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Abstract: Ultrasound is one of the most commonly used imaging methodologies in obstetrics to
monitor the growth of a fetus during the gestation period. Specifically, ultrasound images are
routinely utilized to gather fetal information, including body measurements, anatomy structure,
fetal movements, and pregnancy complications. Recent developments in artificial intelligence and
computer vision provide new methods for the automated analysis of medical images in many
domains, including ultrasound images. We present a full end-to-end framework for segmenting,
measuring, and estimating fetal gestational age and weight based on two-dimensional ultrasound
images of the fetal head. Our segmentation framework is based on the following components:
(i) eight segmentation architectures (UNet, UNet Plus, Attention UNet, UNet 3+, TransUNet, FPN,
LinkNet, and Deeplabv3) were fine-tuned using lightweight network EffientNetB0, and (ii) a weighted
voting method for building an optimized ensemble transfer learning model (ETLM). On top of that,
ETLM was used to segment the fetal head and to perform analytic and accurate measurements
of circumference and seven other values of the fetal head, which we incorporated into a multiple
regression model for predicting the week of gestational age and the estimated fetal weight (EFW). We
finally validated the regression model by comparing our result with expert physician and longitudinal
references. We evaluated the performance of our framework on the public domain dataset HC18: we
obtained 98.53% mean intersection over union (mIoU) as the segmentation accuracy, overcoming the
state-of-the-art methods; as measurement accuracy, we obtained a 1.87 mm mean absolute difference
(MAD). Finally we obtained a 0.03% mean square error (MSE) in predicting the week of gestational
age and 0.05% MSE in predicting EFW.

Keywords: image segmentation; ensemble transfer learning; fetal head; gestational age; estimated
fetal weight; ultrasound

1. Introduction

Ultrasonic imaging, also known as ultrasound, is frequently utilized in clinical assess-
ment since it does not include ionizing radiation, and it is less expensive than computed
tomography (CT) and magnetic resonance imaging (MRI) [1]. Women usually have one to
three ultrasounds during pregnancy. If the lady is pregnant with twins or is at high risk,
ultrasounds may be required more frequently [2]. Ultrasound may be utilized in various
prenatal diagnostic situations, including: confirming the pregnancy and the position of the
fetus, calculating the gestational age of the fetal baby, verifying the number of fetal bodies,
examining fetal development, examining the amounts of the placenta and amniotic fluid,
identifying congenital disabilities, looking into complications, and other prenatal tests [3].
When ultrasound is routinely used in early pregnancy, it will result in an earlier detection
of problems and an improved management of pregnancy complications, which is better
than relying on clinical indicators such as bleeding in early pregnancy [4]. Halle et al. [5]
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reported that 1111 women received prenatal treatment at primary care health centers in
their health cohort. Ninety-five percent of women reported having some fetal ultrasound
scan prior to the 19th week scan, and 64% reported having two or more scans during this
period. Seventy-eight percent of women decided to participate in week 11–14 screening for
fetal abnormalities. Therefore, ultrasound is the preferable option for prenatal care com-
pared to other imaging modalities, because it allows for the recognition and measurement
of anatomical structures that can be used as guidelines for physician assessment of the fetal
health status [3].

Many clinical ultrasonography diagnostics necessitate the use of anatomical structure
measurements that are clear and reliable. These measurements are used to estimate fetal
gestational age and weight, which is essential for monitoring growth patterns during
pregnancy [6]. Abdominal circumference (AC), femur length (FL), crown–rump length
(CRL), occipitofrontal diameter (OFD), biparietal diameter (BPD), and head circumference
(HC) are some of the biological characteristics that may be measured during a prenatal
checkup [7]. In the 13th to 25th week of pregnancy, obstetricians and gynecologists may
calculate the fetus’s gestational age and weight, evaluate the fetus’s growth, and decide if
aberrant head development is suspected, by measuring the fetus’s HC [8]. When measuring
HC in clinical practice, the procedure is performed manually by either overlaying an ellipse
on the fetal skull or by recognizing landmarks that delimit the central head axis. Despite
this practice, the manual delineation raises concerns about measurement repeatability
and time consumption, since ultrasound imaging is prone to various errors, including
motion blurring, missing borders, acoustic shadows, speckle noise, and a low signal-to-
noise ratio [9]. As a result, interpreting ultrasound images becomes extremely difficult,
necessitating the use of skilled operators. Figure 1 shows ultrasound image samples that
are noisy and indistinct, with an incomplete head contour; additionally, the fetal skull is not
evident enough to be detected in the first trimester, as indicated in the samples obtained
from the public dataset [10].

Figure 1. Typical prenatal ultrasound images from each trimester. (A–C) First trimester, green arrows
indicate blurred fetal head and artifacts. (D–F) Second trimester, blue arrows indicate poor signal-
to-noise ratio and reflection from the fetal membranes and amniotic fluid interface. (G–I) Third
trimester, yellow arrows indicate speckle noise and standard sutures or ultrasonography artifacts.
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Traditional approaches for fetal biometric segmentation and measures have been under
investigation for the past decade. As a result of the development of these approaches, work-
flow efficiency has been increased by lowering the number of steps required for routine
fetal measures and examination time [6]. The randomized Hough transform [11], semi-
supervised patch-based graphs [12], multilevel thresholding circular shortest paths [13],
boundary fragment models [14], haar-like features [7], active contouring [15], morphologi-
cal operators [16], the difference of Gaussians [17], and deformable models [18] have all
been used in previous HC measurement studies.

With the advancement of deep learning technology in recent years, integrating medical
images and artificial intelligence has emerged as a popular study area in medicine [19].
Convolutional neural networks (CNNs) have rapidly gained popularity as a powerful
tool for many image processing applications, including classification, object identification,
segmentation, and registration, among others [20]. As a result, the field of medical image
segmentation is exploding with new applications. A few representative designs of CNNs
are fully convolutional networks (FCNs) [21], UNet [22], and three-dimensional VNet [23].

1.1. Contributions

Numerous challenges remain for prior traditional and deep learning methods, includ-
ing segmenting regions with missing edges, the absence of textural contrast, the specifi-
cation of a region of interest (ROI), and background detection. These difficulties can be
overcome using ensemble learning. Nowadays, CNNs are evolving towards lightweight ar-
chitectures that can be integrated in edge computing frameworks [24], but prior mentioned
techniques required a lengthy training period, high network parameters, high image resolu-
tion, and costly resources to run a heavy model. However, these issues may be mitigated by
fine-tuning a pre-trained lightweight network. Finally, earlier studies did not explore the
feasibility of utilizing machine learning and segmented image measurements to determine
fetal gestational age (GA), estimated fetal weight (EFW), and abnormality signs. In this
regard, this work proposes a complete pipeline for automatic segmentation and measuring
the fetal head in two-dimensional (2D) ultrasound images, followed by a prediction of the
fetal gestation age and weight. Below is a summary of technical contributions:

1. We fine-tuned eight segmentation networks using a pre-trained lightweight network
(EffientNetB0) and employed weighted voting ensemble learning on the trained
segmentation networks to obtain the optimal segmentation result.

