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Objective: Because of rapid economic growth and followed urban expansion

in China, many people drinking natural water had to change their water

sources to tap water. We aimed to test the unknown association that whether

continued use of natural water for drinking is di�erent from switching to tap

water in all-cause mortality risks in elderly people.

Methods: In total, based on Chinese Longitudinal Healthy Longevity Survey,

26,688 elderly participants drinking natural water from childhood to young-old

were included in the final analyses. Associations between whether changing

drinking water sources or not and all-cause mortality risk were then estimated

by Cox regression models with the use of multiple propensity score methods,

and the primary analysis used propensity scorematching, with other propensity

score methods confirming the robustness of the results.

Results: Baseline characteristics were fairly well balanced by the three

post-randomization methods. During a median follow-up period of 3.00 (IQR:

1.52, 5.73) years, 21,379 deaths were recorded. The primary analysis showed

people using natural water unchangeably was associated with a lower risk of

all-cause mortality than those switching to tap water in later life (HR: 0.94,

95% CI: 0.91–0.97, p < 0.001). Other propensity score methods, as well as

Cox regression analysis without using propensity score methods, showed

similar results.

Conclusions: Among elderly people depending on natural water for drinking

from their childhood to young-old in China, continued use of natural waterwas

associated with a lower all-cause mortality risk than conversion to tap water

later. Further studies in di�erent countries and populations are needed to verify

our conclusions.
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Introduction

In countries with an advanced economy, science and

technology, the choice of water sources such as tap water,

bottled water, natural mineral water, and others is a privilege

for residents (1). Besides the considerations of accessibility, price

difference, tastes, odors, and environmental protection, drinking

water safety is increasingly becoming a major concern (2–5).

Major contamination in drinking water often comes from heavy

metals, harmful substances, and pathogens (2).

People often associate tap water with chemicals, chlorine,

sediments, etc., (5, 6), leading to increased demand and sales for

bottled water and mineral water to some extent (1, 4, 5, 7). Over

the previous decades, because of sometimes reports of water

supply network contamination (8), tap water was occasionally

a controversial topic (1). When it comes to natural waters, take

mineral water for an example, it has different characteristics

from tap water and originates from protected underground

water sources, and is subjected to different safety regulations as

well (9). However, despite the microbiological wholesomeness of

mineral water (10), very recent reports determined microplastic

particles in it (11), arousing public attention.

Rapid economic growth and its huge population have

accelerated the urban expansion in China in the past decades.

People flooded into metropolises and used tap water in most

daily life. At the same time, there was still a considerably large

amount of population staying in the countryside and obtaining

water directly from rivers, lakes, wells, pools, springs, etc., (12).

As far as we know, recent studies mainly concentrated on the

associations between components in drinking water and health

problems (13–15), the data on the impact of different drinking

water sources on long-term survival or mortality is limited.

Thus, we aimed to explore whether consistently drinking natural

water makes difference from converting to tap water on all-cause

mortality in elderly people from a longitudinal prospective study

in China.

Materials and methods

Study participants

Data were obtained from the Chinese Longitudinal Healthy

Longevity Survey (CLHLS), a nationwide, ongoing, prospective

cohort study of community-dwelling Chinese elderly people.

The CLHLS aimed to examine the social, behavioral, biological,

and environmental determinants of healthy human longevity

and oldest-old mortality.Briefly, the survey adopted a targeted

random-sample design to ensure representativeness, through

interviews with approximately equal numbers of male and

female non-agenarians, octogenarians, and young-old (aged 65–

79 years) living near to the centenarians (in the same village

or street, if available, or in the same sampled county or city)

and was conducted in a half of the counties and cities in 23

provinces, covering about 85.0% of the total population of

China. The CLHLS began in 1998, with subsequent follow-ups

in 2000, 2002, 2005, 2008, 2011, 2014, and 2018. To reduce the

attrition due to death and loss to follow-up, new participants are

enrolled during the following waves from 1998.These waves were

administered in participants’ homes by trained interviewers

with a structured questionnaire. Other details concerning the

objectives, design and methods of the CLHLS can be found

elsewhere (16, 17). The CLHLS complied with the principles

of the Declaration of Helsinki (18), and was approved by the

Research Ethics Committee of Peking University (IRB00001052-

13074). All participants or their proxy respondents provided

written informed consent.

