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Abstract  
Electroencephalogram signals are time-varying complex electrophysiological signals. Existing 

studies show that approximate entropy, which is a nonlinear dynamics index, is not an ideal 
method for electroencephalogram analysis. Clinical electroencephalogram measurements usually 
contain electrical interference signals, creating additional challenges in terms of maintaining 

robustness of the analytic methods. There is an urgent need for a novel method of nonlinear 
dynamical analysis of the electroencephalogram that can characterize seizure-related changes in 
cerebral dynamics. The aim of this paper was to study the fluctuations of approximate entropy in 

preictal, ictal, and postictal electroencephalogram signals from a patient with absence seizures, 
and to improve the algorithm used to calculate the approximate entropy. The approximate entropy 
algorithm, especially our modified version, could accurately describe the dynamical changes of 

the brain during absence seizures. We could also demonstrate that the complexity of the brain 
was greater in the normal state than in the ictal state. The fluctuations of the approximate entropy 
before epileptic seizures observed in this study can form a good basis for further study on the 

prediction of seizures with nonlinear dynamics. 
Key Words: epilepsy; electroencephalogram; approximate entropy; nonlinear dynamics 

  

 
INTRODUCTION 
    

Epilepsy is one of the most common serious 

neurological disorders
[1-2]

. Epileptic seizures 

are defined as transient signs or symptoms 

of abnormal, excessive, or synchronous 

neuronal activity in the brain
[3]

. Epilepsy is 

usually controlled, but not cured with 

medication, and surgery may be considered 

in difficult cases. The available medications 

are not effective in all patients, with 30% of 

epileptic people suffering from uncontrolled 

seizures
[4]

. Thus, there is a strong need for 

new curative treatments. 

Neuronal networks manifest the property of 

multistable dynamics. It can be assumed 

that there are two possible states of the 

epileptic brain: the interictal state, 

characterized by normal, apparently random, 

steady-state activity, and the ictal state 

(seizure), characterized by the sudden onset 

of synchronous oscillations
[5]

. The transition 

between these two states can occur either 

as a continuous sequence of phases, or as 

a sudden change
[5]

. Seizures with the former 

type of ictal transition may be anticipated in 

their early, preclinical phases. In the latter 

case, where a sharp critical transition takes 

place, the seizures may be unpredictable. 

Electroencephalogram (EEG) signals reflect 

the electrical activity of the brain. At the 

onset of an ictal event, the EEG signal 

displays a complicated dynamic transition. 

Analysis of EEG changes in epileptic 

patients plays an important role in assessing 

the effects of treatment. Thus, new and 

more effective methods of EEG data 

analysis are urgently needed. 

Using techniques developed for the analysis 

of complex nonlinear systems, specific 

spatiotemporal dynamical EEG changes 

that begin several seconds before, and end 

several seconds after, a seizure can be 

identified
[6-7]

. The cerebral activity during an 

epileptic seizure is significantly different 

from the normal state. It is low-dimensional 

during the seizure, and high-dimensional 

during the interval state
[8]

. Its dynamic 

characteristics, including chaotic fractal 

dimension, complexity, Lyapunov index, 

correlation dimension, and other indices, 

change significantly. A number of studies 

have investigated the EEG using one or 

several dynamic indices, sometimes 

including wavelet transformation
[9]

. During 

seizures, the EEG tends to become 

synchronized and cyclical
[10-12]

, and the
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correlation dimension and complexity of the EEG are 

reduced
[13]

. It has been demonstrated that nonlinear 

dynamics methods are more sensitive in detecting 

seizures than traditional linear methods
[14-16]

. 