2. We extensively evaluated the ensemble transfer learning model (ETLM) by performing
three-level evaluations: fetal head segmentation evaluation, predicted mask and post-
processing quality assessment, and head measurement evaluation.

3. We generated a new fetal head measurement dataset and manually labeled it by
adding fetal gestation age and weight.

4. We trained multiple regressions model to predict fetal GA and EFW to address the
limitation of the current formulas (Equations (21) and (22)).

5. We evaluated the regression model result using an expert obstetrician, and a longitu-
dinal reference using Pearson’s correlation coefficient (Pearson’s r).

1.2. Organization

The following is the paper’s organization: Section 2 discusses relevant research on
fetal head segmentation, HC measurement, and fetal GA and EFW calculation. Section 3.1
discusses the dataset and our methodology pipeline in depth. Section 4 contains details
about the experiment and evaluation methods. Section 5 presents the results, discussion,
and a comparison with state-of-the-art works. Section 6 highlights the strengths and
limitations of the research. Finally, Section 7 covers a conclusion and future work.

2. Related Work

Our works deals with fetal head segmentation using traditional approaches and deep
learning, HC measurement, and the calculation of GA and EFW. It is impossible to provide
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here an extensive overview of the literature related to these topics. We refer readers to the
survey and review [4,25–27]. In the following, we discuss the methods that are most closely
related to our work.

2.1. Fetal Head Segmentation
2.1.1. Traditional Approaches

Many works have used a variety of machine learning algorithms for fetal head seg-
mentation. One example is the probabilistic boosting tree (PBT), which has been utilized for
AC measurement [28]. A random Hough transform approach developed by Lu et al. [29]
has been used to recognize incomplete ellipses in images with severe noise. However, their
method may fail to detect the fetal head in low-contrast ultrasound images. Zhang et al. [30]
developed multi-scale and multi-directional filter banks to extract anatomical structures
and texture characteristics from fetal anatomical structure and texture images. Li et al. [31]
used a prior knowledge of fetal head circumference to obtain the region of interest with
random forest and detect the fetal head edge with phase symmetry. They found that their
method performed poorly on fitting the fetal skull from ultrasound images with partially
missing features taken in late pregnancy. A complex approach, such as [10], retrieved
the HC by using haar-like characteristics to train a random forest classifier to detect the
fetal skull, and employed the Hough transform, dynamic programming, and elliptical
fitting. Even though these previous approaches produced promising findings, they were
only tested on small datasets of specific pregnancy trimesters, and fetal ultrasound images
at different stages of pregnancy vary in their inherent characteristics. Therefore, aspects
such as the efficiency and accuracy of current traditional methods for automatic fetal head
segmentation and HC biometry performance need to be improved because with current
limitations, they are not adequate for accurate and reliable diagnosis by physicians.

2.1.2. Deep Learning

Deep learning techniques began to grow in popularity because of advancements in
technology. This method had significantly better skills in image processing tasks due to
their promising capabilities. In particular, CNN has emerged as a top choice for medical
image classification, segmentation, and object detection [4]. UNet [22] is a network often
used for biomedical image segmentation because of the symmetric structure observed
in the images, allowing for the efficient use of skip connection layers and the reduced
computing complexity. First, a feature map is extracted from an image via the encoders in
the UNet architecture. Then, the decoders cascade their corresponding encoded feature
maps to extract even more spatial information from the image. Several modified U-shape
networks [32–34] been used to segment fetal ultrasound images, and have achieved notable
results. The segmented images obtained can be utilized to detect the elliptic fetal skull
and calculate the fetal HC. Sobhaninia et al. [32] proposed a multi-task deep network
structure based on the LinkNet topology. They segmented fetal ultrasound images using
LinkNet [35] capabilities. Their experimental results revealed that multi-task learning
yields better segmentation outcomes than a single-task network. Qiao and Zulkernine [36]
presented an expanded UNet model [22] with dilated convolution layers and Squeeze-
and-Excitation (SE) blocks to enhance segmentation of the fetal skull border and skull in
2D ultrasound images. They used dilated convolution extracting features from a more
extensive spatial range to detect edges without increasing the model complexity, and to
measure fetal HC.

Desai et al. [37] proposed the DUNet architecture based on the UNet. The image
and its scattering coefficients (SC) are inputs for the DUNet. Each of these inputs has an
encoder. The encoders’ outputs are combined and sent into a single decoder, eliminat-
ing data augmentation and reducing the training time. Aji et al. [38] utilized UNet with
pixel-wise classification to increase ROI image classification performance. Each pixel is
divided into four classes: maternal networks have horizontal direction patterns, higher
head borders have concave arc patterns, lower head boundaries have convex arc patterns,
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and the rest. The LinkNet network [35] was used as inspiration for the multi-scale and low-
complexity structure of the proposed network by Sobhaninia et al. [39]. They were able to
lower the number of convolutional layers in mini-LinkNet. The LinkNet network includes
four encoder blocks; however, the mini-LinkNet network has just three encoder blocks,
which appear to be more efficient and may retain image characteristics. These researchers
demonstrate that employing a light network for the segmentation of the fetal head can lead
to the intended result. Brahma et al. [40] proposed accurate binary DSCNNs for medical
image segmentation. The networks’ encoder and decoder structures use parameter-free
skip connections to binarize them. Asymmetric encoder–decoder DSCNNs feature pyramid
networks with asymmetric decoders and spatial pyramid pooling with atrous convolutions
are evaluated on the fetal head image. An intensely supervised attention-gated (DAG) VNet
method was introduced by Zeng et al. [41] for automated two-dimensional ultrasound
image segmentation of the fetal head. Attention gates (AGs) and deep supervision were
added to the original VNet architecture. Multi-scale loss functions for deep supervision
were also introduced. The suggested DAG VNet technique increased segmentation accu-
racy while increasing the convergence speed by including the attention mechanism and
deep supervision strategy. Xu et al. [42] proposed a vector self-attention layer (VSAL) and
a context aggregation loss (CAL) in CNN. Geometric priors and multi-scale calibration were
developed for long-range spatial reasoning. Unlike nonlocal neural networks, VSAL could
concurrently attend to spatial and channel information, and VSAL consider multi-scale
information by applying geometric priors and multi-scale calibration. They also introduced
context aggregation loss (CAL) as an additional benefit to VSAL. CAL analyzes global
contextual information and intra- and inter-class dependencies. Then, they use VSAL
as the backbone to replace the convolutional layers. The suggested VSAL outperforms
various mainstream methods on prenatal images. It also shows the method’s adaptability
to various segmentation networks. Skeika et al. [43] presented an innovative approach for
automatically segmenting a fetal head in 2D ultrasound images. The suggested approach,
called VNet-c, uses the original VNET [23] but includes several modifications. The mod-
ifications include pre-processing, batch normalization, dropout use, data augmentation,
loss function, and network depth adjustments. The authors in [23] evaluated the suggested
method’s performance quantitatively using negative and positive rates. The fetal head and
abdomen segmentation in an ultrasound image was performed by Wu et al. [44] using a
cascaded FCN in combination with context information. Sinclair et al. [45] used an VGG-16
FCN to segment the fetal head in ultrasound images taken during the second trimester.
Object detection is also used with fetal ultrasound images, using fast regions convolutional
neural networks (R-CNN) and FCN. Al Bander et al. [46] developed a method to identify
the fetal head boundary using a combination of fast R-CNN and FCN that included target
localization and segmentation.

All of the works mentioned above did not consider the resource constraints and
training time. To the best of our knowledge, this is the first trial to employ ensemble
transfer learning for fetal head segmentation and to develop a lightweight model with low
resources and less training time with respect to model accuracy.

2.2. Fetal Head Measurement

Various methods have been proposed to derive accurate geometric measurements
from segmentation masks, such as the head circumference and radii. In general, most
methods consider various elliptical models for representing the fetal head shape. Zhang
et al. [47] proposed a method that estimates the HC from ultrasound images without
segmentation. Their technique uses a regression CNN, for which they tested four net-
works of varying complexity and three regression losses. It is the first direct measurement
of fetal head circumference without segmentation. Region-proposal CNN for head lo-
calization and centering, and regression CNN for precise HC delineation are proposed
by Fiorentino et al. [48]. Then, distance fields are used to train the regression CNN. In order
to make the network task of directly regressing the HC line easier, a distance field is used
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to smooth the HC line. Skeika et al. [43] used their own designed algorithm to calculate
HC from the predicted mask. Zeng et al. [41] used fitted ellipses to calculate HC biometric
measurements based on the following formula:

HC = 2π × SemiAxis b + (4× (SemiAxis a− SemiAxis b)) (1)

where SemiAxis a and SemiAxis b are the major and minor axes of the ellipse. Qiao and
Zulkernine [36], and Li et al. [49] used the direct least square fitting of ellipses to measure
the HC. A second-order polynomial, such as the following, can be used to express a
generic conic:

F(~a,~x) =~a ·~x = ax2 + bxy + cy2 + dx + ey + f = 0 (2)

where ~a = [a, b, c, d, e, f ]T and ~x =
[
x2, xy, y2, x, y, 1

]T Aji et al. [38] used an ellipse
fitting method comparable to the ElliFit method, in which the median value of the largest
area’s edge points is generally sought. Following these two operations, five ellipse parame-
ters are acquired and used for elliptical representation. Once these two numbers have been
calculated, they are multiplied by the pixel size of the input image. After obtaining the
parameters, it is possible to approximate HC by computing the ellipse border using the
following formula:

HC = 0.5× π × (a + b) (3)

where a and b are the major and minor axes of the ellipse.
In this work, we propose a geometry fitting framework for computing fetal head

measurements, composed of the following processing steps: smoothing, parameterization,
resampling, the linear least square minimization process for fitting an explicit model, and the
accurate geometric distance between points. The model is parameterized in a way that the
Jacobian and the geometric parameters of the best-fit ellipse can be computed in closed-form.

2.3. GA and EFW Calculation

In general, the starting day of the last menstrual period (LMP) is used to calculate
gestational age (GA). However, in around 40% of pregnancies, the LMP is unknown or
unreliable [50]. Ultrasound provides more reliable information on GA and is primarily
acknowledged as the preferred approach. Ultrasound can determine GA more accurately
than physical examination in most pregnancies. During the first trimester, the gestational
sac mean diameter and crown–rump length (CRL) are used to determine GA. Measurements
of the fetal head, torso, and extremities are most frequently used in the second and third
trimesters. A combination of BPD, HC, abdominal circumference (AC), and femur length
(FL) are typically measured parameters that are used to calculate the GA [51]. Many other
variables have been examined and linked to GA, but few increase the accuracy of GA
estimation [52].

In fetal medicine, the ultrasound estimation of fetal weight (EFW) is essential for
prenatal care. EFW helps the physician to determine whether fetuses are the proper size for
their gestational age (GA), small (SGA), or large (LGA) [53]. The EFW is calculated from
the HC, BPD, FL, and AC measurements. The formulas of Hadlock et al. [54] were the most
accurate, with the lowest Euclidean distance and the highest absolute mean error being
less than 10%. Hadlock et al. [54] (Equation (4)) used HC, AC, and FL measurements with
or without BPD. They found a robust connection between birth weight and EFW based on
HC, AC, and FL measurements [55].

loge(EFW) = 1.326− 0.00326× AC× FL + 0.0107×HC + 0.0438× AC + 0.158× FL. (4)

where AC, FL, and HC are the measurements that are mentioned in the previous paragraph.
To the best of our knowledge, this is the first trial study to employ a machine learning
regression model to predict fetal GA and EFW based on the fetal head, without the need
for other measures such as AC and FL.
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3. Materials and Methods
3.1. Methodology

Figure 2 illustrates the workflow of a full end-to-end pipeline that was proposed to
achieve the main contribution of this paper. The pipeline components are demonstrated in
three main blocks, as seen in Figure 2. These blocks can be subdivided as follows:

1. Automatic segmentation: takes as an input a ultrasound image, and gives an output
binary mask representing the fetal head.

(a) Eight segmentation models are fine-tuned independently using the pretrained
CNN EfficientNetB0 as the feature extractor.

(b) The segmentation predictions of these models are integrated through ETLM.

2. Measurements extraction: from an automatically computed and smoothed binary
mask, we fit an analytic explicit ellipse model that we use for computing the geometric
measurements of interest, such as semi-axis and head orientation.

(a) Image post-processing and smoothing.
(b) Fetal head measurement.

3. GA and EFW Prediction: from measurements and manual annotations, we fit a regres-
sion model that is able to predict GA and EFW, which we validate clinically.

(a) Generate new GA and EFW dataset and labeling.
(b) Trained multiple regression models on the new dataset.
(c) Clinical and longitudinal study validation.

In the following, we firstly describe the dataset used in this study and detail the
various components of the framework.

Figure 2. Workflow of the pipeline followed in this paper: Block (1) for fetal head segmentation.
Block (2) for smoothing and measuring. Block (3) for fetal GA and weight prediction red.

3.2. Dataset

The dataset on which the suggested approach was evaluated is available on Grand
Challenge HC18 (https://hc18.grand-challenge.org/, accessed on 21 May 2022). Table 1

https://hc18.grand-challenge.org/
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shows the distribution of the dataset during various trimesters of pregnancy. The dataset
consists of ultrasound images, a training set of 999 images, a CSV file containing the HC
and pixels size of each image, a test set of 335 images, and a CSV file containing only the
pixel size of each image. These images were taken from 551 women throughout their first,
second, and third trimesters of pregnancy. The images were acquired from the Radboud
University Medical Center’s Department of Obstetrics in Nijmegen, Netherlands, using the
Voluson E8 and the Voluson 730 (General Electric, Boston) [10]. All data were collected and
anonymized by qualified sonographers following the Declaration of Helsinki. The local
ethics commission authorized the data collection and usage for research purposes (CMO
Arnhem-Nijmegen). Each image was 800 × 540 pixels in size, with pixel sizes varying from
0.052 to 0.326 mm due to sonographer modifications to accommodate varying fetus sizes.
The sonographer manually marked each image by drawing an ellipse corresponding to
the skull portion. The unique issues in the images are depicted in Figure 1. The difficulties
included the head being in a variable location in the image, incomplete ellipse, and the
fetal head’s dimensions fluctuating over the gestational trimesters.

Table 1. Distribution of dataset during the various trimesters of pregnancy.

Trimesters of Pregnancy Training Sets Testing Sets

First trimester 165 55

Second trimester 693 233

Third trimester 141 47

Total 999 335

We augmented the dataset to increase the network’s resilience, prevent overfitting of
the training data, and improve the network’s generalization ability. Nine images were gen-
erated for each image and mask in the training set using [56]. The final augmented training
set includes: (1) Center Crop, (2) Random Rotate, (3) Grid Distortion, (4) Horizontal Flip,
(5) Vertical Flip, (6) Random Brightness, (7) Sharpen, (8) Affine Transformation, (9) Fancy
PCA, and (10) Original Image. The total number of training sets became 9990 images and
9990 masks.

3.3. Ensemble Transfer Learning Model (ETLM)
3.3.1. Transfer Learning

Transfer learning is the capacity of a system to recognize and apply information from
one area to another. Transfer learning has three levels. First, full-adaptation uses a pre-
trained network’s weights and updates during training. Second, partial-adaptation starts
with a pre-trained network but freezes the first few layers’ weights and updates the final
layers during training. Third, zero-adaptation uses a pre-trained model to establish the
weights for the whole network without updating any layers [57].

This work took weights from a lightweight network (EfficientNet) and then fine-tuned
them on prenatal ultrasound images. Because the dataset consists of medical images,
the full-adaptation approach was used. To ensure that the best model was selected for low
cost and efficiency, the lightweight EfficientNet [58] versions from B0 to B3 were utilized.
EfficientNetB0 was selected based on the obtained result. EfficientNetB0 was used as the
backbone (encoder) for different segmentation networks; therefore, the last block, which
includes the dense layer, was removed, as seen in Figure 3.
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Figure 3. The architecture of EfficientNetB0.

3.3.2. Ensemble Learning

Many artificial intelligence applications have significantly benefited from the use
of ensemble learning, a machine-learning approach that uses numerous base learners to
construct an ensemble learner for improved generalization of the learning system. A voting
ensemble (sometimes known as a “majority voting ensemble”) is a type of ensemble
machine learning model that incorporates predictions from several other models to arrive
at a final prediction [59]. When applied effectively, it can help models perform better than
any of the individual models. Voting ensembles combine the results of numerous models
to arrive at a final result. For example, the predictions for each label are added together,
and the label with the most votes is predicted. Almost the same results were obtained
across all segmentation models in our study. Therefore, using a voting ensemble is practical
when two or more models perform well on a predictive modeling task.

The models must all agree on most of their predictions for the ensemble to work.
Hence, each model’s contribution is proportionate to its capacity or competence in a weighted
average or weighted sum ensemble. A weighted average forecast begins by assigning each
ensemble member a fixed weight coefficient [60]. A percentage of the weight may be
represented as a floating-point number in the range of 0 to 1. Consider a case of three-
segmentation models with three fixed weights of 0.2/0.3/0.4, where larger weights indicate
a better performing model. It is possible to achieve the ideal average weight using classi-
fication accuracy or negative error, depending on the competence of each model. In this
work, we used Intersection Over Union (IoU) to determine the optimal average weight for
each of our eight segmentation models. The following equation is the base of weighted
voting ensemble learning:

ŷ = arg max
j

n

∑
i=1

WiPi,j (5)

where Pi,j: predicted class membership probability of the i classifier for class label j and Wi:
optimal weighting parameter.

The weighted voting method was applied to eight segmentation models to find the
final prediction’s optimal average weight. The segmentation models include UNet [22],
UNetPlus [61], AttUNet [62], UNet 3+ [63], TransUNet [64], Feature Pyramid Network
(FPN) [65], LinkNet [65], and DeepLabv3 [66]. All models were trained on the same
parameter. Further, the hyperparameter tuning method [67] was applied to select a set of
optimal hyperparameters, including optimizer, learning rate, loss function, and trainable
parameters for the eight models, as seen in Table 2.
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Table 2. The selected segmentation models and their details.

Model
Name Backbone Output

Function Normalization One-Hot
Encoding Optimizer Loss

Function Batch Size Epoch Input Size Trainable
Params

UNet

EfficientNetB0 Softmax 0 to 1 0 = black pixel
1 = weight pixel

RMSprop
+

Scheduler
Learning
Rate Step

Decay

Categorical
Focal

Jaccard loss
32 100 64 × 64

128 × 128

2,776,114

UNet_plus 2,389,042

Att_UNet 2,614,725

UNet 3+ 3,183,330

TransUNet 2,218,322

FPN 4,911,614

LinkNet 6,049,342

DeepLabv3 4,027,810

3.3.3. Image Pre-Processing

As seen in Table 2, three image preprocessing steps were applied to eliminate undesir-
able distortions and to highlight certain image features. The three steps can be summarized
as follows:

1. Normalization: the ultrasound image intensity range is 0 to 255. Therefore, we applied
a normalization technique for shifting and rescaling values to fit in a range between 0
and 1. The Normalization Formula is as follows:

Z =
X− Xmin

Xmax − Xmin
(6)

where Z: the normalized value in the image, X: the original value in the image, Xmin:
the minimum value in the image, and Xmax the maximum value in the image .

2. Resizing: The original image and mask size is 800 × 540 pixels; the images and masks
were resized into two different sizes, and the difference between the two inputs,
64 × 64 and 128 × 128, is compared to evaluate the lightweight models and to use
low-cost resources. In addition, while the original mask intensity was only two values,
0 and 255, after mask resizing, the intensity of the masks randomly ranged between 0
and 255. Therefore, the threshold of the resized masks had to be set to the original
intensity, where 0 represents black pixels, and 255 represents white pixels. Finally,
Softmax [68] was used as the output function; therefore, we had to encode the mask
values to 0 for black and 1 for white pixels.

3. One-Hot encoding: One-hot encoding is not often used with numerical values (im-
ages). In this study, because the output function is Softmax and the loss function
is categorical focal Jaccard loss, it is recommended that one-hot encoding be used.
The class representing white pixels is (0, 1), and the class representing black pixels is
(1, 0).

3.3.4. Hybrid Loss Function and Optimizer

As part of the ensemble transfer learning process, selecting the appropriate loss
functions increased segmentation accuracy during subsequent inference time. Therefore,
various loss functions were used for medical image segmentation [69]. This work used hy-
perparameter tuning to comprise the best loss function based on the IoU score. The optimal
loss function was the categorical focal Jaccard loss (CFJL), which is a combination of the
categorical focal loss (CFL) [70] and Jaccard loss (JL) [71], as defined below:

CFL(GT, PR) = −GT · α · (1− PR)γ · log(PR) (7)

JL(A, B) = 1− A ∩ B
A ∪ B

(8)

CFJL = CFL + JL (9)
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Among the different optimizers, Adam and RMSProp [72] achieve accurate segmenta-
tion. The result demonstrates that the loss value of the Adam and RMSProp optimizers
was lower than the others. However, using RMSProp with schedule learning rate and
step decay that drops the learning rate (LR) by a factor every few epochs, it outperformed
Adam. The step decay learning rate was defined as below:

LR = Initial LR× drop
⌊

epoch
epochDrop

⌋
(10)

3.4. Measurements Extraction
3.4.1. Post-Processing

Multi-smoothing and edge detection techniques were applied as post-processing to
correct the defective segmented mask and improve the segmentation results. The aim was
to smooth and sharpen the ellipse of the contour. Among various smoothing techniques, we
employed a median filter combined with morphological image processing in our scenario,
where the median filter is a non-linear digital filter that suppresses pulsed (non-stationary
random process) interference by eliminating all suspicious readings. The filter calculates
the median output value from a set of input data (see Equation (11)) [73].

Morphological image processing is a technique that deals with the shape or morphol-
ogy of picture features. Morphological operations are well suited to the processing of
binary images, since they rely solely on the relative ordering of pixel values, rather than
their numerical values. Greyscale images can also be subjected to morphological techniques
in which the light transfer functions are unknown, and where the absolute pixel values are
of no or small importance. In our scenario, a pixel is in the neighborhood if its Euclidean
distance from the origin is less than the ideal value of 25 [74]. This combination of median
filter and morphological process provided the best result. Figure 2 illustrates the predicted
mask before and after the smoothing.

f̂ (x, y) = median
(s,t)∈Sxy

{g(s, t)} (11)

where g(s, t) is noise, and the median filtering method is to sort the pixels in the sliding
filter window, then the output pixel value f̂ (x, y) of the filtering result is the median value
of the sequence [75].

3.4.2. HC Measurements

After the post-processing stage, the predicted mask is ready for measurements, which
are obtained through fitting an ellipse model to the extracted contour. The task of fitting an
ellipse model on top of scatter measurements is still considered a challenging problem by
the computer vision and computational geometry community [76]. In our case, we started
from the assumption that the contours extracted from generated masks are closed and
smooth. To enforce this assumption, we used the preprocessing method described in [77],
consisting of smoothing, parametrization and resampling, in a way where the input for
the fitting procedure is a uniform angular parametrization of a given contour composed of
a list of points xi = (u(θi), v(θi))

T and a 1-to-1 mapping between angles θi and samples xi
in pixel units. Then, we used a non-linear least squares minimization process for fitting an
explicit model x = x(θ) based on angular parametrization:

x(θ) = c + Ar(θ), (12)

where c = (cu, cv)T is the barycenter of the ellipse, r(θ) = (cos θ, sin θ)T is the angular unit
vector, and A = [(auu, auv), (avu, a vv)] is a 2 × 2 matrix mapping the unit circle to ellipse.
The proposed explicit model has various advantages. First, it depends on six parameters
Œ = {cu, cv, auu, auv, avu, a vv} all having the same dimensions (in pixels), and this makes it
easy to define meaningful geometric bounds for the minimization process; second, the cost
function can be computed with respect to the real geometric distance between points;
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finally, the Jacobian of cost function and the geometric parameters of the best-fit ellipse can
be computed in closed-form. In our case, we considered as the cost function the square
geometric distance weighted with the curvature computed for each point and regularized
with the Tikhonov term for avoiding that the Jacobian matrix becomes singular during the
minimization process:

C(Œ) = ∑
i

wi‖xŒ(θi)− xi‖2 + τ‖Œ‖2, (13)

where wi = κi =
1
Ri

= 1
‖xi−c‖ is an estimate of the curvature of the ellipse in the point xi

and τ is a small regularization constant (in our experiments τ = 10−8). Hence, the fitting
problem can be stated as finding the set of parameters Œ for minimizing the cost function:

Œopt = arg min
Œ

C(Œ), (14)

which can be solved using standard methods, like the Levenberg–Marquardt (LM) [78] or
Trust Regions (RTS) [79]. In our experiments, we tried both methods as implemented in
the Python scipy module, without noticeable differences in the fitting accuracy. As initial
values for the minimization process, we used the parameters extracted from the bounding
box of the contour.

Once the parametric representation of the ellipse was recovered, the geometric mea-
surements can be computed in a closed form. Specifically, the semi-axes length and vectors
can be computed by finding the extrema of the square distance between the ellipse and the
center of the ellipse. According to the parametric model:

θext = arg min
θ

‖x(θ)− c‖2 = arg min
θ

‖Ar(θ)‖2, (15)

leading to the equation A ṙ · Ar = 0, with solution

θext =
1
2

arctan
(a2

uv + a2
vv)− (a2

uu + a2
vu)

2(auuauv + avuavv)
+ k

π

2
(16)

from which the semi-axes vectors can be directly computed. As seen in Figure 4, the
measurements of interest include:

1. center x: represents the length in millimeters between the image’s beginning pixel on
the x-axis and the ellipse’s middle pixel.

2. center y: represents the length, in millimeters, between the image’s beginning pixel
on the y-axis and the ellipse’s middle pixel.

3. semi-axes a: Once the ellipse’s center is determined, the semi-axes determine the
radius’s maximum value based on the distance between the ellipse’s middle and its
farthest point.

4. semi-axes b: Once the ellipse’s center is determined, the semi-axes determine the
radius’s minimum value based on the distance between the ellipse’s middle and its
nearest point.

5. angle: contains the radian value of the angle formed by the center y and the semi-
axis b.

6. area: is the size of the area in millimeters that represent the fetal head.

From previous values, the equivalent diameter, biparietal diameter (BPD), occip-
itofrontal diameter (OFD), and HC were calculated based on the following formula
(Equation (20) [6]):

Equivalent diameter = semi axes a + semi axes b (17)

BPD = semi axes b ∗ 2 (18)
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OFD = semi axes a ∗ 2 (19)

HC = π(BPD + OFD)/2 (20)

Figure 4. Illustration of the fetal head measurement.

To ensure that the formula that we obtained from [6] for calculating HC is more
accurate than that formally used in [41], the mean difference was calculated to compare
both the formulas with the HC ground truth, which was given for the whole training set.
Table 3 shows that our HC measurement is the closest to the HC ground truth.

Table 3. Comparing two HC measurement formulas with the HC ground truth using the mean difference.

Formula Mean HC of the GT Mean HC by Each Formula Mean Difference

Our formula 174.3831 mm 174.2411 mm −0.14203

Other Formula 178.3705 mm 3.9874

3.5. GA and EFW Prediction

After completing the segmentation and fetal head measurements in the previous
section, eight values (features) that represent the fetal head were obtained. These values
are needed to generate a new dataset for fetal GA and EFW prediction.

3.5.1. Fetal Gestational Age Dataset

In the domain of fetal size and dating, Altman and Chitty [80] proposed a new formula
for calculating the gestation age based on HC; later Loughna et al. [6] proved that this
formula is only accurate when the fetal age is between 13 to 25 weeks. Therefore, this
study used the formula recommended by Altman and Chitty [80] to label the new dataset
manually, but only included GA from 13 to 25 weeks. Finally, the new dataset was used
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to train multi-regression models and predict GA from 10 to 40 weeks to overcome the
limitation of the original formula:

loge(GA) = 0.010611× HC− 0.000030321× HC2

+0.43498× 10−7 × HC3 + 1.848

GA = exp (loge(GA)) (21)

Table 4 shows that we generated the new dataset from both the training and testing
images. The new dataset was split into three partitions for training (13–25 weeks), validation
(10–40 weeks), and testing (GA < 13 and GA > 25 weeks). The purpose of the validation
set was to select the optimum regression model. The test set is used to compare the
efficiency of the selected model, with results being obtained by an expert doctor. The mean
square error (MSE) was used to evaluate different regression models, and Pearson’s r [81],
to measure the statistical association between the predicted results by the regression models
and the physician results based on test dataset GA prediction.

Table 4. Fetal gestational age dataset.

GA Validation GA Training GA Testing

Dataset (10–40) weeks (13–25) weeks GA < 13
GA > 25

Training 999 692 307

Testing 335 232 103

Total 1334 924 410

3.5.2. Fetal Weight Dataset

Estimated Fetal Weight (EFW) is calculated based on Hadlock’s formula [54], which
required a pre-knowledge of HC, BPD, AC, and FL. In addition, Salomon et al. [53] proposed
a polynomial formula to find a new reference chart for EFW calculation which only required
the knowledge of GA. This new formula (see Equation (22)) is used to estimate fetal weight
in grams based on fetal GA from 20 to 36 weeks. This formula was used to label the new
dataset manually, but only fetal weights for GAs between 20 to 36 weeks were used in this
dataset. The new dataset was then used to train multi-regression models and predict the
EFW from 10 to 40 weeks to overcome the limitations of the original formula:

EFW = −26256.56 + 4222.827× GA− 251.9597× GA2

+6.623713× GA3 − 0.0628939× GA4
(22)

Table 5 shows that we generated the new dataset from both training and testing images.
The new dataset was split into three partitions for training (20–36 weeks), validation
(10–40 weeks), and testing (GA < 20 and GA > 36 weeks). The purpose of the validation
set is to select the optimum regression model for fetal weight prediction. The test set is
used to compare the efficiency of the selected model, with results being obtained from
longitudinal reference [82]. The mean square error (MSE) was used to evaluate different
regression models, and Pearson’s r [81] was used to measure the statistical association
between predicted results by the regression models and longitudinal reference [82].
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Table 5. Estimated fetal weight dataset.

EFW Validation EFW Training EFW Testing

Dataset (10–40) weeks (20–36) weeks GA < 20
GA > 36

Training 999 551 448

Testing 335 175 160

Total 1334 726 608

4. Experiments

In this section, the experiment set up is identified, and the three levels of evaluation for
the segmentation model and the two levels of evaluation for the GA and EFW predictions
are explained.

4.1. Training

This study’s experiments were performed on a graphics workstation, with Intel(R)
Core(TM) i9-9900K CPU @ 3.60 GHz, NVIDIA GeForce RTX 2080 Ti 11 GB, and 64 G RAM.
The popular Tensorflow 2.6.0 and Keras 2.4.0 were chosen for the deep learning framework.
All segmentation models were trained using the same hyperparameter settings as seen
in Table 2; each model was trained for 100 epochs, and the training time was reported.
The input size of model training for the first experiment was 64 × 64, and the second
was 128 × 128.

4.2. Segmentation Models Evaluation

Three levels of evaluation were conducted to quantitatively analyze and evaluate the
segmentation model’s performance, as seen in Table 6.

Table 6. Evaluation levels for segmentation model.

Level 1
Segmentation

Evaluation

Level 2
Post-Processing

Evaluation

Level 3
Measurement

Evaluation

Total Training 80%
Validation 20% Validation 100% Validation 100%

Augmented 7992
1998

Training Set 999

Testing Set 335

4.2.1. Level 1: Segmentation Evaluation

Eight indices (Equations (23)–(30)) were used to evaluate segmentation model per-
formance. These indices included area under the curve (AUC), accuracy (ACC), mean
intersection over union (mIoU), precision (Pre), recall, dice similarity coefficient (DSC),
mean squared error (MSE), and mean pixel accuracy (mPA), as defined below:

True Positive Rate(TPR) =
True Positive(TP)

True Positive(TP) + False Negative(FN)

False Positive Rate(FPR) =
False Positive(FP)

False Positive(FP) + True Negative(TN)

AUC = TPR− FPR (23)
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Accuracy =
TP + TN

TP + TN + FP + FN
(24)

mIoU(U, V) =
C

∑
i=1

|U ∩V|
|U ∪V| =

C

∑
i=1

TP
TP + FP + FN

(25)

Pre =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

DSC =
2 ∗ Pre ∗ Recall

Pre + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(28)

MSE =
C

∑
i=1

(Gi − Pi)
2 (29)

mPA =
∑C

i=1 TP

∑C
i=1 TP + FP

(30)

4.2.2. Level 2: Post-Processing Evaluation

This study compared predicted masks using different models with ground truth
masks to evaluate the predicted mask in terms of quality assessment and smoothing (post-
processing). For this purpose, five indices [83] (Equations (31)–(35)) were used, including
mean Hausdorff distance (mHD), mean surface distance (MSD), relative volume difference
(RVD), mean structural similarity index (MSSIM), and peak signal-to-noise ratio (PSNR):

mHD(P, G) =
1
P ∑p∈P max d(p, g) + 1

G ∑g∈G max d(p, g)
2

(31)

MSD =
1
2

[
d̂(Sp, Sg) + d̂(Sg, Sp)

]
(32)

RVD(P, G) =
|G| − |P|
|P| (33)

MSSIM(G, P) =
1
M

M

∑
j=1

SSIM(gj, pj) (34)

PSNR(P, G) = 10 log
(

2552

MSE(P, G)

)
(35)

4.2.3. Level 3: Measurement Evaluation

To ensure the set of values obtained through the measurement algorithm, three indices
(Equations (28), (31) and (36)) were used to evaluate the test dataset, including mHD, DCS,
and mean absolute difference (MAD), as defined below:

MAD =
∑
∣∣HCp − HCg

∣∣
n

(36)

4.3. Evaluation of GA and EFW Prediction

Regression models were used for the estimated fetal GA and EFW predictions. MSE
(Equation (29)) was used to evaluate and select the best regression model. Pearson’s r [81]
(Equation (37)) was used to evaluate the predicted value (GA and EFW) by calculating the
statistical association between our model, the medical doctor, and the longitudinal reference.

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2(yi − y)2

(37)
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where r is correlation coefficient, xi is the values of the x-variable in a sample, x̄ is the mean
of the values of the x-variable, yi is the values of the y-variable in a sample, ȳ is the mean
of the values of the y-variable.

5. Results and Discussion

The first part of this section presents the obtained results for the different models’ seg-
mentation efficiency, mask quality assessment (post-processing), measurement performance,
and a comparison with the previous state-of-the-art. The second part presents the obtained
result for the fetal GA and EFW regression models’ efficiency and clinical validation.

5.1. Segmentation Performance

Figure 5 shows that all models obtained a validation score above 0.98 IoU during
training. The FPN reached 0.9861 IoU, which is slightly better than other models. It
is a 0.04 IoU improvement, compared to the lower performing model LinkNet, which
has a 0.9825 IoU. UNet3+ obtained the second-best value but took a long time to train,
as seen in Table 7. Therefore, UNet3+ was excluded from the weighted voting algorithm.
LinkNet, Deeplab3,TransUNet, and UNet Plus obtained low scores of 0.982, 0982, and 0.983,
respectively; therefore, they were excluded during the weighted voting algorithm. The
FPN, UNet, and AttUNet models obtained the highest IoU score with a low training time.
These models were used to perform weighted voting and to select the optimum weight for
our ETLM. Table 7 reports eight indices that are used to evaluate each model’s segmentation
performance [84].

Figure 5. Segmentation networks performance based on IoU validation score during training with
128 × 128 input size.

The overall result proves that transfer learning using EfficientNetB0 achieved promis-
ing results, despite a low input size and less training time. Therefore, this study proves
that transfer learning can develop a lightweight model, which was a challenge for med-
ical image segmentation tasks. With an input size of 128 × 128 and no augmentation,
results may vary from one model to another. It can be seen from the two indices, mIoU
and MSE, that the FPN and AttUNet achieved the best result with the average training
time. Further, with input size 64 × 64 and augmentation, ETLM outperformed all other
models in terms of ACC, mIoU, Pre, Recall, DSC, AUC, and mPA. In the case of input
size 128 × 128 with augmentation, ETLM outperformed all other models in terms of ACC,
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mIoU, Pre, Recall, AUC, MSE, and mPA. Finally, as seen in Table 7, all indices reported
during validation showed that ensemble learning could add slight improvements to the
segmentation model and predict image masks. However, these new predicted masks had to
be post-processed for edge smoothing and required quality assessment tests, as discussed
in the following subsection.

Table 7. Level one: performance evaluation and comparison of segmentation results for all models
with various input sizes, and with and without augmentation.

Model Trained with Input Size Network Augmentation ACC mIoU Pre Recall DSC AUC MSE mPA Time (min)

128 × 128

UNet

No

0.9855 0.9667 0.9780 0.9740 0.9854 0.9820 0.014 0.9711 0:11:02

UNet_plus 0.9852 0.9662 0.9710 0.9815 0.9851 0.9842 0.014 0.9665 0:10:43

Att_UNet 0.9862 0.9680 0.9769 0.9787 0.9862 0.9841 0.013 0.9721 0:11:35

UNet 3+ 0.9856 0.9671 0.9770 0.9766 0.9856 0.9830 0.014 0.9693 0:25:20

TransUNet 0.9852 0.9662 0.9783 0.974 0.9852 0.9821 0.014 0.9756 0:12:08

FPN 0.9866 0.9693 0.9790 0.9778 0.9860 0.9840 0.013 0.9730 0:13:29

LinkNet 0.9857 0.9673 0.9770 0.9760 0.9856 0.9830 0.014 0.9692 0:12:14

Deeplabv3 0.9852 0.9660 0.9791 0.9727 0.9845 0.9817 0.014 0.9763 0:11:04

64 × 64

UNet

Yes

0.9917 0.9810 0.9870 0.9859 0.9916 0.9900 0.008 0.9870 0:39:00

UNet_plus 0.9898 0.9767 0.9843 0.9833 0.9896 0.9880 0.010 0.9815 0:38:18

Att_UNet 0.9919 0.9815 0.9881 0.9863 0.9919 0.9900 0.008 0.9875 0:40:38

UNet 3+ 0.9920 0.9816 0.9883 0.9862 0.9919 0.9904 0.007 0.9892 1:16:44

TransUNet 0.9913 0.9802 0.9873 0.9851 0.9912 0.9896 0.008 0.9873 0:44:44

FPN 0.9926 0.9831 0.9887 0.9878 0.9925 0.9913 0.007 0.9886 0:48:51

LinkNet 0.9912 0.9800 0.9868 0.9854 0.9911 0.9896 0.008 0.9860 0:46:13

Deeplabv3 0.9908 0.9790 0.9869 0.9838 0.9903 0.9889 0.009 0.9842 1:07:17

ETLM 0.9928 0.9841 0.9892 0.9881 0.9934 0.9918 0.008 0.9904 NA

128 × 128

UNet

Yes

0.9928 0.9820 0.9888 0.9886 0.9928 0.9917 0.007 0.9898 0:37:15

UNet_plus 0.9923 0.9807 0.9879 0.9879 0.9922 0.9911 0.007 0.9877 0:35:10

Att_UNet 0.9928 0.9819 0.9887 0.9885 0.9927 0.9916 0.007 0.9891 0:38:59

UNet 3+ 0.9933 0.9832 0.9900 0.9890 0.9933 0.9921 0.006 0.9908 1:40:12

TransUNet 0.9928 0.9819 0.9890 0.9884 0.9927 0.9916 0.007 0.9892 0:38:29

FPN 0.9939 0.9846 0.9908 0.9899 0.9938 0.9928 0.006 0.9905 0:42:47

LinkNet 0.9927 0.9817 0.9892 0.9879 0.9926 0.9914 0.007 0.9886 0:36:30

Deeplabv3 0.9926 0.9828 0.9886 0.9878 0.9923 0.9913 0.007 0.9884 0:43:11

ETLM 0.9942 0.9853 0.9913 0.9903 0.9908 0.99316 0.005 0.9914 NA

5.2. Measurements Performance
5.2.1. Post-Processing Evaluation

Figure 6 presents samples of original images, predicted masks after post-processing,
ground truths, and ellipse fitted masks; however, it is challenging to identify differences
and similarities by looking at the predicted masks and ground truths. Therefore, this study
performed a mask quality assessment test shown in Table 8, to prove that the promised
result obtained during the level one evaluation is realistic and reliable.

Table 8 shows a comparison between two distinct groups of predicted masks; the first
group was predicted using various segmentation networks trained with a 64 × 64 input
size. The other group used networks that trained with a 128 × 128 input size. In both cases,
the results indicate that ETLM is more like the ground truth mask, where minimum mHD,
MSD, RVD, and maximum MSSIM and PSNR were obtained using masks predicted by
ETLM with post-processing. However, some results may vary slightly, as seen in the case
of the 128 × 128 FPN, which obtained minimum mHD, but the ETLM performance was
best in other indices. The RVD is always negative, as seen in Table 8, which means that in
all cases, the predicted mask size (fetal head contour) was bigger than the ground truth in
the masks predicted by different networks. However, ETLM minimized this difference to
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0.0016 to achive the best similarity with the ground truth. Overall, the level two evaluation
proved that the predicted masks obtained by this study’s ETLM are remarkably close to the
ground truth, with a difference of 0.011, as reported by MSSIM (see Figure 6).

Figure 6. Qualitative comparison of segmentation performance of networks on a fetal head ultrasound
image. The predicted mask, ground truth, and original image boundaries are shown. The predicted
masks using different networks and the proposed ETLM are shown in the first row.
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Table 8. Level two: predicted mask (post-processed) quality assessment for models with various
input sizes.

Model Trained with Input Size Network Original
Training Images

mHD (mm) MSD (mm) RVD MSSIM PSNR

64 × 64

ETLM

Yes

0.927634 0.0034989 −0.00387 0.98108–0.98255 25.142206

FPN 1.186636 0.0049680 −0.01237 0.97322–0.97544 23.47897

UNet 1.118771 0.0048532 −0.01213 0.97352–0.9757270 23.5358

Att_UNet 1.512662 0.0049149 −0.01222 0.973301–0.9755263 23.505971

Trans_UNet 1.118771 0.0049047 −0.01208 0.97344304–0.97563850 23.50993

128 × 128

ETLM

Yes

0.753095 0.0018117 0.001639 0.989922–0.990706 28.247806

FPN 0.625412 0.0020034 −0.00264 0.9888480–0.9896689 27.536022

UNet 1.250824 0.0020566 −0.00196 0.98856–0.989421 27.484995

Att_UNet 0.988862 0.0020950 −0.00177 0.988375–0.989247 27.41142

Trans_UNet 0.753095 0.0020579 −0.00243 0.988523–0.98937365 27.43699

5.2.2. Fetal Head Measurement Evaluation

Fetal head measurements were evaluated on the testing dataset, which consisted of
355 images. Unfortunately, the ground truth for this dataset is not available to the public;
therefore, the measurement evaluation result was obtained by submitting measurement
values to the dataset website (https://hc18.grand-challenge.org/ 11 August 2022)and
obtaining the mHD, MAD, and DCS, as shown in Table 9.

Table 9. Level three: measurement evaluation based on testing dataset.

Model Trained
with Input Size Network Original

Testing Images mHD (mm) MAD (mm) DCS

128 × 128 ETLM Yes 1.6715 1.8735 0.9716

5.3. Comparative Analysis

Table 10 provides a comprehensive comparison between our ETLM and the published
results reported in the literature. First, the ETLM outperformed the state-of-the-art models
in the segmentation task regarding ACC, mIoU, Pre, and mPA. Second, the results of this
study are better than [32,36,39,43,47], in terms of MAD, and better than [32,39,42] in terms
of mHD. However, the result in this study is inferior to the results found in [41,49] because
the models used in those studies were heavy and trained for more than 30 h with high
input resolution, making the models very expensive in terms of required resources and
time. Finally, a model weight comparison showed that the lightweight ETLM used in this
study is superior, because promising results with very low resolution (128 × 128) and less
training time (2 h) were achieved. This study proves that ensemble and transfer learning
overcomes medical image segmentation challenges such as low image intensity, the need
for expensive resources, long training time, and heavy model deployment.

https://hc18.grand-challenge.org/
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Table 10. Comprehensive comparison with state-of-the-art models.

Type of Comparison Segmentation Measurement Model Weight

Network ACC mIoU Pre mPA DSC MAD mHD Model Trained
with Input Size

Bach
Size GPU RAM Epochs Training Time

ETLM
[UNet: Att_UNet: FPN]

[0.3: 0.3: 0.4]
0.9942 0.9853 0.9913 0.9914 0.9716 1.87 1.67 128 × 128 32 11 GB 300 2:01 h

VNet-c [43] 0.9888 0.9594 0.9767 NA 0.9791 1.89 NA 512 × 512 4 6 GB 300 53:35 h

VSAL [42] NA NA N/A 0.990 0.9710 NA 3.234 256 × 256 4 24 GB 100 17:30 h

SAPNet [49] NA 0.9646 NA 0.9802 0.9790 1.81 1.22 480 × 320 10 11 GB 700 NA

Regression CNN [47] NA NA NA NA 0.9776 1.90 1.32 800 × 800 16 NA 1500 NA

DAG V-Net [41] NA NA NA NA 0.9793 1.77 1.27 768 × 512 2 11 GB 20 30 h

MTLN [32] NA NA NA NA 0.9684 2.12 1.72 800 × 540 NA 11 GB 200 15 h

UNet [36] NA NA NA NA 0.9731 2.69 NA 216 × 320 4 32 GB 100 NA

DSCNN [40] NA NA NA NA 0.9689 NA NA NA NA NA NA NA

MS-LinkNet [39] NA NA NA NA 0.9375 2.27 3.70 NA 10 11 GB 150 18 h

5.4. GA and EFW Prediction Performance

For fetal GA and EFW prediction, we trained 17 regression models on each dataset
independently. Because the dataset contains large numerical values, a log transformation
was applied to both datasets before training, making the highly skewed distributions
less skewed. The performance of each model was evaluated using MSE, and the result
was reported in Table 11. This task aimed to address the limitation of both formulas (see
Equations (21) and (22)) used to estimate the GA and EFW. Therefore, the regression model
was used to predict GA for the fetus when the GA of the fetus was 13 > GA > 25, and the
EFW for the fetus when the GA of the fetus was 20 > GA > 36. In both cases, the ground
truth was non-existent because both formulas had limitations, and a GA and EFW could
not be calculated in the mentioned periods; therefore, the following steps were taken:

1. Validation of predicted GA: 50 random samples images taken from the testing set
(13 > GA > 25) were given to a senior attending physician with 21 years of experience
in maternal-fetal medicine, to estimate GA. We used Pearson’s r to measure the
strength of a linear association between the physician prediction and the model
prediction for the same sample set. Because we do not have any pre-knowledge
of the dataset in terms of ethnicity or location, the GA may vary based on these
factors; therefore, in this work, we tried to predict the GA in the 50th percentile, and
considered the median.

2. Validation of predicted EFW: In the case of EFW, the senior physician could not
estimate the EFW based on fetal head images and required more factors such as FL,
AC, and CRL. