUROC) for detecting RFD corresponding
to the different models were above 0.85 during the training phase. The gradient boosting algorithms exhibited the best average
prediction accuracy (AUROC: 0.914) among all algorithms validated in this study. Based on AUROC, the ML algorithms improved
the RFD prediction performance, compared to logistic regression model (AUROC:0.882), except the K-nearest neighbors and decision
tree algorithms (AUROC:0.854 and 0.824, respectively). However, the improvement differences with logistic regression were small
(less than 4%) and nonsignificant.
Conclusion: Our results indicate that the proposed health screening dataset-based RFD prediction model using ML algorithms is
readily applicable, produces validated results. But logistic regression yields as good performance as ML models to predict the risk of
RFD with simple clinical predictors.
Keywords: deep learning, chronic kidney disease, algorithm, health examination

Introduction
Globally, chronic kidney disease (CKD) is recognized as a public health challenge and leads to high rates of morbidity,
mortality and healthcare expenditure. In 2017, there were 1.2 million people died from CKD and 697.5 million cases of
all-stage CKD were recorded, for a global prevalence of 9.1%.1 In 2012, the overall prevalence of CKD was 10.8% in
China.2 The growth of noncommunicable diseases under profound societal and environmental changes has shifted the
spectrum of CKD in China toward patterns similar to those of developed countries, which have enormous impacts on the
Chinese health-care system.3
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Early detection and surveillance, which enable its prompt management, comprise the main clinical management
strategy. A practical prediction model would allow increased surveillance of at-risk population and reduce surveillance of
population who are less likely to develop CKD. Established approaches to CKD risk assessment, such as the equations
for predicting risk of incident CKD developed from more than 5 million individuals from 34 multinational cohorts,
predict future risk of CKD based on well-established risk factors such as age, gender, estimated glomerular filtration rate
(eGFR), history of cardiovascular disease, ever smoker, hypertension, body mass index, and albuminuria concentration.4

These risk factors have recognized associations with CKD and feature within most CKD risk prediction tools (eg,
CRONICAS-CKD risk score, Framingham, D:A:D study).5–7

However, current standard disease risk assessment models make an implicit assumption that each risk factor is related
in a linear fashion to disease outcomes.8 Studies have been conducted to try to use routinely obtained laboratory tests to
predict disease progression.9 Such models may oversimplify the complex relationships between variables, which contain
a large number of risk factors with non-linear interaction. Machine learning (ML) methods have gained traction as an
alternative approach to standard prediction modelling that may address current limitations, which include notably neural
networks, support vector machine, random forest, and gradient boosting machine, and etc. One of the main strengths of
these techniques is that they capture nonlinear relationships in the data, as well as interaction between predictors.10–12 In
addition, ML may identify latent variables that are unlikely to be observed, but might be inferred from other variables.13

Accordingly, in the present study, we aimed to develop models using ML to predict the renal function decline (RFD)
using health screening record data in a retrospective cohort study with moderate sample size and compare the
performance of the models developed from ML and the traditional regression technique. Furthermore, we determined
the importance of contributing factors related to the RFD prediction performance.

Materials and Methods
Study Population
We conducted analyses in the XY3CKD Follow-up Program, a cohort study of CKD monitoring established by the
Health Management Center of the Third Xiangya Hospital in Chinese adults aged 35–74 years.14,15 The baseline study
was conducted between 2010 and 2014 on a total of 2762 participants. The follow-up health examinations were
conducted ~6 years (6.45 ± 0.82 years) after the baseline visit between 2017 and 2020 on 2166 participants (response
rate 78.4% among eligible participants). Ineligible participants included people who died and who failed to complete the
follow-up health surveys or questionnaires between baseline and follow-up visit. All eligible participants responded to
a standardized interview, and underwent a clinical examination at both baseline and follow-up visits. The research
protocol and procedures were approved by the Research Ethics Board (IRB approval number: 2016S077) at the Third
Xiangya Hospital, Central South University. The IRB granted a waiver of the requirement to obtain informed consent,
given the retrospective study design and the use of medical records from participants whose medical care has been
completed. Participants’ clinical and demographic information were anonymized before analysis. This study was
conducted in accordance with the Declaration of Helsinki on human research.

Renal Outcome Definitions
Only new cases (incident cases) reported at the follow-up visit were considered. The prevalent cases at baseline were
excluded from the analysis. Two outcomes were recognized as RFD: rapid decline of renal function, new-onset CKD, and
combined renal outcomes. Rapid decline of renal function was defined as eGFR loss of >3 mL/min/1.73 m2/year.16 New-
onset CKD was defined as follow-up eGFR < 60 mL/min/1.73 m2 or positive proteinuria. To avoid participants with
minor fluctuations in eGFR that may be due to “noise”, the definition of new-onset CKD also included an annual
decrease in eGFR exceeding 1 mL/min/1.73 m2.17 Serum creatinine (Scr) was measured by automatic biochemical
analyzer (Hitachi automatic biochemical analyzer, 7600, Japan) in the central laboratory of the Third Xiangya hospital,
Central South University. eGFR was calculated based on serum creatinine using CKD-EPI equation.18 Diagnosis of
proteinuria was made using a urine dipstick test. Positive proteinuria was considered to be present for a dipstick result of
≥1+, corresponding to a urinary protein level > 30 mg/dL.19
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Predictors Considered and Measurements
For the renal outcome, a set of predictors at baseline was considered based on clinical knowledge and evidence-based
practice,4,20 including age (continuous), gender (binary), body mass index (BMI, continuous), waist circumference (WC,
continuous), smoking status (binary), alcohol consumption (binary), physical inactivity (binary), hypertension (HTN,
binary), type 2 diabetes mellitus (T2DM, binary), family history of HTN (binary), family history of T2DM (binary),
systolic blood pressure (SBP, continuous), diastolic blood pressure (DBP, continuous), hemoglobin (Hb, continuous),
alanine aminotransferase (ALT, continuous), total bilirubin (TBIL, continuous), blood urea nitrogen (BUN, continuous),
serum creatinine (Scr, continuous), serum uric acid (SUA, continuous), fasting plasma glucose (FPG, continuous), total
cholesterol (TC, continuous), triglycerides (TG, continuous), low-density lipoprotein (LDL-c, continuous), high-density
lipoprotein (HDL-c, continuous).

Current smokers were those who had smoked within one year of the survey date and physical inactivity was defined
as leisure-time activity less than 4 h weekly and predominantly sedentary work. Current drinkers were those who had
drunk alcohol at least 12 times but with an average daily consumption of alcohol ≤ 20 g during the past year. Seated
blood pressure was measured by skilled, trained nurses after subjects had rested for 15 min. The average of three readings
was recorded. The formula for BMI was weight (kg) divided by height squared (m2) by measurement. Individuals were
categorized as normal weight (18.5–23.9 kg/m2), overweight (24–27.9 kg/m2), and obese (≥28 kg/m2) according to the
Chinese standard.21 Blood samples and first-void urine samples were collected between 08:00 and 10:00 a.m. after
fasting overnight. Using standard hospital assays, the relevant blood biochemical indexes were measured.15 The
proportion of missing values was overall low (<2%) and they were handled by Median imputation, a common approach
to dealing with missing values in machine-learning algorithms.22 For demographic categorical variables, missing values
were given a separate category of `unknown’ in the analyses (Supplemental Table 1).

Architecture of the Renal Function Decline Prediction Model
The architecture of the proposed RFD prediction model is shown in Figure 1. All analysis and model creation were
performed in the Python computing environment (Python version 3.6.8; Python Software Foundation, 2019), using the
Scikit-learn library (Pedregosa et al, 2011). The details for TRIPOD checklist and data extraction are shown in
Supplementary Table 2. Eight different models were considered: logistic regression (LR), random forest (RF), gradient
boosting (GB), support vector machine (SVM), K-nearest neighbors (K-NN), adaptive boosting (AB), decision tree (DT),
and multilayer perception (MLP). We compared the performance of the models developed from ML and the dichotomy
logistic regression. Model performances were assessed using the area under the receiver operating characteristic curve
(AUROC), applying five-fold cross-validation to the datasets.

The analysis dataset was randomly split into training (80%) and testing (20%) datasets, stratified on the incidence of
the cases (to have the same incidence of cases in the training and testing data sets). To offset any random sampling effect,
the model reiterated the same validation 20 times, the minimum number of iterations to produce the same result. Then,
each model represented the final performance comparison results in the average score of AUROC values, which were
statistically compared by paired DeLong’s test. Twenty-four contributing factors were selected and used to build the renal
function decline prediction model, and also to measure the relative feature significance contributing to the performance of
the model (Figure 1).

Comparison of Prediction Model Performances
The AUROC with their 95% confidence intervals (CIs), sensitivity and specificity were calculated for performance
comparison of the renal function decline prediction model using various ML algorithms. The thresholds for the cutoff
were calculated using Youden’s index.23 The calculated AUROC value was selected as the main metric to compare the
performance of the prediction models. The testing AUROC values corresponding to the different models were compared
using paired Delong’s test.24 To better evaluate the models’ performance, we further compared the AUROC from each
resampling calculation based on a paired t-test. P < 0.05 was regarded as significant. We applied the grid search method,
supported by the scikit-learn package to select the optimal hyperparameters of the predictive model algorithms.
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For each model, a single set of parameters was fitted using re-sampling approach, which were adjusted to obtain the
average performance index. As shown in Supplemental Table 4, the technical parameters of the selected prediction
models were listed for the optimization of the equations.

Analysis of Contributing Factors Affecting the Prediction Performance
To improve the prediction model’s performance, it is important to make clear which factors contribute the most to the
performance of the model. Gradient boosting was used to estimate the variable importance of each predictor and was
calculated by feature importance method to rank their relative influence on the risk of onset of cases.25

Statistical Analysis
Continuous variables were expressed as mean ± standard deviation (SD) or median (Q1–Q3, first and third quartiles),
according to their Gaussian or non-Gaussian distribution. Categorical variables were expressed as frequencies and
percentages. Independent t-tests or Mann–Whitney U-test were used to compare the continuous variables between the
RFD and non-RFD groups. Chi-square test or Fisher’s exact test were performed to compare the categorical variables
between the groups. All statistical analyses were performed using SPSS 23.0 (IBM Inc., Armonk, NY, USA).

Figure 1 Study process and architecture of the RFD prediction model.
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Results
Data Extraction
After exclusion of individuals with missing outcome at baseline or at follow-up, and prevalent cases at baseline, 2166
individuals (male, 63.3%; mean age, 49.2±11.2 years) were included for analyses (Figure 1). The incidences of RFD
cases were 24.7% (536/2166) during the 6-year follow-up period. This cohort was then randomly split into an 80%
sample of 1732 subjects to train the machine-learning algorithms and the remaining sample of 434 subjects for
validation.

Baseline Characteristics of Subjects
There was significantly fewer female than male (84.14% M, 15.86% F) in RFD cases while there was only slightly more
male than female in non-RFD cases (56.41% M, 43.59% F). The mean baseline age of RFD subjects was 54.91 years
compared to 47.25 years in non-RFD subjects (P < 0.001). Overall, there were no significant differences in the proportion
of DM, family history of HTN or DM and in the level of ALT, TBIL, TC and TG between the two groups. Further
demographic features and RFD-related factors of both the non-RFD and RFD groups are presented in Table 1.

Comparisons of Prediction Model Performance
To compare the accuracy of the performance of the RFD prediction models, we validated the ML algorithms and logistic
regression using 24 contributing factors based on AUROC values (Figure 2, Table 2 and Supplemental Figure 1). The
AUROC was calculated both in the training dataset and in the testing dataset. As shown in Figure 2A, most models had
AUROC values above 0.90 in the training dataset, but the value of logistic regression was lower (0.89). Table 2 and
Figure 2B present the predictive performance in the testing dataset. The logistic regression risk model served as

Table 1 Characteristics of the Populations at Baseline According to Renal Function Decline (RFD) at Follow-Up (n=2166)

Characteristics Units RFD (n=536) No RFD (n=1629) χ2/t/Z P value

Age(years) Mean ± SD 54.91±12.27 47.25±10.06 14.437 <0.001
Gender Male (n, %) 451 (84.14) 919 (56.41) 133.431 <0.001

BMI (kg/m2) Mean ± SD 24.44±2.80 23.70±2.95 5.190 <0.001

WC (cm) Mean ± SD 85.26±8.53 81.28±9.30 8.772 <0.001
Current smoker Yes (n, %) 201 (37.50) 474 (29.10) 24.258 <0.001

Alcohol consumption Yes (n, %) 109 (20.34) 245 (15.04) 39.562 <0.001
Physical inactivity Yes (n, %) 133 (24.81) 550 (33.76) 21.322 <0.001

Hypertension Yes (n, %) 93 (17.35) 172 (10.56) 17.320 <0.001

Diabetes Yes (n, %) 27 (5.04) 76 (4.67) 0.123 0.726
Family history of hypertension Yes (n, %) 146 (27.24) 406 (24.92) 1.138 0.286

Family history of diabetes Yes (n, %) 29 (5.41) 129 (7.92) 3.751 0.053

Systolic blood pressure (mmHg) Mean ± SD 128.51±18.35 123.11±17.91 5.945 <0.001
Diastolic blood pressure (mmHg) Mean ± SD 77.70±11.89 76.45±12.25 2.100 0.036

Hemoglobin (g/L) Mean ± SD 137.89±14.16 134.35±15.23 4.743 <0.001

Alanine aminotransferase(U/L) Median, IQR 22.00 (16.00, 31.75) 23.00 (16.00, 34.00) −1.371 0.170
Total bilirubin (μmol/L) Median, IQR 14.10 (11.20, 17.28) 13.80 (10.80, 17.25) 1.490 0.136

Blood urea nitrogen (mmol/L) Median, IQR 5.02 (4.26, 5.95) 4.77 (3.92, 5.70) 4.713 <0.001

Serum creatinine (μmol/L) Median, IQR 78.00 (69.00, 86.00) 70.00 (59.00, 80.00) 11.315 <0.001
Serum uric acid (μmol/L) Median, IQR 342.00 (285.25, 396.00) 294.00 (231.00, 363.50) 9.854 <0.001

Fasting plasma glucose (mmol/L) Mean ± SD 4.81±0.91 4.96±1.09 −3.019 0.003

Total cholesterol (mmol/L) Mean ± SD 4.81±0.83 4.85±0.91 −0.996 0.319
Triglycerides (mmol/L) Mean ± SD 1.37 (1.00, 1.99) 1.35 (0.93, 2.06) 1.372 0.170

Low-density lipoprotein (mmol/L) Mean ± SD 2.90±0.73 2.82±0.79 2.225 0.026

High-density lipoprotein (mmol/L) Mean ± SD 1.14±0.27 1.26±0.31 −8.002 <0.001
Glomerular filtration rate (mL/min/1.73m2) Median, IQR 88.56 (75.74, 102.81) 109.96 (98.00, 118.75) −19.137 <0.001

Abbreviations: RFD, renal function decline; BMI, body mass index; WC, waist circumference.
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a baseline for comparison (AUROC 0.882, 95% CI 0.878–0.891). Although the testing predictive performance were
slightly lower, with mean differences “training – testing” equal to 7.31%, was similar to the training dataset. The gradient
boosting reached the best average prediction accuracy among all utilized algorithms (AUROC 0.914, 95% CI 0.853–
0.952).

We further compared each model based on the AUROC mean and paired t-test (Table 3). Compared to the other
models, LG, RF, GB, SVM, AB and MLP showed no statistical significance, implying that these models were similar in
terms of their predictive power. Although most of the machine-learning algorithms tested showed a degree of improve-
ments in discrimination compared to the baseline model (from ΔAUROC = 0.9% for RF to ΔAUROC = 3.6% for GB)
except for K-NN and DT algorithms, the improvement differences in predictive power compared with LG were small and
nonsignificant (P ˃ 0.05).

Contributing Factors for the Prediction Model Performance
The significance of contributing factors analyzed by the feature importance method (gradient boosting-based) are shown
in Table 4. Of the 24 variables considered in this study, age was the most important factor contributing to the
performance of the RFD prediction model, followed by Scr, SUA, WC, and SBP. The other factors related to medical
and behavioral features presented a lower significance of contribution to the prediction performance than the top five
factors. Among laboratory findings, hemoglobin level and blood urea nitrogen were found to be in the top 10 factors.

Figure 2 Receiver operating characteristics curve of the prediction performance for each algorithm in the training set (A) and testing set (B), respectively.

Table 2 Predictive Performance Expressed in Area Under Receiver Operating Characteristic Curve, Sensitivity and Specificity, of the
Eight Models Considered to Predict Renal Function Decline in the Training and Testing Datasets

Training Datasets (n Events=429, n Total=1732) Testing Datasets (n Events=107, n Total=434)

AUROC + 95% CI Se Sp AUROC + 95% CI Se Sp

Logistic regression 0.891 [0.887, 0.903] 0.832 0.824 0.882 [0.878, 0.891] 0.765 0.764

Random forest 0.972 [0.898,0.998] 0.937 0.932 0.890 [0.824, 0.916] 0.766 0.834
Gradient boosting 0.994 [0.928, 0.998] 0.964 0.955 0.914 [0.853, 0.952] 0.788 0.866

Support vector machine 0.924 [0.856, 0.944] 0.824 0.816 0.912 [0.845, 0.931] 0.781 0.856

K-nearest neighbours 0.956[0.948, 0.961] 0.922 0.905 0.854 [0.847, 0.855] 0.562 0.803
Adaptive boosting 0.966 [0.896, 0.992] 0.931 0.918 0.891 [0.826, 0.922] 0.816 0.802

Decision tree 0.998 [0.955, 1.000] 0.968 0.954 0.824 [0.788, 0.858] 0.782 0.891

Multilayer perceptron 0.912[0.886, 0.925] 0.811 0.852 0.892 [0.867, 0.905] 0.781 0.856

Abbreviations: AUROC, area under receiver operating characteristic curve; Se, sensitivity; Sp, specificity.
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Alcohol consumption and current smoking were also included in the top 10 factors. Meanwhile, we analyzed the
significance of contributing factors based on logistic regression (Supplemental Table 3). Except for slight differences
in ranking of the top 10 predictors between the two algorithms, almost marginal differences were observed.

Discussion
Early identification of individuals at elevated risk of RFD could improve clinical care through enhanced surveillance and
better management of underlying health conditions. In this epidemiological study of moderate sample size, we showed
that the proposed health screening dataset-based RFD prediction model using ML algorithms is readily applicable,
produces validated results. But logistic regression yields as good performance as ML models to predict the risk of RFD
with simple clinical predictors. The training and testing datasets were close in terms of predictive performances,
suggesting a low risk of overfitting. The nearly 7.3% difference in the predictive performance (AUROC) between the
training and testing datasets might be attributed to differences in running patterns between individuals in each dataset or
mainly limited to noise. The gradient boosting performed the best, with predictive accuracy improving by 3.6%. But the
improvement differences were small (less than 4%) and nonsignificant (P ˃ 0.05). In accordance with previous
studies,10,31 it indicated logistic regression yields as good performance as ML models to predict the risk of RFD with
simple clinical predictors. The most influent variables were consistent with prior knowledge or evidence-based practice
on CKD and renal impairment.

Table 3 Comparison of AUROCs of the RFD Prediction Models*

P value\ Fold Change LR RF GB SVM k-NN AB DT MLP

Logistic regression (LR) - −0.008 −0.032 −0.030 0.028 −0.009 0.058 −0.010
Random forest (RF) 0.058 - −0.024 −0.012 0.036 −0.001 0.066 −0.002
Gradient boosting (GB) 0.070 0.009 - 0.022 0.060 0.023 0.090 0.022

Support vector machine (SVM) 0.266 0.009 0.473 - 0.058 0.021 0.088 0.020
K-nearest neighbours (K-NN) 0.000 0.001 0.000 0.000 - −0.037 0.030 −0.038
Adaptive boosting (AB) 0.909 0.190 0.049 0.218 0.000 - 0.067 −0.001
Decision tree (DT) 0.000 0.000 0.000 0.000 0.000 0.000 - −0.068
Multilayer perceptron (MLP) 0.542 0.063 0.063 0.155 0.000 0.929 0.000 -

Notes: *The upper part of the matrix represents the average AUROC differences between models. The lower part represents statistical significance (P values) of paired t tests.
Abbreviations: AUROC, area under receiver operating characteristic curve; RFD, renal function decline.

Table 4 Top 10 Variables Identified by Feature Importance Listed in Descending Order Based on Gradient Boosting Model and Their
Distributions

Sorting Characteristics Variables Variable
Importance

RFD Group, Mean±SD/
M (Q1, Q3)

No RFD Group, Mean±SD/
M (Q1, Q3)

1 Age(years) 0.296 54.91±12.27 47.25±10.06

2 Serum creatinine (μmol/L) 0.249 78.00 (69.00, 86.00) 70.00 (59.00, 80.00)

3 Serum uric acid (μmol/L) 0.199 342.00 (285.25, 396.00) 294.00 (231.00, 363.50)
4 Waist circumference (cm) 0.185 85.26±8.53 81.28±9.30

5 Systolic blood pressure (mmHg) 0.128 128.51±18.35 123.11±17.91

6 Alcohol consumption 0.125 109 (20.34) 245 (15.04)
7 Body mass index (kg/m2) 0.108 24.44±2.80 23.70±2.95

8 Hemoglobin (g/L) 0.101 137.89±14.16 134.35±15.23

9 Blood urea nitrogen (mmol/L) 0.101 5.02 (4.26, 5.95) 4.77 (3.92, 5.70)
10 Current smoker 0.099 201 (37.50) 474 (29.10)

Abbreviations: RFD, renal function decline; SD, standard error; M, median; Q, quartiles.
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The primary strength of our study is that because the prediction model was established based only on existing
health screening cohort data, we can suggest that easier and more efficient RFD prediction is possible by using ML
algorithms. As more and more Chinese urban residents undergo periodic health screening every 1–2 years under
medical benefits, it is also easy to acquire the routine data. Therefore, this method reduces additional costs and
burdens in collecting baseline data compared to the traditional chronic disease’s prediction models. Moreover, our
study also demonstrates application of a series of machine learning algorithms, as well as model evaluation
techniques, that are lacking in existing applications of machine-learning to clinical data.26 Our results are consistent
with previous studies in more selected populations.27,28 For example, a retrospective cohort study of 4104 renal cell
carcinoma (RCC) patients in South Korea found that the application of ML algorithms improves the predictability of
acute kidney injury after nephrectomy for RCC, and these models perform better than conventional logistic regression-
based models.27

Recently, several studies have applied ML algorithms to predict CKD. Shih et al developed a 5-year CKD risk
prediction model using ML models for health examination adults.29 In this study, the C4.5 decision tree algorithm was
the best performing model with AUROC 0.788. Their results are similar to ours in that the performance of their
predictive model based on ML algorithms was better than that of the statistical model. In a study predicting 1-year
CKD risk using deidentified electronic health record data on a retrospective cohort of 14,039 adult patients with type 2
diabetes, they found the gradient boosting model was the best performing model with AUROC 0.83 (95% CI 0.76–
0.85).30 These results are similar to ours. The findings of this study were consistent with those of previous reports,
including Xiao’s report on the prediction of chronic kidney disease in proteinuria and a prospective multicenter cohort
study of individual prediction of CKD in people living with human immunodeficiency virus in the baseline eGFR [32].31

The findings of age and uric acid level (UA) are consistent with previous studies following Mahmood et al and Yu
et al32,33 Similarly, Bradshaw et al, Yang et al and Umesawa et al reported that waist circumference (WC), systolic blood
pressure (SBP), and current smoking are critical for prediction of RFD.34–36

As mentioned above, the primary purpose of our study is how to predict RFD who are asymptomatic and who only
undergo a routine adult health screening simply and effectively. All of these risk factors need to be considered in
a comprehensive approach to clinical prevention of CKD to successfully tackle and specifically target the high-risk
exposures in the certain population. There is consensus that preclinical management of early CKD will benefit high-risk
groups.37 Many of the risk factors that are possibly associated with early CKD awareness, ie, management of obesity,
hyperuricemia and hypertension, are interesting and warrant further investigation.

Behavioral factors such as smoking, and alcohol consumption also represented low contribution importance. In
general, social, behavioral, and environmental factors had a lower direct influence on CKD compared to medical issues.38

Another notable finding is that gender did not significantly affect the performance of the RFD prediction model, even
lower than some behavioral factors. Gender has been known as an important risk factor for CKD, but our results are
somewhat in disagreement with this.39 In a previous epidemiologic cohort study,40 the physiological decline of renal
function during aging is significantly slower in healthy females than in males (loss of GFR of 1.4 mL/min/1.73 m2 per
decade in healthy female kidney donors compared to 8.7 mL/min/1.73 m2 per decade in males, as measured by inulin
clearance). Thus, our results reflect these epidemiologic features.

A number of limitations should be considered in evaluating our results. First, because the health screening datasets do
not include all detailed clinical data, that is, the details of individual hospital medical records, or clinical datasets, which
represent more accurate medical conditions. Nevertheless, it is a limitation that this is not sufficiently considered due to
reality factors, otherwise additional key factors for CKD prediction may be included and lead to a more accurate CKD
prediction model. Second, it is a single center study, and the subjects of periodic health check-ups population could lead
to selection bias. Finally, even though over 2000 subjects were enrolled, our final sample size was relatively small
compared to the other aforementioned CKD prediction studies. To build a CKD prediction model that can be applied
widely, health screening and clinical datasets from various regions and different ethnicities need to be considered. Further
external validation of the prediction models, with updating where necessary is desirable.
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Conclusion
We demonstrate that logistic regression yields as good performance as ML models to predict the risk of RFD over ~6
years in an epidemiological study. Another important finding of this study was that the gradient boosting method had the
best predictive ability compared to the other six comparison models. We also identified that age, Scr, SUA, WC, and SBP
had important impacts on the predictivity of the models, while other predictors, such as TBIL and TG were less
important. With the insidious progress of CKD, early detection and effective intervention are the only ways to reduce
mortality. Timely risk assessment of CKD and appropriate monitoring in primary care are essential for preventing further
kidney function impairment in the high-risk population. In conclusion, this study presents evidence of the applicability of
an adult health screening dataset and the robustness of model using ML algorithms for clinical risk assessment of renal
function decline. Meanwhile, we suggest that traditional regression models should continue to have a key role in CKD
risk prediction. Further studies are needed to confirm this result for different settings and study characteristics.
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