Complexity is an important characteristic of nonlinear 

dynamic systems. Approximate entropy (ApEn) is a 

nonlinear dynamic parameter that describes the 

complexity of a time series
[17]

. The ApEn is greater when 

the time series is more complex
[18-20]

. ApEn has the 

following advantages over other parameters: (1) it 

requires fewer data points (~100 - 5 000), (2) it is robust 

against noise and wild data points, and (3) it is 

appropriate for both deterministic chaotic and stochastic 

processes. Given N points and the similarity criterion r, 

ApEn (m, r, N) is approximately equal to the negative 

average natural logarithm of the conditional probability 

that vectors similar for m points remain similar at the next 

point, where the similarity of two vectors is judged in 

terms of their absolute coordinates
[21]

. ApEn and 

improved versions of this method have been used to 

analyze EEG signals of healthy individuals under 

different physiological and cognitive states
[18-22]

.  

In this paper, we used ApEn and an improved ApEn 

algorithm to characterize the dynamical properties of the 

ictal transition in subjects with absence epilepsy. We 

studied scalp EEG data recorded by video-EEG. Based 

on the observed variations in the ApEn during preictal, 

interictal and postictal states, we discuss the dynamic 

mechanisms of epileptic absence seizure. 

 

RESULTS 
 
ApEn algorithm and parameters 
We first studied the impact of different values of the 

parameters r and N on ApEn. 

The number of data points used to calculate ApEn in a 

time series can vary from hundreds to thousands. Due to 

the instability of EEG signals, we choose the first 70 

seconds (14 000 points) of continuous EEG data. The 

amplitude of the EEG signal from T5 increased 

dramatically during the ictal period compared with the 

preictal period (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, we studied the effect of different values of r. Usually, 

the threshold r has been between 0.1 and 0.2 SD (SD is 

the standard deviation of the original data), so we 

calculated ApEn for r = 0.1 SD and r = 0.2 SD. The ApEn 

algorithm showed that the value of r affected the number 

of d[x(i),x(j)] ≤ r, and that the number of d[x(i),x(j)] ≤ r for 

m must be greater than the number of d[x(i),x(j)] ≤ r for  

m + 1. Generally, the value of ApEn is nonnegative. This 

result indicates that ApEn cannot embody the complexity 

of epileptic seizures. Pincus
[19]

 found that when ApEn  

(m = 2, r1) (A) ≤ ApEn (m = 2, r1) (B), then ApEn (m = 2, r2) 

(A) ≤ ApEn (m = 2, r2) (B) (for r larger than most of the 

noise). Therefore, we think that this r is too small to 

achieve fault tolerance, and that the interference of 

excessive noise is too great.  

Second, we analyzed the effect of the value of N 

(number of data points) on ApEn. As shown in Figure 2, 

we can see that the value of N did not have a distinct 

effect on ApEn. However, increasing N will increase 

computation times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we determined the appropriate step length for 

calculating ApEn
[23]

. We compared the sliding window 

method with the jumping window method. We chose the 

data obtained from electrode F4, moved 400 points 

forwards to calculate a new ApEn value, and compared 

with the result of the jumping window method. Figure 3 

shows the difference between the two methods. When 

the jumping window was applied, the curve jumped too 

much. This can obscure lots of detail, and can cause the 

loss of important information. Therefore, we adopted the 

sliding window method for the rest of this study. Since small 

time steps will require longer computation times in MATLAB, 

while large steps will cause the loss of information, we 

chose a step of 300 to get a reasonable result. 

Figure 1  Filtered electroencephalogram (EEG) segment 
from T5 electrode.  

(A) Seventy-second segment of the EEG signal.  

(B) Ten-second segment of the EEG signal shown in A. 

Figure 2  Approximate entropy (ApEn) curves of filtered 
electroencephalogram data from T5 for m = 2, r = 0.2 SD, 
and step= 300 (m: embedded dimension; r: tolerance; SD: 

the standard deviation of the original data).  

(A) N = 500; (B) N = 800; (C) N = 1 200. 
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Changes in complexity in the presence of an external 
high-frequency disturbance 
Dynamical changes in the brain during absence seizures 

can be characterized by the ApEn index calculated from 

an EEG signal filtered according to common clinical 

standards. Sometimes, environmental factors during 

recording can cause interference in EEG recordings. For 

instance, sudden high-frequency disturbances can 

severely affect EEG recordings. 

We compared the ApEn of the original signal from 

electrode F4 with the filtered signal, to investigate the 

influence of external disturbances in the normal 

environment on ApEn. As shown in Figure 4, the 

amplitude of the ApEn of the original signal was larger 

than that of the filtered signal, but the overall shape was 

unchanged. This demonstrates that the ApEn algorithm 

has anti-jamming properties.  

An external high-frequency disturbance could be seen at 

electrode T5 between 40 and 45 seconds (Figure 1B). 

The ApEn curves from both the filtered and unfiltered 

data show an abrupt wave crest at 40-45 seconds 

(Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This character of the curves does not reflect the actual 

situation during the ictal period, and ApEn can therefore 

not accurately reflect the dynamical changes in the 

biological EEG signal. The phenomenon suggests that 

abrupt high-frequency disturbances have great impact on 

the ApEn. 

Algorithm improvement  
For many experiments, Pincus

[19]
 suggested m = 2 as an 

appropriate dimension to give reasonable statistical 

validity of the ApEn. However, because the EEG is a 

multivariable, nonlinear, non-stationary time series, the 

dimension is much larger than 2 or 3. Combining 

methods of False Nearest Neighbors, mutual information 

and C-C, we have found that the EEG data have a higher 

dimension
[8]

. In this study, we obtained an ApEn series 

that contained some negative values (Figure 5B), which 

disagrees with the definition of ApEn. We defined the 

original algorithm as Algorithm 0, and calculated the 

values of 
m
(r) that returned a value of 0 in formula 1. 

When m was increased to 5, ApEn became negative. 

To avoid the zero value in )(rCm

i
 and )(1 rC m

i

 , we made 

a small modification to the algorithm. By changing 

formula (1) to 
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we obtained a new algorithm (defined as Algorithm 1). 

Although the definition of )(rm  is different, 

ApEn( )()( 1 rr mm  ) tends towards the same results as 

the original definition as N approaches infinity. However, 

when both m

iC and 1m

iC  are extremely small 

( )()( 1 rr mm   ), ApEn can have a zero value. To avoid a 

non-reasonable zero value of ApEn, we modified 

formula (1) to 
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i

m r
mN
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to obtain another new algorithm (defined as Algorithm 2). 

In experiments using increasing values of m, Algorithm 2 

performed better than Algorithms 0 and 1. 

Figure 5A shows the different ApEn results obtained by 

the different algorithms when m = 2, at electrode F4. We 

found that the ApEn calculated by all the algorithms 

could reflect the dynamical changes in the EEG signal 

over time. There was a larger difference between the 

preictal and ictal periods in the ApEn curves obtained 

using Algorithms 1 and 2, compared to Algorithm 0. 

Figure 5B shows the difference between the algorithms 

when m = 5. Part of the curve calculated by Algorithm 0 

dropped below zero, which does not agree with the 

definition of ApEn. In addition, there was little difference 

between the preictal and ictal periods in the curve 

calculated by Algorithm 1. The curve of Algorithm 2 was 

Figure 3  Approximate entropy (ApEn) curves of filtered 
electroencephalogram data from T5 for m = 2, N = 800, 
and r = 0.2 SD (m: embedded dimension; r: tolerance; SD: 

the standard deviation of the original data).  

(A) Jumping window; (B) slipping window (step: 400). 

Figure 4  Approximate entropy (ApEn) curves for m = 2, 
N = 800, r = 0.2 SD, and step = 300 (m: embedded 
dimension; r: tolerance; SD: the standard deviation of the 

original data).  

(A) Filtered and unfiltered electroencephalogram (EEG) 
from electrode F4; (B) filtered EEG from electrode T5. 
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the best curve for distinguishing between the preictal and 

ictal periods. By comparison, we found that Algorithm 2 

was suitable for ApEn calculation of multi-dimensional 

data. 

Figure 6 shows the ApEn curves for different values of m 

calculated by Algorithm 2. The difference between the 

ictal and preictal periods was greater at larger values of 

m. Thus, when m increased, ApEn described more 

clearly the dynamical change of the brain. In addition, the 

curve between 38 and 45 s was smoother at larger 

values of m. This shows that the ApEn algorithm 

performed better under conditions of interference by a 

sudden high-frequency disturbance when m = 7 in this 

experiment. In this figure, the ApEn tended to decrease 

progressively during the preictal period. However, the 

ApEn value increased before this decline. In the ictal 

period, the ApEn maintained a lower value, and after the 

seizure, the ApEn increased again and sometimes even 

exceeded the preictal values. In the ApEn curves, there 

was a trough between 20 and 30 seconds and that was 

co-incident with eye blink artifacts detected in the video. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows that electrodes T3 and C3 are not 

suitable for using ApEn to distinguish between ictal and 

preictal periods in the EEG
[24]

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 
 
In this study, we report that the ApEn of an EEG signal 

during the ictal period is smaller than during the preictal 

period. This finding supports some hypotheses 

proposed in previous studies
[5, 25]

. The methods used to 

analyze biomedical signals have received increasing 

attention in recent years. Some scholars have improved 

the algorithms to increase computation speed, and 

other studies have tried to use ApEn to quantify 

changes in brain function
[17-18, 21, 26]

. In our study, we 

described the fluctuations of ApEn in preictal, ictal, and 

postictal EEG signals from a patient with absence 

seizures. The increasing value of ApEn in the preictal 

state indicated that the complexity of the brain changed 

before epileptic seizures. This implies that the increase 

in ApEn could be used to predict the onset of the 

epileptic seizure, when the parameters m, r, and N are 

chosen appropriately. 

In this study, we have found that the EEG signal at 

certain electrode positions can be used to describe the 

dynamical changes during absence seizures. Detailed 

evaluation of the best choice of electrodes will require 

another study. We also found that ApEn sensitively 

reflects the biological signal. Common interference 

signals can have positive influences during computation 

and analysis. Since the sensitivity of the preictal and 

ictal periods to interference varies, the interference 

signals make the value of ApEn partially larger (Figure 

4A). Consequently, the difference in ApEn between the 

interval and ictal periods is increased, making it easier 

to identify the change. The ApEn values for the filtered 

EEG signal decrease in total, with greater reductions for 

the interictal EEG and smaller reductions during the 

ictal phase. However, interference signals have little 

influence on the shape of the ApEn curve. Therefore, 

this ApEn algorithm is able to resist certain types of 

noise, because the chosen value of r is larger than most 

of the noise. However, irregular, sudden interference 

signals and myoelectricity during EEG monitoring, 

especially signals with frequency components within the 

recorded range, can have marked influences on the 

ApEn.  

During the ApEn computation, we found that the 

Figure 5  Comparison of three algorithms for calculation 
of approximate entropy (ApEn) for N = 800, r = 0.2 SD, 
and step = 300 (N: data length; r: tolerance; SD: the 

standard deviation of the original data). 

Figure 6  Approximate entropy (ApEn) curves for different 
values of m, calculated by Algorithm 2 for N = 800, r = 0.2 

SD, and step = 300 (N: data length; r: tolerance, SD: the 
standard deviation of the original data). 

Figure 7  Approximate entropy (ApEn) curves of four 
electrodes. 
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definition excluded the condition )(rCm

i
= 0. Because of 

this flaw, the algorithm is not applicable for 

multi-dimensional ApEn calculation
[27]

. To compute the 

ApEn in multiple dimensions, we put forward two 

modified algorithms. Algorithm 2 solved the problem in 

our study. As seen in Figure 6, the dynamical 

characteristics of the epileptic EEG signal were reflected 

more clearly when m increased. In addition, at increasing 

values of m, the impact of irregular, sudden interference 

signals decreased, while the impact of biological signals, 

blink artifacts, was retained.  

Previous research suggests that ApEn may detect 

epileptic seizures and explain the dynamic behavior of 

the brain
[9, 14, 22]

. We here report that a modified algorithm 

(Algorithm 2) better describes multidimensional 

dynamical changes in the brain. This algorithm retains 

the important advantages of ApEn in the study of 

biological systems, including less stringent data set 

requirements, relatively robust results, and resistance to 

irregular external disturbances.  

 

SUBJECTS AND METHODS 
 
Design 
A study of the nonlinear dynamics of 

neuroelectrophysiological data from human subjects. 

Time and setting 
This study was performed at the Department of 

Neurology, the First Affiliated Hospital of Sun Yat-sen 

University, China, from May 2004 to August 2005. 

Subjects 
Four patients (3 males, 1 female) with childhood absence 

epilepsy were recruited from the Department of 

Neurology, the First Affiliated Hospital of Sun Yat-sen 

University, China. These patients had an average age of 

11.1 ± 3.7 years, and were enrolled with informed 

consent. 

Inclusion criteria 

(1) 4-18 years old. 

(2) Seizures characterized by sudden transient confusion 

without convulsions. 

(3) Typical 3 Hz spike-wave complex in EEG. 

(4) No family history of epilepsy. 

(5) Normal motor and cognitive development. 

(6) No anti-epileptic drug or sedative before and during 

the examinations. 

Exclusion criteria 

(1) Progressive central nervous system diseases. 

(2) Acute infection during the examinations. 

(3) History of partial seizures. 

Methods  
The patients underwent a 24-hour video-EEG 

examination. Experimental scalp EEG data were 

obtained by a video electroencephalograph (Stellate Inc, 

Montréal, Canada) with 16 electrodes. Continuous EEG 

signals were typically analyzed for 70 seconds, and 

included one seizure episode (36 seconds preictally,   

22 seconds ictally and 12 seconds postictally; Figure 1). 

The signal was sampled at a frequency of 200 Hz and 

the number of data points was 14 000 points per 

electrode. 

The scalp EEG data contained some interference signals 

or electrical noise. Before analyzing EEG signals, we 

filtered them according to standard clinical procedures. 

The signal was high-pass filtered to remove frequencies 

below 0.30 Hz, low-pass filtered at 35 Hz, and notch 

filtered at 50 Hz. 

Complexity is a general concept with various definitions, 

which can be employed from different angles to evaluate 

biological signals
[28-30]

. Pincus
[19]

 suggested the concept 

of ApEn as an index of complexity, and used it to quantify 

the randomness of complex systems. More irregular time 

series data correspond to greater values of ApEn. The 

algorithm is computed as follows:  

First step: Given a time series of data u(1), u(2), …, u(N), 

from measurements equally spaced in time, form a 

sequence of vectors x(1), x(2), …, x(N - m + 1) in R
m
, 

defined by x(i) = [u(i), u(i + 1), …, u(i + m - 1)] and x(j) = 

[u(j), u(j + 1), …, u(j + m - 1)] (define for each i, 1 ≤ i ≤ N - 

m + 1; and j, 1 ≤ j ≤ N - m + 1).  

Second step: Calculate the distance between x(i) and 

x(j).  

 

 
1,2,...,

( ), ( ) max (| ( 1) ( 1) |).
k m

d x i x j u i k u j k


        (4) 

 
Third step: Define r, and for each i ≤ N - m + 1, calculate 

the number of d[x(i),x(j)] ≤ r and divide by N - m + 1. 

 
 

1,2,...,
( ), ( ) max (| ( 1) ( 1) |).

k m
d x i x j u i k u j k


        (5) 

 

Forth step: Define 
m
(r) as the average value of )(ln rC m

i
. 

Fifth step: for 1m , repeat steps 1-4, and note down 


m+1

(r). 

Sixth step: Calculate ApEn.  

 
1( , , ) ( ) ( ).m mApEn m r N r r       (6) 

 

In accordance with the definition and the algorithm of 

ApEn, we should establish an m-dimensional vector 

before analyzing time series. Usually, m = 1 or m = 2 

have been used in previous studies. Due to the 

complicated nature of biological signals, m = 2 has often 

been chosen for myoelectricity and EEG signals, when N 

was about 800
[20]

. Generally, we adopt m = 2 and r = 

0.1-0.2 SD [SD is the standard deviation of the original 

data u(i)]. 
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