The present study was based on seven waves (1998, 2000,

2002, 2005, 2008, 2011, and 2014 waves) within the CLHLS,

and the final wave of interview was 2018–2019. Figure 1A shows

the design of the present study, based on which the participant

enrollment process was conducted (Figure 1B), and the final

sample consisted of 26,688 elderly participants (age ≥ 65 years).

Figure 2 shows the spatial distributions of the study population.

Assessment of drinking water sources

At baseline, participants’ drinking water sources were

assessed by the questionnaire with the questions: “Water you

drank at childhood was mainly from?”, “Water you drank

at around 60 years old was mainly from?”, and “Water you

drink at present is from?”, and the drinking water sources

included well, river/lake, spring, pond/pool, and tap water. In

the present study, a complex composition of drinking water

sources, including wells, river/lake, spring, and pond/pool, was

defined as natural water; then, the drinking water sources were

classified into natural water and tap water. If the participants

drank natural water at childhood and around 60 years old

(young-old), they were considered to drink natural water from

childhood to young-old. Using the information on drinking

water sources, we compared the changes of drinking water

sources, drinking natural water unchangeably and switching

to tap water in later life, for association with the risk of all-

cause mortality.

Covariates

In our analyses, we also examined as many factors

as possible that might be associated with drinking water

sources and mortality, including sex, age, education, marital

status, residence, co-residence, fresh fruits, fresh vegetables,

taking meat, reading books/newspapers, current smoking,

current drinking, current regular exercise, hypertension,

diabetes, heart diseases, cerebrovascular diseases, respiratory
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FIGURE 1

Flow chart. (A) study design, (B) participants selection diagram.

diseases, cancer, self-rated health, and places of birth.

Supplementary Table S1 displays the detailed information

about the scales of reclassifications of baseline variables used in

the present study.

Study outcome

The study outcome was set as all-cause mortality, and the

participants’ survival status and date of death were collected

through interviews with close family members during each

survey. All individuals were followed from the first interview up

to the outcome or the most recent interview.

Statistical analysis

The missing values for all the baseline variables were

no more than 0.59%, and Supplementary Table S2 shows the

distributions of variables with missing data. Due to such low

missing rates, the cases with missing values were deleted in the

statistical analyses without imputing.

Baseline characteristics of the study population were

displayed based on baseline drinking water sources (natural

water vs. tap water), and the characteristics were described as

median (interquartile range, IQR) for continuous variables and

number (percentage) for categorical variables.

The balance in covariates was assessed by using the absolute

standardized mean difference (ASD) approach, and factors

with imbalance between the two groups was defined as an

ASD ≥ 0.100 (19). Given the observational nature of the

present study, propensity scores were developed to account

for potential confounding by observed baseline characteristics

(20). Propensity score methods replace an entire set of baseline

characteristics with a single composite score, and this can

be accomplished with a number of potential confounders in

excess of what is possible with conventional regression methods.

Individual propensities of participants drinking natural water
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FIGURE 2

Spatial distributions of the study population. In the present study, province with the most study participants was Guangxi (n = 3,808), followed

by Jiangsu, Sichuan, Shandong, Zhejiang, Henan, Anhui, Guangdong, Hunan, Hubei, Chongqing, Liaoning, Fujian, Jiangxi, Jilin, Shaanxi,

Shanghai, Hainan, Helongjiang, Hebei, Shanxi, Tianjin, and Beijing.

were estimated with the multivariable logistic regression model

that included the same covariates as the Cox regression model.

Associations between whether changing drinking water

sources or not and all-cause mortality risk were then estimated

by Cox regression models with the use of multiple propensity

score methods. The primary analysis used propensity score

matching (PSM), and 1:1 matching without replacement was

performed using the nearest neighbor matching algorithm, with

a fixed caliper width of 0.1. In addition, stabilized inverse

probability treatment weighting (IPTW) (21) and overlap

weighting (22) were performed to confirm the reproducibility

of the results by PSM.

