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Abstract

De novo membrane protein structure prediction is limited to small proteins due to the confor-

mational search space quickly expanding with length. Long-range contacts (24+ amino acid

separation)–residue positions distant in sequence, but in close proximity in the structure,

are arguably the most effective way to restrict this conformational space. Inverse methods

for co-evolutionary analysis predict a global set of position-pair couplings that best explain

the observed amino acid co-occurrences, thus distinguishing between evolutionarily

explained co-variances and these arising from spurious transitive effects. Here, we show

that applying machine learning approaches and custom descriptors improves evolutionary

contact prediction accuracy, resulting in improvement of average precision by 6 percentage

points for the top 1L non-local contacts. Further, we demonstrate that predicted contacts

improve protein folding with BCL::Fold. The mean RMSD100 metric for the top 10 models

folded was reduced by an average of 2 Å for a benchmark of 25 membrane proteins.

Introduction

Determining membrane protein (MP) structures experimentally is difficult as they are often

too large for nuclear magnetic resonance experiments and remain difficult to crystallize [1].

Only about 2% of reported structures are MPs [2] and only around 100 distinct folds of inte-

gral helical MPs with more than one transmembrane (TM) span [3] are represented in the

Protein Data Bank (PDB) [2, 4, 5]. At the same time, understanding MP structure is critical, as

it is estimated that MPs comprise 15–39% [6] of the human proteome. They are also particu-

larly important players in cell-environment interactions, i.e. environment sensing receptors,

transporters, and channels. Accordingly, approximately half of current therapeutics target

MPs[7]. Given the relatively small number of experimental structures, structure-based drug

discovery is underdeveloped for MPs. However, as better models for MPs become available

structure-based drug discovery will offer an avenue for developing new and more targeted
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pharmaceuticals [7]. Computational methods that can assist in de novo MP structure determi-

nation are therefore of increasing relevance.

One avenue for tackling the experimental difficulties in membrane protein structure deter-

mination is de novo protein folding. This approach, while theoretically sound, suffers from

insurmountable computational complexity due to exponential dimensionality of the confor-

mational space to be searched. The vastness of the search space can be significantly reduced by

introduction of conformational restraints (hereinafter “restraints”), which often take form of

upper limits on inter-atom distances (“contacts”). While the definition of a contact may differ

between different works, the most commonly used criterion [8] is an amino acid pair with Cβ
carbons within 8Å or less (Cα is used in the case of glycine). For the purpose of this work, we

will neglect local, short-range contacts (with separation of at most 5 amino acids in the pri-

mary sequence), as they are not conducive for successful protein folding, focusing rather on

non-local contacts, in short (6–11 amino acids), medium (12–23 amino acids), and long range

contacts (24+ amino acids separation) [9, 10]. For sake of clarity, we will designate all contacts

with separation of at least 12 amino acids as “long-range contacts”, instead of “medium- and

long-range contacts”.

Until recently, contact prediction in proteins was of limited use for guiding protein folding,

with leading methods being able to predict approximately 1 in 5 contacts correctly within a set

of L/5 predictions (where L is the length of protein sequence) [9, 11–13]. Subsequent advances

employing multiple layered artificial neural networks (ANNs) were able to improve this num-

ber to 30% [12]. Support vector machines have also been used to predict TM contacts[14]. Our

previous work in the Bio Chemical Library (BCL) suite, which uses only sequence information,

yields positive predictive values no higher than 42%[15]. Recent improvements in contact pre-

diction [16–18] successfully applied the statistical methods used for solving inverse problems

in statistical mechanics to the contact prediction problem. These methods rely on the idea

of global statistical inference using co-evolutionary information encoded in the multiple

sequence alignments (MSA) of evolutionarily related (homologous) proteins to assess the sta-

tistical couplings between individual positions in the protein. In contrast to older methodol-

ogy, these methods, collectively referred to as Direct Coupling Analysis (DCA)[17–19], model

the entire data set at once and not only independent pairs of residues, assuming the evolution-

ary interaction model is an instance of a high-dimensional Ising model on a fully connected

graph. In so doing, they reduce the systematic errors of direct co-evolutionary methods (such

as Mutual Information), where high correlation between two residues is an indirect conse-

quence of both being highly correlated to a third residue. This in turn results in a significant

boost in predictive power of the co-evolutionary methods, which in some case are able to

obtain nearly perfect predictive performance within the set of top L predictions.

DCA-like methods, while successfully applied to contact prediction problem, do not actu-

ally predict contacting amino acids, but rather indicate the pairs of amino acids that are under

evolutionary pressure to co-evolve[17, 18, 20]. While such a pressure is likely to originate due

to spatial proximity, it may also be a result of functional constraints, oligomeric state or con-

formational flexibility of a protein. Furthermore, the inferred couplings are specific to a

particular MSA and may differ substantially upon the change of the homology threshold for

inclusion of a sequence in the MSA.

Here we combine mean field DCA (mfDCA) [17] with a variety of custom descriptors as an

input to a machine learning approach. The resulting method surpasses the predictive capabili-

ties of mfDCA (including subsequent filtering steps advised by method’s authors) in terms

of precision by 6% on average, up to 17% (for aquaporin 0, PDB id:1YMGA). While this

improvement has been measured for the top L long-range contacts (i.e. pairs of separation of

at least 12 amino acids) using the ANN approach, we show that the improvement is relatively
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agnostic to the machine learning method used, by replicating the results using decision trees

(DTs). Finally, we demonstrate, that these predicted contacts improve MP folding with BCL::

Fold on average by 2Å in comparison to the same protocol without contact restraints.

Materials and methods

Membrane protein benchmark data set and alignment preparation

This work focuses on the contact and structure prediction of a set of 25 diverse α-helical mem-

brane proteins of known structure, having more than four transmembrane helices. The data

set has been chosen, so that for each target one can identify sufficiently many homologs (more

than 1000) with satisfactory coverage to warrant success with coupling inference. Site-coverage

(Cov) is the percent of the target sequence sites that map onto the final MSA after one removes

columns with a large number of gaps. Based on prior work [17], a threshold of 30% gaps was

used for this analysis. These 25 membrane proteins come from 23 Pfam families [21], contain

a maximum of 15 helices, and have a maximum initial target length of 572 [22].

It is not evident what makes for the most suitable multiple sequence alignment for coupling

inference. Most of the work published so far either chooses the alignment generation parame-

ters arbitrarily [18] uses external, oftentimes intuition-based approaches [22] or samples multi-

ple alternative alignments [20, 23, 24]. We created alignments for each protein using the

HMMER3 software package [25] at the same E-values—1E-3, 1E-5, 1E-10, 1E-15, 1E-20, 1E-

30, and 1E-40.

As many of the DCA-like methods are sensitive to the alignments containing large

unaligned stretches (gaps), we have pruned the input alignments to discard the sequences con-

taining more than 30% of gaps. The statistics of filtered and unfiltered MSA are included in

Table 1. Filtered MSA are significantly smaller—on average nearly 16 fold so. Maximum,

minimum, and average unfiltered MSA sizes are 65525, 1503, and 17865 respectively. The

maximum, minimum, and average filtered MSA sizes are 1745, 684, and 1142, respectively.

Coverage increases nearly 16% from approximately 76% coverage in unfiltered to 88% in fil-

tered MSA.

Coupling inference

In the interest of direct comparability with prior work, we have used the mean field DCA

method employed by Morcos et al [17], which has been instrumental to successful folding

approaches, such as EVfold [22, 26]. Therefore, for each of the alignments, we have re-

weighted the sequences that share more than 80% identical amino acids, in the interest of

reducing the bias of large homologous clusters on the inference process. Then we use the

mean field principles to obtain the coupling matrix D for individual position pairs, which in

this instance (naïve mean field DCA) reduces to computing an inverse of covariance matrix

C-1.

Due to insufficient sampling of the sequence space, not all amino acid type pairs will be rep-

resented, therefore the covariance matrix is highly likely to be singular (non-invertible). In

order to avoid this situation, Morcos et al. augment the covariance matrix with a high dose of

pseudocounts (0.8 of the resulting weighted sum) derived from the known sequence database

statistics.

The entries in the resultant coupling matrix D are not directly comparable between differ-

ent positions in the protein. Therefore, in order to enable ranking of position pairs, we com-

pute a Mutual Information-like score involving the individual positions in the matrix D
(and their sums as proxies for single-site values), producing the scoring matrix S. Finally, the
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computed scores were mapped back to the original sequence coordinates (before gap-column

removal) using the auxiliary script from HHsuite [27].

Membrane protein topology prediction

Global methods for coupling inference, especially based on the mean-field approach, when

applied to contact prediction suffer from systematic overprediction for evolutionarily coupled,

but spatially distant sites. One of such overpredictions involves membrane protein sites located

at the interface between membrane and aqueous environment.

Table 1. The 25 membrane proteins used as the benchmark set.

Protein Initial Sequence Filtered Unfiltered

Name PDBID L Opt. Eval TMhelix Malign Meff Cov Malign Meff Cov

ADIC_SALTY 3NCYA 422 1.00E-20 12 1215 1205 0.891 16975 5560 0.884

ADRB2_HUMAN 2RH1A 442 1.00E-20 8 818 451 0.652 22822 5228 0.559

ADT1_BOVIN 1OKCA 292 1.00E-40 6 1068 1043 0.890 8631 3516 0.890

AMTB_ECOLI 1XQFA 362 1.00E-05 11 1048 1021 0.961 4051 1416 0.925

AQP4_HUMAN 3GD8A 223 1.00E-10 7 1073 1062 0.964 5400 1933 0.955

BTUC_ECOLI 1L7VA 324 1.00E-10 10 1049 1045 0.914 9399 4125 0.910

C3NQD8_VIBCJ 3MKTA 460 1.00E-20 12 1072 1068 0.917 11067 5591 0.913

C6E9S6_ECOBD 3RKON 473 1.00E-10 14 1745 1722 0.831 59616 5932 0.588

COX1_BOVIN 1OCCA 514 1.00E-40 12 1157 754 0.979 47394 1289 0.089

COX3_BOVIN 1OCCC 261 1.00E-03 6 684 521 0.958 9105 1444 0.709

CYB_BOVIN 1PP9C 379 1.00E-03 8 1069 581 0.921 49258 855 0.272

FIEF_ECOLI 3H90A 283 1.00E-05 6 1050 1039 0.968 7610 3473 0.933

GLPG_ECOLI 3B45A 180 1.00E-05 6 1092 1073 0.867 4625 2323 0.739

GLPT_ECOLI 1PW4A 434 1.00E-30 12 1611 1604 0.878 25199 10789 0.882

METI_ECOLI 3DHWA 203 1.00E-15 5 1086 1065 0.877 13418 4788 0.877

MIP_BOVIN 1YMGA 233 1.00E-10 7 1032 1010 0.901 5431 1937 0.897

MSBA_SALTY 3B60A 572 1.00E-03 6 1576 1568 0.881 65525 29777 0.388

O67854_AQUAE 2A65A 510 1.00E-03 12 1135 1043 0.825 4351 1657 0.818

OPSD_BOVIN 1HZXA 340 1.00E-20 7 1165 1151 0.803 40460 8873 0.782

Q87TN7_VIBPA 3PJZA 468 1.00E-10 12 1019 923 0.793 3340 1587 0.791

Q8EKT7_SHEON 2XUTA 456 1.00E-10 14 1055 1040 0.706 8196 2983 0.697

Q9K0A9_NEIMB 3ZUXA 308 1.00E-10 10 1024 1005 0.899 3928 1549 0.903

SGLT_VIBPA 2XQ2A 538 1.00E-05 15 1515 1380 0.820 8075 3177 0.784

TEHA_HAEIN 3M71A 306 1.00E-03 10 822 646 0.971 1503 735 0.948

URAA_ECOLI 3QE7A 407 1.00E-03 14 1371 1355 0.818 11244 3384 0.747

Statistics

Mean 376 2.42E-04 9.68 1142 1055 0.875 17865 4557 0.755

Standard Deviation 109 4.26E-04 3.07 244 309 0.080 18581 5691 0.218

Maximum 572 1.00E-03 15 1745 1722 0.979 65525 29777 0.955

Minimum 180 1.00E-40 5 684 451 0.652 1503 735 0.089

Protein names and Protein Data Bank IDs (PDBID) are accompanied by the length of the initial target sequence L, the optimal E-value used to generate the

alignment (Opt. Eval) [22], the number of transmembrane helices predicted with SPOCTOPUS (TMhelix), in addition to the number of sequences in the

created alignments (Malign), the effective number of alignment sequences, which takes into consideration sequence diversity (Meff), and the percent

coverage of the initial sequence by the final alignment with columns containing over 30% gaps removed (Cov). The MSA-related data is included for both

filtered and unfiltered datasets.

https://doi.org/10.1371/journal.pone.0177866.t001

Membrane protein fold prediction via contacts

PLOS ONE | https://doi.org/10.1371/journal.pone.0177866 May 24, 2017 4 / 24

https://doi.org/10.1371/journal.pone.0177866.t001
https://doi.org/10.1371/journal.pone.0177866


In order to alleviate these and related issues, as well as introduce, what we believe to be, cru-

cially important piece of prior data, we have incorporated the information on the predicted

membrane topology and topography into the contact prediction process. To do so, we have

used SPOCTOPUS [28], a two-track membrane protein topology predictor, that incorporates

a signal peptide pre-filter. None of the protein sequences in our data set included signal pep-

tide, thus rendering the method we used functionally identical to OCTOPUS [29]. To further

enhance the predictive performance, we moved beyond three-state predictions of (SP)OCTO-

PUS to a numerical indicator of each amino acids membrane location. Positions predicted to

be on the inner-membrane as part of a loop are assigned a value of zero (consistent with a

SPOCTOPUS prediction of “i”). Positions predicted to be outside of the membrane as part of a

coil are assigned a value of one (consistent with a SPOCTOPUS prediction of “o”). Transmem-

brane helices are predicted as “M” in SPOCTOPUS and their subsequent encoding is deter-

mined by the position within the helix (from inner to outer membrane) and normalized based

on the helix size, which in case of (SP)OCTOPUS is always 21. Therefore, the amino acid of

the transmembrane span closest to the outside of the membrane will receive value of 1/22, sec-

ond 2/22 and so on, until the one closest to the inside of the membrane receives value 21/22,

differentiating it from the subsequent outer-membrane loop amino acid. We treated the few

short re-entrant helices encountered as inner or outer-membrane loops.

Feature generation

It is not obvious what additional prior information may assist the contact prediction for mem-

brane proteins. Therefore, we have explored 1,505 additional descriptors (features) for training

the machine learning approaches. A schematic depiction of a descriptor input vector is pro-

vided in Fig 1 panel B. S1 Table lists all the descriptor categories considered.

The most basic category includes global descriptors, that is amino acid positions for sites i
and j–indexed starting from one, the separation between i and j (i.e. |i-j|), and total sequence

length.

The inferred co-evolution couplings, which constitute a major improvement of this method

over the previous iterations, were included both in a direct and aggregate way. Coupling infer-

ence using alignments at different homology thresholds tends to reveal slightly different infor-

mation about protein’s evolutionary history [23], therefore we have used couplings derived

from both filtered and unfiltered alignments, at “optimal” set of E-values, as well as from all E-

values. For each of the coupling sets, we included the information on the individual strengths

of evolutionary information by using a nine residue window around each of the amino acids

in question. The window size has been selected to enable capturing the information on two

turns of alpha helices, which are predominant building blocks of MPs. In addition to raw cou-

pling strengths, we have also incorporated the maximum, mean, standard deviation, normal-

ized mean (see S1 File) and sum, both window-wise and protein-wise.

Sequence information descriptors comprise windows of biochemical properties of amino

acids surrounding sites i and j. These include volume, hydrophobicity, steric parameter, polar-

izability, isoelectric point, and the Basic Local Alignment Search Tool (BLAST)-derived PSSM

(sequence profile) for each site in the window pair. These sequence descriptors together with

global descriptors were used previously in the BCL to predict long-range contacts Descriptor

set includes also the statistics on the multiple sequence alignments used for the coupling infer-

ence, that is the length of the aligned target sequence including gaps, the depth of the align-

ments (raw number of non-identical sequences) and the effective depths of the alignments

(Meff S1 File) which allows to account for sequence redundancy, as well as target sequence cov-

erage for the given MSA.

Membrane protein fold prediction via contacts
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For prediction of a secondary structure element (SSE) propensity (helix/strand/coil), as well

as the membrane state (membrane/transition/solution) for each amino acid position, we used

JUFO9D [30]. It is a newer, internally developed multitrack ANN algorithm. Each individual

ANN is trained on certain SSE type interactions, to improve accuracy. The SSE assignments

for both sites were supplemented with SSE index difference, a descriptor indicating how many

SSEs are between these amino acids (if both amino acids are in the same SSE, the descriptor

equals 0, if they are in neighboring SSEs– 1 etc.). Finally, we have supplemented this informa-

tion with position-aware descriptors. They are related to the size of SSEs containing amino

acids in question and contain their distance from the center of respective SSEs. In particular,

Fig 1. Contact prediction flowchart and diagram of resulting descriptor categories used for machine learning. A.) Flowchart overview for

producing contacts—divided into the DI only method (solid black outline, left) and the all-inclusive machine learning sequences (dotted black outline, right).

Both result in sets of the top L-fractions of predicted contacts, which were then used in combination with BCL::Fold to predict the structures of the 25

membrane proteins in the benchmark set. B.) Descriptor vectors include three categories: global, sequence information, and correlation descriptors.

Global descriptors include sequence position for sites i and j, the separation from i to j, and the number of amino acids in the sequence. Sequence

information descriptors include windows of biochemical properties surrounding sites i and j such as volume, hydrophobicity, sterical parameter,

polarizability, isoelectric point, and BLAST profiles. The probability of each SSE state helix/strand/coil (by JUFO9D) as well as membrane/transition/

solution state are also included. Finally, correlation information includes the symmetric matrix around sites i and j, all unique pairwise combinations from

i ± half_window_size with j ± half_window_size, the mean, max, and normalized mean of this window, and the overall mean sequence correlation.

https://doi.org/10.1371/journal.pone.0177866.g001
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we have encoded the vertical membrane position of considered amino predicted by using this

approach.

Feature selection and learning the statistical model

In order to avoid overfitting to the training data and improve robustness of the methods, we

have iteratively pruned the set of descriptors in order to find a minimal set of descriptors, that

captures the information essential for MP contact prediction. The pruning was achieved by

ranking descriptors by F1-score (harmonic mean of precision and recall, S1 File) and informa-

tion gain (the difference of the information entropy after partitioning the set using the given

descriptors, Kullback-Leibler divergence–S1 File).

The statistical models trained for the purpose of this work were obtained in a two-step pro-

cess. In order to ascertain the most suitable machine learning approach, we have trained both

ANNs and DTs. For both approaches, we have first performed initial training with all the

potential descriptors. To conduct the training, we have performed five-fold cross-validation,

by splitting the proteins randomly between training, monitoring and independent (testing)

set, of 15, 5 and 5 proteins respectively. No data from the independent set was ever used to

optimize parameters or train the machine learning model. We were thus able to optimize the

method using entirety of our protein set, while at the same time avoiding cross-contamination,

as no data points appeared in more than one of the data set simultaneously. As protein pairs

3GD8A/1YMGA and 2RH1A/1HZXA share non-negligible sequence similarity, they have

been always included together in the same data set.

Initial stages of training used root mean square error (RMSE) as the optimization criterion.

As DTs are prone to overfitting, we have forbidden splitting the nodes (making tree deeper), if

the size of the node was less than 20 data points. For ANN learning, we have established the α
(learning momentum) and η (gradient descent contribution) parameters by grid search in

cross-validation regime. The values that provided the best results were η equal to 0.000017 and

α equal to zero.

For the DT-based approach, the first round of optimization has used F1-score (harmonic

mean of precision and recall) and information gain (Kullback-Leibler divergence), which has

demonstrated that only 210 of the descriptors considered contributed significantly to the pre-

dictive performance.

This set of descriptors have been then iteratively pruned in respect to the measured input

sensitivity [31, 32]. We then iteratively rescored the top remaining descriptors (starting from

this set of 210) with input sensitivity using the best run from the previous stage. The best

threshold was set as the new top descriptor threshold. To decrease the likelihood of removing

useful descriptors, no more than half were removed at each stage. Thus, we subsequently

examined the top 160, 130, and 70 descriptors. In the third iteration (top 70 descriptors),

approximately top 30 descriptors resulted in the best performance. We used the average of the

enrichment as the objective function, where enrichment is the fold increase in positives. We

evaluated each set of models generated by calculating the integral of the precision over the

range 0.01% to 0.55% of the fraction predicted positive. This range closely captures the con-

tacts predicted for the top L predictions across all proteins while avoiding the noise present

below 0.01%. The small number of data points results in drastic changes from small perturba-

tions in overall predictions below 0.01%.

In case of ANN based approach, we use the method for descriptor selection that has already

been introduced and tested in BCL. We approximate the derivative of the effect of each feature

column on the results, as measured by the weights of trained ANN. This derivative is then

used in two ways to score descriptors: consistency of effect (i.e. does the derivative’s sign
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remain constant across all models in the cross validation ensemble, thus consistently increase-

ing/decreasing the emitted likelihood of contact) and the mean of the square of derivative. To

compute the latter metric, we rescale each derivative between 0–0.5, sum the scaled values and

square their values. The underlying rationale is that insignificant, noisy features will have low

weights, roughly equal to zero. However, it is possible for the non-noise features to have a

non-linear relationship to the output, in which the mean weight (and the mean derivative)

would be close to zero, but most of the weights would not, which is the situation this metric

aims to detect.

After selecting the optimal set of parameters and descriptors, we conducted final training,

using the same procedure, but substituting average enrichment in place of RMSE.

BCL::Fold protein structure predictions

BCL::Fold creates each model through a Monte Carlo optimization with two stages. It begins

model assembly by either placing, removing ir performing large SSE-based moves. The second

stage focuses on the refinement of the generated models and utilizes small amplitude SSE

translations and rotations to arrive at a final model. After each SSE move, models are scored

using knowledge-based potentials that examine MP topology, environment prediction accu-

racy, SSE alignment, radius of gyration, amino acid environment, contact order, amino acid

clashes, and a loop score [33–35].

The knowledge-based potential, BCL::Fold may be augmented with prior knowledge, in

case of this work—contact information. As predicted contacts are imperfect, additional terms

should encourage meeting the restraints, but not punish large violations. To do so, we have

used a smooth step function with two parameters or “threshold values”. If restrained amino

acids’ carbon alpha atoms are not further than 8Å (upper bound of the contact range), restraint

function confers a -1 bonus to the score. The other parameter is the width of transition region,

12Å, a maximal distance above which restraint does not affect the score anymore. The values

of restraint function between these two thresholds are dictated by a smooth, monotonic func-

tion, characterized by a zero derivative at threshold points—a the negative of the sine function

in range [0, pi/2] where the output decreases from 0 to the maximal penalty of -1. The penalty

plateaus as separation approaches 20Å, thus limiting the influence of sites well beyond the con-

tact range.

Here we used the mean of the predicted contact propensities output by each of the five

cross-validated classifiers (both for DT and ANN based approaches). For each protein, we

have restrained the top L highest scoring amino acid pairs to be in contact and ran the folding

protocol independently and in parallel, generating 1,000 models for each protein and machine

learning approach, producing 50,000 total models.

As the main goal of this work is to demonstrate the effect of contact prediction on protein

folding, we have used top 10 best models by RMSD100 to the native structure. Performing a

second iteration of folding did not significantly alter results.

Results and discussion

Topology filtering DCA-derived contacts improves prediction precision

While evolutionary coupling inference has been shown to be successfully applicable to protein

contact prediction [17, 18, 23, 24, 26, 36], not every highly coupled amino acid pair corre-

sponds to close proximity in the native structure. This is due to three confounding factors in

evolutionary coupling inference: (i) method limitations, (ii) missing data, and (iii) non-spatial

coupling causes. The statistical methods used for coupling inference make certain assumptions

about the model of protein evolution, including the assertion that co-evolution analysis can be
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reduced to a two-site inverse problem. While not unreasonable, there is no evidence that cer-

tain evolutionary effects could not be modelled more aptly as n-body interactions. To do so

would require substantially more sequence data than currently available. The other assertion

that these methods make is that the input multiple sequence alignment captures the evolution-

ary history of a protein accurately. It is a fact, that multiple sequence alignments available

currently are not uniformly samples from evolutionary history and consequently lack the

ancestral sequences, as well as potentially include sequences of proteins that are not homolo-

gous to the protein of interest. Finally, even given the most accurate method and infinite data,

there may be other sources of evolutionary couplings, including but not limited to: homo-olig-

omers with evolutionary pressures across protein interfaces that confound intra-protein con-

tact prediction, selection pressures across proteins with multiple receptor/signaling domains

that are evolutionarily related but not in physical proximity and other functional constraints.

As demonstrated before [20, 24], use of prior knowledge on protein structure substantially

improves the contact prediction accuracy. The initial approaches to using evolutionary cou-

plings to solve protein folding problem filtered away the pairs that were implausible to form

contact, which led to a substantial increase in expected folding accuracy [22]. For example,

two sites predicted to be on either end of a transmembrane α-helix are very unlikely to be in

contact. However, such a pair may yield a high coupling value if they are part of a receptor-sig-

naling pathway, which constrain their evolution similar to the functional roles that rely on the

physical proximity.

The transmembrane position descriptor (see Methods), that we have developed, attempts to

encode this observation. Fig 2 demonstrates that this descriptor results in a very consistent gra-

dient along a blue-white-red (0–1) spectrum (inner to outer membrane) with similar colors in

close vertical proximity. The mostly perpendicular orientation of the α-helices within MPs

simplifies vertical separation prediction. Amino acids with different colors are unlikely to be in

spatial contact.

For the original mfDCA filtered and processed method to which we compare, we used a

threshold of 0.35 predicted vertical separation units, above which couplings are discarded as

implausible. This threshold appears to be optimal in regard to the final accuracy for all L-frac-

tions including ranges ideal for contact-driven protein structure prediction.

Aggregate descriptors improve contact prediction with decision trees

and artificial neural networks

Out of the 1,505 features assessed for the potential to improve protein contact prediction, by

far the most promising were the aggregated, coupling-related descriptors. They ranked high

in respect to F-score, information gain [37], and input sensitivity [31, 32, 38]. These included

the normalized mean, window maximum and mean direct information (DI), and maximum

and mean DI across larger sets of all calculated MSA, using various e-values, both with and

without filtering. As demonstrated before [20, 23], the use of summary statistics combined

with multiple sources of co-evolutionary information allows for separating spatially-related

couplings from the ones arising due to the confounding factors introduced by suboptimal

input alignments.

The descriptor which proved particularly useful is the normalized mean coupling value. It

reduces the impact of discrepancies in coupling values between proteins by dividing the mean

coupling score for a square sub-matrix by the mean coupling score across the entire protein

sequence (S1 File). This descriptor implicitly captures a phenomenon employed by other

methods, that is that pairs with high couplings corresponding to spatial proximity tend to have

neighbors that have high coupling values as well, while this regularity is usually not present for
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the spurious ones. The size of a window is a compromise between capturing sufficient amount

of information and generalizability. A window size of nine was chosen to capture two complete

windings of an α-helix. Shorter and longer window sizes were tested but yielded worse results

(data not shown).

In the final optimized set of 30 descriptors that we used for DTs (see Methods and S2

Table), 18 involved coupling values, out of which 12 were aggregate metrics. Moreover, 9 of

these features are estimated to be of greater importance for prediction performance than the

first “simple” co-evolution descriptor. The input sensitivity of the highest ranked aggregate

descriptor is also almost 30 fold higher than that of descriptor based on DI alone.

The highest ranked descriptor is the correlation window maximum using filtered MSA cre-

ated with the optimal E-values. Coincidentally, this set of DI values also performs best for

Fig 2. Visualization of the predicted transmembrane position descriptor. We used SPOCTOPUS to

predict topology and then assigned each amino acid within all proteins a 0 for inner membrane (blue), 1 for

outer membrane (red), and a value between 0 and 1 based on the distance along the predicted

transmembrane helix normalized by the size of the containing helix. Above are 1HZXA, 2RH1A, 1OCCC, and

3QE7A (top left to right, bottom left to right). The vast majority (23 of the 25 benchmark proteins) are similar to

the top two examples—well defined and aligned gradients across the structure from inner to outer membrane

portions (blue to red). The only two proteins with significant errors are on the bottom (1OCCC and 3QE7A).

One can see in 1OCCC that the foremost helices do not align to the expected gradient due to their inaccurate

prediction as a single unbroken helix. A similar error exists in 3QE7A where a small portion is incorrect due to

a missing helix break prediction.

https://doi.org/10.1371/journal.pone.0177866.g002
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naïve DI contact prediction. The second highest by input sensitivity is the sequence separation,

which is partially due to positions closer in sequence being more likely to be in contact, but

also captures the periodicity of certain contacts (e.g. helix-helix contacts, where contact

between i,j implies lack of contact between i±2,j±2). The third highest-ranking descriptor is

transmembrane separation predicted by the topology filter. The normalized window mean

and maximum DI from the unfiltered optimized MSA are also ranked highly. Polarizability is

the highest ranked traditional biochemical property descriptor but in this case it is an aggre-

gated sequence mean and not just the polarizability for positions i and/or j.
Fig 3 displays the receiver operating characteristic (ROC) curves for DTs and ANNs for

predictions across the entire benchmark set in comparison to naïve DI using filtered MSA at

minimum separations of twelve. We also include results for a sequence separation of one.

Most notably, the AUC is higher for both DTs (0.862) and ANNs (0.855) in comparison to

naïve DI (0.611). However, the goal is to predict a small fraction of all theoretically possible

contacts with especially high accuracy. DTs and ANNs outperform naïve DI for the key false-

positive-rate range of 0.001 to 0.1.

Fig 4 compares prediction accuracy at a minimum separation of twelve between naïve DI

using filtered and unfiltered MSA, processed DI on filtered MSA, and the best DT and ANN

sets across varying top L fractions. DTs outperform all DI-only methods. The ANNs outper-

form all methods, including DT-based methods, for L-fractions of L/2 and higher. The ANN’s

advantage increases with larger fractions of L. Full results are given in S3 Table. The best accu-

racy for each PDB ID and L-fraction is marked in bold. ANNs have the highest accuracy at 3L

and a minimum separation of twelve for 19 of the 25 benchmark proteins.

To put these results in context of currently established contact prediction methods, we have

calculated positive predictive values for predictions with PSICOV[39], CCMpred [40] and Free-

Contact [41], using the same alignments as used by the methods we describe (S4 Table).

Known contacts improve BCL::Fold structure predictions

Accurate contact restraints limit the fold search space thereby enabling more efficient confor-

mational sampling. For methods such as BCL::Fold [34, 35], the smaller search space increases

the likelihood of sampling native-like topologies. BCL::Fold is especially well suited to incorpo-

rating contact restraint information as the primary sequence is distilled down to SSEs with

intervening loop regions removed during folding [42]. Thus, SSEs can move more easily to sat-

isfy restraints. For the full-sequence single-chain models, reaching long-range restraints may

be kinetically or energetically inaccessible, due to relatively large perturbations needed to over-

come local minima. We can subsequently rebuild loops for the best scoring models, thus ren-

dering fully-fledged models.

In order to illustrate the extent to which BCL::Fold may take advantage of contact restraints,

we have attempted to recover the structures of proteins in our data set by folding them with a

varying number of contact restraints derived from experimentally determined structures. As

expected, increasingly large L-fractions of correct restraints improve results (S1 Fig). For the

beta2-adrenergic G protein-coupled receptor (PDB: 2RH1A) the best model sampled

improved from 4.5Å to 2.5Å. For aquaporin 4 (PDB: 3GD8A) and cytochrome C oxidase

(PDB: 1OCCA) the effect is less dramatic but present. This shift to lower RMSD100 values

across models persists across the benchmark set and represents the positive control.

Predicted contacts improve BCL::Fold structure predictions

Having determined the upper limit of improvement, we compared the results of folding using

the positive control restraint sets to the results obtained using the DI, DT, and ANN predicted
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Fig 3. Best DT and ANN contact prediction ROC curve and logarithmic precision vs. fraction positive

predicted (FPP) compared to naïve direct information with minimum separations of 1 and 12. ROC

curves of the merged predictions averaged from five different training iterations for each protein. Also included

are results from contact prediction based solely on naïve direct information (using the optimal filtered MSA) for

comparison. The training, monitoring, and independents set included data from 15, 5, and 5 proteins

respectively. The independent predictions are the ones presented above. AUC is approximately 0.700, 0.938,

and 0.928 at a minimum separation of 1 for the filtered direct information, DT, and ANN methods respectively.

For a minimum separation of 12 the AUC is approximately 0.611, 0.862, and 0.855 for the filtered DI, DT, and

ANN methods respectively. Both methods significantly outperform naïve DI with a slight edge for DTs. The

bottom panel contains a graph showing precision as the fraction predicted positive increases. The black line
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contacts (Fig 5). All predictions were made using models with training sets that excluded data

from the structures to be predicted. The usage of a set of diverse alpha-helical membrane pro-

teins limits our possible set of training inputs to relatively few proteins as there are relatively

few membrane protein families of known structure. We are further limited to proteins with

depicts ideal performance. Each curve includes the aggregated predicted contacts from five training iterations

using DTs or ANNs. Models were trained using all contacts with a minimum separation of 1 and were tested

on pairs with a minimum separation of 12. Each iteration uses 15, 5 and 5 proteins for the training, monitoring,

and independent sets respectively. The integral of the precision from 0.01% to 0.55% is approximately 0.656,

1.921, and 0.865 at a minimum separation of 1 for direct information, DT, and ANN based methods

respectively. At a minimum separation of 12 the integral is approximately 0.537, 0.469, and 0.549 for direct

information, DT, and ANN based methods respectively. Greater precision initially and continuing out as FPP

increases is better.

https://doi.org/10.1371/journal.pone.0177866.g003

Fig 4. Accuracy comparison across best DT, ANN, naïve direct information, and processed direct

information contact prediction for a minimum separation of 12. The graph above depicts the average

accuracies of each method across the entire benchmark set for each of the top L fractions examined.

Accuracy is significantly higher for DI contact predictions from filtered MSA in comparison to unfiltered and is

further improved by processing (filtering based on predicted transmembrane topology). The processed

method is second best for the top L/10 predictions (44.42%) only slightly lower than the best DTs (44.99%).

DTs are also best for the top L/5 (39.40%). For L/2, 1L, 2L and 3L ANNs optimized using an analysis of

weights between nodes produces the best results (30.14%, 23.97%, 18.41%, and 15.28% respectively).

Thus, for all L-fractions, one or more commonly both machine learning methods have a higher average

accuracy.

https://doi.org/10.1371/journal.pone.0177866.g004
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alignments of sufficient depth to calculate DI for our coevolution-based contact prediction.

While a larger training set would be desirable, we posit that the results we present are general-

izable to other proteins.

The negative control shows the performance of BCL::Fold without contact restraints. All

predicted contacts shift models towards lower RMSD, although not to the same degree as the

improvement achieved with only correct contacts. However, the shift seen for cytochrome C

oxidase (PDB: 1OCCA) is very close to the positive control. This is likely due to its especially

high contact prediction accuracy. Both machine learning methods perform noticeably better

than the DI based methods for beta2-adrenergic G protein-coupled receptor (PDB: 2RH1A).

This is due to the methods’ automatic filtering of false positives between residues from oppo-

site sides of the membrane. This improves accuracy from 12.4% (DI) to 30.7% (ANN) for the

top L/2 contacts at a minimum separation of twelve.

Correct contacts result in the greatest average improvement in RMSD100 by 4.1Å. Pre-

dicted contacts all provide improvement over the negative control, but are not statistically

Fig 5. Comparison of protein model distribution across methods for 2RH1A, 1OCCA, and 1HZXA. The RMSD100

distributions of 1000 predicted models across naïve DI, processed DI, the best DTs, and the best ANNs above are book-

ended by the distributions of the positive and negative controls. Contact restraints consistently shift the distributions

towards lower RMSD100 models. There is little difference between methods for 1OCCA and 1HZXA. However, both

machine learning methods shift more substantially towards lower RMSD100 values in the case of 2RH1A. One should also

note that the distributions for all experimental methods approach that of the positive control for 1OCCA.

https://doi.org/10.1371/journal.pone.0177866.g005
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significantly different from one another as determined by the Wilcoxon signed-rank test (Fig

6). However, the distribution of improvements as gauged by the quartiles does appear to be

consistently higher for ANNs. In addition, the average improvement is highest for results from

structures predicted using the contacts from the best ANNs (1.7Å) compared to the second

best, processed DI also at 1.7 Å. Tables 2 and 3 include full benchmark folding results across

all categories. The mutual relationship of the folding results is invariant with respect to chosen

structural similarity metric, for results using GDT-TS and TMscore, see S5 Table.

Fig 7 shows how close the best model by RMSD100 replicates the native fold for 1HZXA

(3.3Å). The topology is correct and there is substantial superimposition of model helices with

those of the native structure. One expects some deviation as BCL::Fold uses idealized helices

with limited bends or kinks. These models still require the addition of side chains as well as

other refinement but the similarity between the predicted model and the native greatly simpli-

fies refinement and final all-atom prediction.

The best model by RMSD100 (3.3Å) is aligned above to the native structure. The model was

produced as part of a folding run of 1000 proteins using the top 3L contacts as predicted by the

best ANN with a minimum sequence separation of 12. Helices line up well, as can be seen

Fig 6. Influence of predicted contacts on folding accuracy. Box Plot Comparing Top 10 Models by

Average Percent Improvement in RMSD100 across Benchmark Set for Best Direct Information, DT, and ANN

Methods.

https://doi.org/10.1371/journal.pone.0177866.g006
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from both an in-membrane and above-membrane view. Deviation from the native structure is

due in part to the use of idealized SSEs that do not bend.

Conclusion

Membrane protein de-novo structure prediction can be aided by predicted contacts, which is

of particular importance given the challenges of experimental MP structure determination.

The evolutionary methods for contact prediction, which use rapidly growing pool of protein

sequence information can be expected to render more proteins (including MPs) amenable to

analysis and hence improve our understanding of MP structure. Substantial improvement is

possible by increasing the accuracy of contact prediction methods as evidenced by the correct

contact results. One may attain further improvement by leveraging the confidence in each

contact prediction or dynamically adjusting the contact restraints used based on scoring

and confidence values. Since development of this method, new, improved methods for contact

Table 2. Full benchmark folding results for controls and predicted restraints from the best methods—DI filtered, negative control, and positive

control (Top 10 average RMSD100Å).

PDBID DI Filtered MSA Stats Negative Best RMSD100 Pos. Control 2L ms 12

L TMhelix Meff Cov Best Top 10 Avg S.D. Best Top 10 Avg S.D.

3NCYA 422 12 1205 0.89 7.90 8.56 0.28 2.53 2.78 0.11

2RH1A 442 8 451 0.65 5.52 6.17 0.27 2.22 2.44 0.09

1OKCA 292 6 1043 0.89 6.45 7.61 0.42 3.56 3.89 0.17

1XQFA 362 11 1021 0.96 7.46 7.75 0.16 2.34 2.45 0.07

3GD8A 223 7 1062 0.96 6.25 6.58 0.20 2.88 3.08 0.13

1L7VA 324 10 1045 0.91 6.53 7.37 0.47 2.90 3.12 0.11

3MKTA 460 12 1068 0.92 6.33 7.93 0.57 3.86 4.17 0.20

3RKON 473 14 1722 0.83 7.80 8.30 0.29 2.86 3.36 0.21

1OCCA 514 12 754 0.98 7.33 7.71 0.23 2.32 2.85 0.32

1OCCC 261 6 521 0.96 7.44 8.00 0.21 5.36 5.59 0.08

1PP9C 379 8 581 0.92 7.15 7.59 0.22 3.56 4.04 0.27

3H90A 283 6 1039 0.97 6.62 7.26 0.37 3.17 3.84 0.24

3B45A 180 6 1073 0.87 6.30 6.53 0.12 3.46 3.66 0.10

1PW4A 434 12 1604 0.88 6.98 7.57 0.33 2.46 2.82 0.21

3DHWA 203 5 1065 0.88 6.94 7.52 0.30 5.33 5.51 0.11

1YMGA 233 7 1010 0.9 6.42 6.64 0.24 2.84 3.08 0.12

3B60A 572 6 1568 0.88 9.37 10.01 0.33 5.56 6.27 0.40

2A65A 510 12 1043 0.83 8.64 9.06 0.24 2.20 2.63 0.15

1HZXA 340 7 1151 0.8 5.77 6.28 0.23 2.08 2.16 0.06

3PJZA 468 12 923 0.79 7.69 8.59 0.36 4.14 4.82 0.35

2XUTA 456 14 1040 0.71 7.74 8.31 0.34 3.18 3.74 0.26

3ZUXA 308 10 1005 0.9 7.11 7.61 0.22 2.66 2.79 0.08

2XQ2A 538 15 1380 0.82 8.75 9.28 0.23 3.40 3.88 0.39

3M71A 306 10 646 0.97 5.88 6.41 0.34 2.34 2.45 0.08

3QE7A 407 14 1355 0.82 8.43 9.05 0.32 4.37 4.64 0.18

Avg 376 9.68 1055 0.875 7.15 7.75 0.29 3.26 3.60 0.18

The table displays the average, best, and standard deviation with respect to the RMSD100 across the entire benchmark set for positive and negative

controls and with contacts predicted using filtered DI at L/2 and minimum separation of 6 (additional methods included in Table 3). In addition, each result

row has the length (L), number of transmembrane helices (TMhelix), the effective alignment depth (Meff), and target sequence coverage (Cov) matched to

each PDBID. The positive control shown was the best performing run analyzed and utilized 2L contacts at a minimum separation of 12.

https://doi.org/10.1371/journal.pone.0177866.t002
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prediction have emerged [20, 36, 43], which allow to further increase the applicability of

approaches similar to the one we described. Despite use of imperfectly predicted contacts, we

observed a significant improvement in contact-restrained model accuracy, in comparison to

the unrestrained ones.

Co-evolutionary methods for coupling inference suffer from systematic biases, which can

be alleviated by machine learning. While this class of methods appears to work well for contact

prediction, their goal only partially overlaps with the goal of contact prediction. Not all con-

tacting residues co-evolve and—conversely—not all co-evolving residues contact. For mem-

brane proteins, the most notable class of inferred couplings that do not correspond to contacts

is the couplings between termini of transmembrane spans. Use of prior information, either on

the stage of inference, or post-processing with machine learning does alleviate some of these

Table 3. Full benchmark folding results for controls and predicted restraints from the best methods (Top 10 average RMSD100Å).

PDBID DI Naïve L/2 ms 6 DI Processed Filt L/2 ms 6 Best DT 1L ms 12 Best ANN 3L ms 12

Best Top 10 Avg S.D. Best Top 10 Avg S.D. Best Top 10 Avg S.D. Best Top 10 Avg S.D.

3NCYA 6.15 6.84 0.39 6.17 6.89 0.47 6.26 6.85 0.38 6.66 7.19 0.26

2RH1A 5.84 5.98 0.08 5.49 5.86 0.23 4.26 4.47 0.10 4.24 4.60 0.21

1OKCA 5.12 5.90 0.32 5.49 5.99 0.30 5.28 5.47 0.13 4.56 5.27 0.26

1XQFA 5.87 6.81 0.51 5.76 6.53 0.38 5.81 6.46 0.31 6.01 6.70 0.27

3GD8A 3.58 3.68 0.06 4.08 4.26 0.11 3.62 3.82 0.13 3.54 3.72 0.09

1L7VA 5.19 6.34 0.54 5.71 6.33 0.33 6.09 6.91 0.41 6.31 6.82 0.24

3MKTA 6.27 6.67 0.14 5.65 5.85 0.12 6.11 6.50 0.24 4.73 5.57 0.39

3RKON 6.11 6.98 0.48 5.69 6.34 0.31 7.17 7.86 0.30 4.98 5.85 0.38

1OCCA 3.94 4.23 0.22 3.84 4.16 0.20 4.45 4.79 0.17 4.46 5.06 0.27

1OCCC 5.63 6.06 0.22 6.20 6.39 0.16 6.02 6.19 0.13 5.52 6.18 0.24

1PP9C 5.26 5.63 0.21 5.30 5.62 0.20 5.04 5.51 0.23 6.41 6.81 0.22

3H90A 4.78 4.90 0.09 5.71 5.80 0.05 5.05 5.33 0.14 4.79 4.95 0.09

3B45A 4.29 4.54 0.12 4.64 4.93 0.17 4.43 4.63 0.15 4.70 4.82 0.10

1PW4A 5.20 5.47 0.17 4.50 5.11 0.34 5.35 5.67 0.23 5.78 6.23 0.23

3DHWA 6.41 6.63 0.11 5.81 6.30 0.21 6.88 7.19 0.13 5.91 6.30 0.21

1YMGA 3.89 4.22 0.18 4.06 4.23 0.12 4.29 4.43 0.06 3.99 4.25 0.16

3B60A 8.69 9.36 0.32 8.57 8.86 0.18 9.84 10.13 0.23 9.25 9.55 0.11

2A65A 4.78 5.59 0.37 4.67 5.33 0.32 6.02 6.42 0.29 5.72 6.32 0.36

1HZXA 3.95 4.14 0.16 3.31 3.61 0.17 3.64 4.12 0.20 3.28 3.60 0.16

3PJZA 8.01 8.44 0.18 7.95 8.53 0.25 7.41 8.02 0.32 6.42 7.02 0.33

2XUTA 8.34 8.84 0.28 8.19 8.47 0.16 8.00 8.27 0.12 6.73 7.50 0.42

3ZUXA 4.88 5.14 0.14 4.50 4.84 0.21 4.87 5.17 0.21 4.33 5.31 0.53

2XQ2A 8.27 9.51 0.48 9.12 9.32 0.10 8.44 9.08 0.35 8.38 8.96 0.27

3M71A 4.69 5.19 0.28 4.56 5.53 0.35 4.88 5.31 0.18 4.57 5.42 0.37

3QE7A 5.98 6.69 0.40 6.23 7.30 0.43 6.81 7.12 0.21 6.13 7.16 0.56

Avg 5.64 6.15 0.26 5.65 6.09 0.24 5.84 6.23 0.21 5.50 6.05 0.27

The table displays the average, best, and standard deviation with respect to the RMSD100 across the entire benchmark set for contacts predicted from one

of the following methods: naïve DI at L/2 and minimum separation of 6, processed, best DT at 1L and minimum separation of 12, or best ANN at 3L and a

minimum separation of 12. In addition, each result row has the length (L), number of transmembrane helices (TMhelix), the effective alignment depth (Meff),

and target sequence coverage (Cov) matched to each PDBID. The L-fraction and minimum separation for each method was independently optimized by

sampling across L-fractions of L/10, L/5, L/2, 1L, 2L, and 3L as well as minimum separations of 6 or 12. Further alignment details are in Table 1. Additionally,

the best single model and top 10 average results from all included contact prediction methods for each PDBID is bolded. Our method using ANNs has both

the lowest average RMSD100 for the best model (5.50Å) as well as the lowest top 10 average across the benchmark (6.05Å).

https://doi.org/10.1371/journal.pone.0177866.t003
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“mispredictions”, thus improving the expected utility of these methods for protein structure

prediction.

The accuracy of protein folding by BCL::Fold improves significantly by use of experimental

and predicted contacts. As simulating protein folding by macromolecular simulations (molec-

ular dynamics) is still largely unfeasible, the most promising results are to be achieved by sto-

chastic methods that allow for sampling larger chunks of conformational space [34, 44]. The

assembly of large structural elements, an approach implemented in BCL::Fold, permits for

reaching native-like topologies of predicted models with a fewer computational steps. Use of

sparse experimental information [42, 45] or prior information on protein structure—be it

experimental or predicted—does further increase the likelihood of sampling and retaining the

models with correct (close to the native) folds.

BCL::Fold’s protein structure prediction performance is best with L-fractions of L/2 and

higher (S1 Fig). Machine learning methods achieve the best average benchmark accuracies for

L-fractions most suitable for protein fold prediction using BCL::Fold. Thus, machine learning

methods improve protein fold prediction.

We strongly believe that with improvement in evolutionary contact prediction methodol-

ogy, increase of sequence information available and introduction of model refinement tech-

niques to BCL::Fold (e.g. aggressive secondary structure bending, optimization of hydrogen

bonding etc.), the approach described above will become a feasible strategy for accurate mem-

brane protein structure prediction.

Availability

BCL::Fold is implemented as part of the BioChemical Library, a suite of software currently

under development in the Meiler laboratory (http://www.meilerlab.org/index.php/

bclcommons/show/b_apps_id/1). BCL software, including BCL::Fold, is freely available for

academic use. Predicted contacts and top 10 structures are available at DOI 10.6084/m9.

figshare.4600372. All source PDB files are available from the RCSB database http://www.rcsb.

org/ and homologous sequences via BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi.

Fig 7. Contact assisted prediction of 1HZXA structure. Visualization of Best Protein Model by RMSD100

Aligned to Native from Contact Predictions Made by the Best ANN (3L and Minimum Separation 12).

https://doi.org/10.1371/journal.pone.0177866.g007
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Supporting information

S1 Fig. RMSD100 distribution of predicted models as increasing L-fractions of known con-

tacts are used, related to experimental procedures. This set of proteins represents the range

of improvement in model distributions from most to least drastic (2RH1A, 3GD8A, and

1OCCA). We depicted distributions for 2RH1A, 3GD8A, and 1OCCA in darker colors as the

number of contacts increases. 2RH1A has a drastic shift from a peak at 9.5Å to 3.5Å. 3GD8A

represents an intermediate improvement where the distribution becomes bimodal, with the

original peak diminished at 10.5Å but not to the extent of 2RH1A. There is also a new peak at

3.5Å. Finally, 1OCCA has a peak which does not shift substantially but the tail is shifted

towards lower RMSD100 scores, indicating some improved sampling with increasing numbers

of contact restraints.

(DOCX)

S2 Fig. L-fraction optimization for structure prediction using contacts from the positive

control, naïve direct information, best decision tree, and best ANN, related to Table 3.

This is the average RMSD100 improvement for the top 10 models across the L-fractions exam-

ined with a minimum separation of 6 and 12 (light and dark colors respectively) for the posi-

tive control (black), naïve DI (red), best decision tree (green), and the best ANN (blue). This

optimization was done with a random subset of 9 of the 25 benchmark proteins due to compu-

tational limitations. Using known contacts leads to greater improvement, which plateaus at 2L

and a maximum average improvement with a minimum separation of 12 of 2.90Å. Naïve DI,

and the best decision tree peak for L-fractions of L/2 and 1L at a minimum separation of 6 and

12 respectively (1.81Å for both). Finally, the best ANN peaks for the maximum L-fraction of

3L and a minimum separation of 12 with a maximum average improvement of 2.05Å.

(DOCX)

S3 Fig. AUC and integral for precision across fraction predicted positive after all 29 rounds

of ANN weights-based optimization, related to Fig 1. In addition to the input sensitivity iter-

ation method used with decision trees, we also attempted a descriptor optimization that deter-

mines which descriptors are most useful by analyzing the weights of the ANN models trained.

We graphed the results of a 29 round optimization for both the AUC and the integral of the

positive predictive value across the fraction predicted positive from 0.01% to 0.55%. As we

remove descriptors, the AUC slowly trends upwards. There is a slight plateau once one reaches

203 descriptors. However, the positive predictive value integral is largely steady within a range

until one reaches 146 descriptors. This is the highest point, followed by several higher but

declining values as one approaches the final round of optimization. Given that the positive pre-

dictive value integral is more representative of the top L contact predictions desired for protein

fold prediction, we used the top 146 descriptors for final contact prediction (round 23).

(DOCX)

S4 Fig. High, medium, and low accuracy top L/10 visualized contacts for 3GD8A, 3MKTA,

and 2RH1A respectively (DI-only filtered), related to Table 2. This is an example of the top

L/10 predicted contacts for 3GD8A (left) showing both the distribution across the protein

structure and the potential accuracy of the top DI pairs for contact prediction. The accuracy is

approximately 91%. For this set, only two pairs are incorrect at 9.2Å and 18.1Å. The latter is a

predicted contact between flexible loop regions. 3MKTA (middle) shows the distribution

across the protein structure and is an example of the medium accuracy possible for the top DI

pairs. Accuracy for this protein is 56.5%. Few pairs are incorrect, and most of them are within

the 8-11Å range. Many of the incorrect pairs are still “near-contacts”. 2RH1A (right) shows

one of the few examples of low accuracy in the absence of topology prediction assistance. Blue
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lines connect correct contact pairs (within the 8Å threshold). Yellow lines connect incorrect

pairs that are “near-contacts” (between 8Å and 12Å). Red lines connect incorrect pairs. Accu-

racy for top L/10 is approximately 18.9%.

(DOCX)

S5 Fig. Topology-based filtering threshold selection, related to Fig 2. To determine the opti-

mal difference threshold for filtering contacts to maximize accuracy we evaluated thresholds

from zero to 0.95 for all top L-fractions and minimum separations of 6 and 12. Accuracy

decreases initially for overly stringent cutoffs (near zero), which eliminate too many possible

contacts for most sets of parameters. Values begin improving for most L-fractions and mini-

mum separation values beginning around a maximum predicted transmembrane separation

of 0.2. This improvement is optimal around 0.35 across L-fractions and as such, the filtering

threshold was set to a maximum predicted vertical separation of 0.35. As the threshold

increases beyond 0.35, the beneficial effects of topology prediction decrease slowly towards

zero. The top 1L contact predictions decreases beyond zero during this latter range likely due

to a clustering of contacts with inaccurate transmembrane separation values of 1.0 due to

incorrect topology predictions in the range between the top L/2 and L contacts.

(DOCX)

S6 Fig. RMSD-RMSD comparison of the top 10 models from runs with contact restraints

from the best model (ANN) and without any contact restraints, related to Fig 6. The plot

shows the relative benefit of using predictions from the best model, the optimized ANN at 3L

minimum separation of 12, in comparison to folding without any contact restraints. Average

RMSD100 for the top 10 models in each run are plotted such that the result from the negative

control set is given on the x-axis and the set using the best predictions is on the y-axis. Equal

performance is depicted via the dotted x = y line and any point below this diagonal is improved

by inclusion of our predicted restraints. All 25 points are below the diagonal showing consis-

tent improvement across the benchmark set.

(DOCX)

S7 Fig. Comparison of direct information, running accuracy, and confidence weights

across the top 1L contacts for 3MKTA and 1OCCA, related to experimental procedures.

We have included a comparison of the direct information values, running accuracy, and confi-

dence weighting for 3MKTA, an average example of good contact prediction using direct

information, and 1OCCA, a poorly performing example from an early direct information

based method. The distribution and magnitude of the confidence weighting is relatively simi-

lar, while the direct information values are much larger and decrease more slowly for 3MKTA.

The point where confidence weighting crosses the 1.0 threshold—distinguishes between

the set of contacts weighted more and less heavily by confidence scoring. The accuracy for

3MKTA is much higher initially and stays around 30% across the entire set of the top L contact

predictions. 1OCCA’s accuracy drops off much more precipitously and quickly approaches

0%. Thus, the confidence based score increases the weighting for many contacts that are in a

range at or below 10% accuracy.

(DOCX)

S1 File. Supplementary information. This file includes supplementary information and

explanations.

(PDF)

S1 Table. Categories of global, sequence, and direct information (Correlation) descriptors,

related to experimental procedures. The table above contains all the categories of descriptors
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initially analyzed. They are divided into the three broad categories. The first is global position

descriptors—the location of each element of the pair i,j being predicted within the context of

the sequence. The second category is the sequence descriptors—biochemical, BLAST, and

predicted secondary structure information regarding the amino acids as well as aggregated

descriptors (mean and standard deviation) calculated across the entire sequence for the given

properties and BLAST data. Finally, the third lists coupling descriptors, which includes various

aggregated descriptors such as the max, mean, sequence normalized mean, standard deviation,

and sum across collections of the elemental correlation descriptors (by window or across e-

value/filtering parameters).

(DOCX)

S2 Table. Top 30 descriptors used for best DT model, related to Fig 1. This is the final set of

30 descriptors selected for use with DTs to predict long-range contacts. We determined this

set using an iterative process whereby we scored the usefulness of descriptors for a given

model type initially using F-score and then input sensitivity. We evaluated models using

increasing subsets of the ranked descriptors. We then selected optimal thresholds and repeated

the scoring and evaluation process until improvement plateaued or decreased. The top 30

descriptors are described above along with the type of descriptor and the input sensitivity at

the last iteration.

(DOCX)

S3 Table. Table of aggregated contact prediction accuracies from best methods across cate-

gories and optimal L-fractions for each included method. This table lists the final set of

accuracies for the best model from each method category (naïve DI, processed filtered DI,

DTs, ANNs) with all optimal L-fractions for the given methods as well as L/10 at a minimum

separation of 12 to show some of the highest precision prediction sets. All include the length

(L), number of transmembrane helices (TMhelix), the effective alignment depth (Meff), and tar-

get sequence coverage (Cov) matched to each PDBID for comparison. Additionally, the best

accuracy for each PDBID and L-fraction is bolded. DTs outperform all other methods at L/10

and a minimum separation of 12 (45.0%) and at L/2 and a minimum separation of 6 (29.4%).

ANNs outperform all other methods at 1L and a minimum separation 12 (24.0%) and at 3L

and a minimum separation of 12 (15.3%).

(DOCX)

S4 Table. Mean positive predictive value of underlying method (DCA), proposed methods

(DT: decision trees, ANN: artificial neural networks) and three state-of-art methods (PSI-

COV, CCMpred and FreeContact). Comparison across methods using positive predictive

value of underlying method (DCA), proposed methods (DT: decision trees, ANN: artificial

neural networks) and three state-of-art methods (PSICOV, CCMpred and FreeContact) at

three separation cut-offs (6+, 12+ and 24+ residues), as well as 4 inclusion thresholds (L/10, L/

5, L/2, L, where L is the length of protein). All results are based on the same alignments. We

would like to emphasize, that this method is based on a first-generation mean field DCA

implementation. Current methods for evolutionary coupling analysis take advantage of known

improvements in the field in form of better sequence reweighting, use of regularization instead

of pseudocounts and inferring more appropriate statistical models (Potts models instead of

Ising models of original DCA). To facilitate comparison, we have based all the predictions

(both by our method and the others) on the same alignments. We posit, that the methods we

propose should be successfully applicable to the coupling inference methods of newer genera-

tions.

(DOCX)
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S5 Table. Folding results using alternate similarity metrics GDT-TS and TMscore. Here we

have replicated Table 3 of main manuscript containing the same results, but with GDT-TS and

TMscore as similarity metrics. While not as wide-spread as TM-score or GDT-TS, RMSD100

is also a metric for length-independent comparison of structural similarity and enables com-

parison to prior work using BCL::Fold.

(DOCX)
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