Covariate differences after PSM, as well as IPTW and

overlap weighting, were assessed using the overall propensity

score distributional curves and calculating the ASD for each

covariate. Then, Kaplan Meier curves and Cox models that used

the above-mentioned propensity score methods were reported,

and we also showed the Cox model that included propensity

scores as an additional covariate. To eliminate the risk of

insufficient covariate balance, we also repeated the analyses by

further adjusting for baseline covariates in the propensity score

weighting-adjusted Cox regression models (called the “doubly

robust” method) (23). Our test ascertained that the proportional

hazard assumption was not been violated.

To explore the potential for unmeasured confounding

between drinking water sources and risk of all-cause mortality

by calculating E-values, which quantify the required magnitude

of an unmeasured confounder that could negate the observed

association between drinking water sources and all-cause

mortality risk (24).

The statistical analyses were performed with the use of R

software, version 4.1.0 (R Project for Statistical Computing),
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including the “survival”, “tidyverse”, “rms”, “tableone”, “survey”,

“survminer”, “stats”, “MatchIt”, “cobalt”, and “RISCA” packages.

For all statistical analyses, a two-sided p-value of 0.050 was

considered statistically significant.

Results

Baseline characteristics

From the seven waves, the number of newly recruited

participants was 44,026, and 42,714 of them completed the

drinking water sources assessment, which was the primary

exposure of the study. Then, 11,658 participants were excluded

for not meeting the study design and hypothesis that they were

under 65 at baseline or drinking tap water at their childhood

and/or young-old. Of 31,056 participants, 4,368 were excluded

because of the absence of baseline or follow-up data (Figure 1B).

Overall, 26,688 elderly participants drinking natural water from

childhood to young-old (around 60 years old) were finally

included in the study. The age of the study population was

91.00 (82.00, 100.00) years presented as median (IQR) and 89.81

± 10.76 years as mean (±SD), and 16,254 (60.90%) of the

participants were women.

In the crude sample, there was an imbalance (ASD ≥

0.100) between the two groups in seven baseline variables,

including residence, co-residence, fresh fruits, taking meat,

reading books/newspapers, self-rated health, and places of birth

(Table 1; Supplementary Table S3; Supplementary Figure S1).

After PSM, IPTW and overlap weighting, the distributions

of baseline characteristics were fairly well balanced

(Figure 3); the differences were within the margin of

0.100 for all variables (Table 2; Supplementary Table S4;

Supplementary Figure S1). Results of multivariable logistic

regression analysis that predicted drinking natural water are

listed in Supplementary Table S5, and the C-index of the

propensity-score model was 0.695.

Association between drinking water
sources and all-cause mortality

During a median follow-up period of 3.00 (IQR: 1.52,

5.73; Max: 21.06) years, 21,379 deaths were recorded, 8,945

of them were from the group switching to tap water and the

remaining 12,434 were from the other group. Kaplan-Meier

curves demonstrate that participants who drank natural water

unchangeably had a lower cumulative incidence of all-cause

mortality either before or after matching and weighting (all log-

rank p < 0.001, Figures 4A–D). In the crude and multivariable

analyses, participants who drank natural water unchangeably

had a significantly lower all-cause mortality risk than those who

switched to tap water later (Table 3). The primary multivariable

TABLE 1 Baseline characteristics stratified by baseline drinking water

sources.

Variable Crude sample

To tap water

(n = 11,421)

To natural

water

(n = 15,267)

ASD

Sex: female 6,989 (61.2) 9,265 (60.7) 0.010

Age (years) 91.00

(83.00, 100.00)

91.00

(82.00, 100.00)

0.043

Education: 1 year or

more

3,410 (29.9) 4,039 (26.5) 0.076

Marital status: not in

marriage

8,759 (76.7) 11,546 (75.6) 0.025

Residence: rural 6,550 (57.4) 12,776 (83.7) 0.603

Current smoking: yes 1,871 (16.4) 2,935 (19.2) 0.074

Current drinking: yes 2,295 (20.1) 3,435 (22.5) 0.059

Current regular exercise:

yes

2,705 (23.7) 3,052 (20.0) 0.089

Hypertension 0.089

No 9,239 (80.9) 12,533 (82.1)

Yes 1,709 (15.0) 1,908 (12.5)

Unknown 473 (4.1) 826 (5.4)

Diabetes 0.082

No 10,764 (94.2) 14,315 (93.8)

Yes 161 (1.4) 115 (0.8)

Unknown 496 (4.3) 837 (5.5)

Heart diseases 0.085

No 10,229 (89.6) 13,739 (90.0)

Yes 723 (6.3) 727 (4.8)

Unknown 469 (4.1) 801 (5.2)

Cerebrovascular diseases 0.064

No 10,514 (92.1) 14,024 (91.9)

Yes 463 (4.1) 496 (3.2)

Unknown 444 (3.9) 747 (4.9)

Respiratory diseases 0.058

No 9,796 (85.8) 12,900 (84.5)

Yes 1,227 (10.7) 1,663 (10.9)

Unknown 398 (3.5) 704 (4.6)

Cancer 0.079

No 10,869 (95.2) 14,300 (93.7)

Yes 42 (0.4) 33 (0.2)

Unknown 510 (4.5) 934 (6.1)

Values are median (IQR) or n (%).

ASD, absolute standardized mean differences.

Because the table is too large, some baseline information was included in the

Supplementary Table S3.

Cox analyses with PSM yielded similar results (HR: 0.94, 95%

CI: 0.91–0.97, p < 0.001). Results remained consistent in other

additional multivariable propensity-score analyses (Table 3).
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FIGURE 3

Propensity score distributional overlap before and after matching or weighting. (A–D) present propensity score distributions between the

participants who drank natural water unchangeably and the participants who switched to tap water in the crude sample, PSM sample, IPTW

sample and overlap weighting sample. For intervals along the x-axis, the area under the probability density curve represents the probability of

those propensity scores, and smoothing was via the kernel density estimate. Greater overlap of propensity score curves of the two groups

indicates a lesser risk of confounding.

Moreover, the E-values for the point estimate for all-cause

mortality ranged from 1.20 to 1.31 with the upper limit ranging

from 1.26 to 1.39 in different models (Supplementary Table S6),

which might mean the robustness of the primary findings.

Because in the case of the present sufficient covariates we

adjusted, unless an unmeasured confounder existed with a

substantially greater effect on risk of all-cause mortality (an HR

higher than the E-values), the observed association or its CI

would be reduced to null.

Discussion

To our best knowledge, the present study was the first to

investigate the relationship between different drinking water

sources and all-cause mortality. Based on a prospective cohort of

community-dwelling Chinese elderly people, for the participants

depending on natural water for drinking from their childhood

to young-old, those who drank natural water unchangeably had

a significantly lower all-cause mortality risk than those who

switched to tap water in later life.

People often have conflicting attitudes toward tap water

(4, 7) even though it is subject to strict safety regulations and

very regular inspections (25). In fact, the production of drinking

water complying with international quality standards does not

necessarily ensure healthy for the consumer. For instance,

several factors such as concentration of organic compounds,

chlorine concentration, the residence time of the water in

the distribution system, water temperature, physicochemical

characteristics of the material lining the distribution pipes, and

detachment, accumulation, and resuspension of loose deposits

can influence the regrowth of heterotrophic bacteria or the water

quality in the drinking water supply system (26–28).

Owing to the high efficiency in inactivating microbial

pathogens and reducing microbial growth, Chlorine is used

worldwide in drinking water treatment, but meanwhile, as
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TABLE 2 Baseline characteristics stratified by baseline drinking water sources after PSM, IPTW, and overlap weighing.

Variable After PSM After IPTW After overlap weighting

To tap water To natural water ASD To tap water To natural water ASD To tap water To natural water ASD

(n = 9,124) (n = 9,124) (n = 11,422) (n = 15,282.4) (n = 5,738.6) (n = 5,738.6)

Sex: female 5,597 (61.3) 5,314 (58.2) 0.063 6,911.1 (60.5) 9,234.2 (60.4) 0.002 3,485.2 (60.7) 3,485.2 (60.7) <0.001

Age (years) 91.00 (83.00, 100.00) 91.00 (81.00, 100.00) 0.079 91.00 (83.00, 100.00) 91.00 (82.00, 100.00) <0.001 91.00 (83.00, 100.00) 91.00 (82.00, 100.00) <0.001

Education: 1 year or more 2,551 (28.0) 2,646 (29.0) 0.023 3,220.2 (28.2) 4,306.8 (28.2) <0.001 1,607.7 (28.0) 1,607.7 (28.0) <0.001

Marital status: not in marriage 6,942 (76.1) 6,724 (73.7) 0.055 8,619.7 (75.5) 11,552.8 (75.6) 0.003 4,346.2 (75.7) 4,346.2 (75.7) <0.001

Residence: rural 6,481 (71.0) 6,667 (73.1) 0.045 8,271.2 (72.4) 11,051.5 (72.3) 0.002 4,171.1 (72.7) 4,171.1 (72.7) <0.001

Current smoking: yes 1564 (17.1) 1,784 (19.6) 0.062 2,082.8 (18.2) 2,777.1 (18.2) 0.002 1,020.2 (17.8) 1,020.2 (17.8) <0.001

Current drinking: yes 1,909 (20.9) 2,106 (23.1) 0.052 2,470.1 (21.6) 3,286.0 (21.5) 0.003 1,221.6 (21.3) 1,221.6 (21.3) <0.001

Current regular exercise: yes 2,009 (22.0) 2,093 (22.9) 0.022 2,481.2 (21.7) 3,328.1 (21.8) 0.001 1,242.7 (21.7) 1,242.7 (21.7) <0.001

Hypertension 0.055 0.002 <0.001

No 7,460 (81.8) 7,327 (80.3) 9,325.1 (81.6) 12,484.4 (81.7) 4,686.4 (81.7) 4,686.4 (81.7)

Yes 1,259 (13.8) 1,286 (14.1) 1,537.8 (13.5) 2,057.0 (13.5) 785.5 (13.7) 785.5 (13.7)

Unknown 405 (4.4) 511 (5.6) 559.1 (4.9) 741.1 (4.8) 266.7 (4.6) 266.7 (4.6)

Diabetes 0.051 0.005 <0.001

No 8,619 (94.5) 8,513 (93.3) 10,726.9 (93.9) 14,368.4 (94.0) 5,404.5 (94.2) 5,404.5 (94.2)

Yes 91 (1.0) 95 (1.0) 118.3 (1.0) 153.3 (1.0) 58.4 (1.0) 58.4 (1.0)

Unknown 414 (4.5) 516 (5.7) 576.9 (5.1) 760.8 (5.0) 275.7 (4.8) 275.7 (4.8)

Heart diseases 0.053 0.003 <0.001

No 8,235 (90.3) 8,106 (88.8) 10,261.2 (89.8) 13,728.0 (89.8) 5,166.5 (90.0) 5,166.5 (90.0)

Yes 490 (5.4) 521 (5.7) 610.9 (5.3) 824.3 (5.4) 309.1 (5.4) 309.1 (5.4)

Unknown 399 (4.4) 497 (5.4) 549.9 (4.8) 730.1 (4.8) 263.1 (4.6) 263.1 (4.6)

Cerebrovascular diseases 0.058 0.004 <0.001

No 8,421 (92.3) 8,313 (91.1) 10,498.5 (91.9) 14,048.3 (91.9) 5,286.0 (92.1) 5,286.0 (92.1)

Yes 336 (3.7) 333 (3.6) 409.5 (3.6) 554.9 (3.6) 207.6 (3.6) 207.6 (3.6)

Unknown 367 (4.0) 478 (5.2) 514.0 (4.5) 679.2 (4.4) 245.0 (4.3) 245.0 (4.3)

Respiratory diseases 0.071 0.003 <0.001

No 7,838 (85.9) 7,638 (83.7) 9,697.1 (84.9) 12,989.9 (85.0) 4,897.3 (85.3) 4,897.3 (85.3)

Yes 949 (10.4) 1,035 (11.3) 1,253.4 (11.0) 1,665.2 (10.9) 617.3 (10.8) 617.3 (10.8)

Unknown 337 (3.7) 451 (4.9) 471.6 (4.1) 627.3 (4.1) 224.0 (3.9) 224.0 (3.9)

Cancer 0.071 0.002 <0.001

No 8,662 (94.9) 8,515 (93.3) 10,772.3 (94.3) 14,417.6 (94.3) 5,432.0 (94.7) 5,432.0 (94.7)

Yes 28 (0.3) 27 (0.3) 32.6 (0.3) 42.6 (0.3) 16.7 (0.3) 16.7 (0.3)

Unknown 434 (4.8) 582 (6.4) 617.1 (5.4) 822.2 (5.4) 289.9 (5.1) 289.9 (5.1)

Values are median (IQR) or n (%).

ASD, absolute standardized mean differences; IPTW, inverse probability treatment weighting; PSM, propensity score matching.

Because the table is too large, some baseline information was included in the Supplementary Table S4.
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FIGURE 4

Cumulative incidence of all-cause mortality. (A–D) present Kaplan-Meier curves showing the participants with continued use of natural water

had significantly lower cumulative incidence of all-cause mortality during the follow up in comparison with those switching to tap water later in

the crude sample, PSM sample, IPTW sample and overlap weighting sample. In addition, the maximal di�erence of cumulative incidence was

only 0.16% for the curves of “to tap water” between IPTW sample and overlap weighting sample at each same point of follow-up time, and the

maximal di�erence was only 0.20% for the curves of “to natural water”; therefore, the curves were similar between (C,D).

a strong oxidant, it causes the formation of chlorination

by-products, which have been confirmed genotoxic, cytotoxic,

and carcinogenic (29, 30). More than this, in comparison

with bacteria isolated from an unchlorinated drinking

water distribution system, chlorine-tolerant microorganisms

including Legionella, Escherichia, and Geobacter in chlorinated

water as bacteria isolated from a chlorinated system were more

resistant to both combined and free forms of chlorine (31, 32).

Nowadays microplastics have been widely concerned as a

new emerging pollutant, affecting human health in various

aspects (33–35). Based on 38 tap water samples taken in

different cities in China (36), Tong et al. found the amount of

microplastics varied from 440 ± 275 particles/L with most of

which smaller than 50µm. Using micro-Raman spectroscopy,

the authors identified 14 different materials, and the majority

comprised of polyethylene and polypropylene, which are

utilized in pipes in drinking water distribution systems or

household (36).

Lead contamination in drinking water is also a public

health issue, generally resulting from the water contact with

leaded distribution piping and on premise plumbing (15).

Early in 1986, US Congress amended the Safe Drinking

Water Act to prohibit the use of leaded pipes, solder, and

flux in public water systems (15). Lead contamination can

contribute to neurotoxicity, memory reduction, reproductive

toxicity, vitamin-D deficiency, cancer, and catastrophic damage

to reading capability, cardiovascular and hematopoietic systems

(37). A survey of lead concentration in the tap water of 29

buildings on the National Taiwan University campus revealed

that faucet was a major lead source in at least 8 buildings (38).

Another issue tightly associated with tap water is water

storage tanks or other similar secondary water supply systems
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TABLE 3 Associations between drinking natural water and all-cause

mortality (natural water vs. tap water).

Analysis HR (95% CI), p

No. of deaths/no. of participants at risk (%)a

To tap water 8,945/11,421 (98.5%)

To natural water 12,434/15,267 (97.5%)

Crude analysis 0.95 (0.92–0.98), <0.001

Multivariable analysisb 0.94 (0.91–0.97), <0.001

Propensity-score analyses

With PSM (univariable) 0.92 (0.89–0.95), <0.001

With PSM (multivariable)b 0.94 (0.91–0.97), <0.001

With IPTW (univariable) 0.96 (0.94–0.99), 0.013

With IPTW (multivariable)b 0.94 (0.91–0.97), <0.001

With overlap weighting (univariable) 0.96 (0.94–0.99), 0.011

With overlap weighting (multivariable)b 0.94 (0.91–0.97), <0.001

Adjusted for propensity score (univariable)c 0.96 (0.93–0.99), 0.008

Adjusted for propensity score (multivariable)d 0.94 (0.91–0.97), <0.001

Values are n (%) or HR (95% CI) with p-value.
aCumulative incidence of all-cause mortality.
bAdjustment for sex, age, education, marital status, residence, co-residence, fresh fruits,

fresh vegetables, taking meat, reading books/newspapers, current smoking, current

drinking, current regular exercise, hypertension, diabetes, heart diseases, cerebrovascular

diseases, respiratory diseases, cancer, self-rated health, and places of birth.
cOnly adjustment for propensity score.
dAdjustment for propensity score, and sex, age, education, marital status, residence,

co-residence, fresh fruits, fresh vegetables, taking meat, reading books/newspapers,

current smoking, current drinking, current regular exercise, hypertension, diabetes, heart

diseases, cerebrovascular diseases, respiratory diseases, cancer, self-rated health, and

places of birth.

CI, confidence interval; HR, hazard ratio; IPTW, inverse probability treatment weighting;

PSM, propensity score matching.

(pumps, pipes, etc.,) commonly constructed in multi-floor

and high-rise buildings in metropolises to provide adequate

hydraulic pressure and equalize water demands (39). Due to

some typical characteristics of these secondary water supply

systems including long detention time, presence of active

materials, sediment accumulation and water stratification in

tanks, and warm temperature on account of sunlight exposure

(e.g., outdoor tanks), disinfectant decay and subsequent

microbial multiplication can take place, further leading to tap

water quality deterioration (39). A study found that water

storage system commonly made of commercial PVC, 304

stainless steel, and Portland cement (PTL 325) is a reservoir

for several opportunistic pathogens such as P. aeruginosa,

Legionella spp., mycobacteria, and V. vermiformis, which have

become an emerging public health threat worldwide, especially

for immunocompromised populations (40). Accumulating

evidences have linked these opportunistic pathogens infections

with drinking water systems (41, 42).

In contrast, drinking natural water can avoid the problems

above to a certain extent. China is a large agricultural

country and natural water is a common drinking source for

the rural areas (43). Natural water can enhance biological

stability and lower concentrations of micropollutants on

account of the presence of certain bacterial and fungal

species helping to promote biodegradation of organic and

inorganic matter (44). It is true of natural water, which

cannot be subjected to any type of disinfection that modifies

or eliminates its biological components, as a result, natural

water always contains bacteria that are primarily a natural

component of it (10). Meanwhile, no evidence between human

diseases and the natural bacteria found in natural water has

been discovered (10). Additionally, owing to the adsorption

by the soil and degradation by various microorganisms

in the soil, spring water contained fewer contaminants

like antibiotics (43).

Different types of natural waters are an excellent source

of calcium, bicarbonate, magnesium, and other useful mineral

substances (45). Old age is a stage with increased calcium

requirements for the body, and drinking natural water rich

in calcium helps to prevent osteoporosis, tooth loss, and

insomnia (46). Magnesium is a protective factor against

atherosclerosis, ischemic heart disease, arrhythmias, sudden

death, and cerebrovascular diseases (45) which have been

determined to relate to age. The high bioavailability of

magnesium in natural water makes it one of the best sources

of supply (45). In addition, sodium bicarbonate mineral water

has also been associated with a significant drop in total

cholesterol (6.3%), low-density lipoprotein cholesterol (10%),

and glucemia (45).

Several limitations merit consideration. Firstly, the

current sample included in the analyses was composed of

Chinese elderly individuals, thus, the conclusion of these

findings should be extrapolated with caution. Secondly,

participants’ drinking water sources in childhood were

collected by the questionnaire at baseline, and it could

result in recall bias. Thirdly, there is possibly some residual

confounding, therefore, we further calculated E-values which

ranged from 1.20 to 1.31 in the presence of adjustment

for various covariates. Fourth, some information such as

the daily drinking amount was not collected. Fifth, we

didn’t exclude the deaths from injury or accidents, further

studies focused on all-mortality should exclude it to explore

the relationships.

In conclusion, based on the data from CLHLS, in

Chinese elderly people depending on natural water for

drinking from childhood to young-old, using natural water

unchangeably was associated with a significantly lower risk

of all-cause mortality compared with those switching to tap

water in later life. More studies, as well as comprehensive

causal analyses, are needed to explore the association in

different countries and populations. Last but not least, close

attention should be paid to residents’ drinking water safety

and quality.
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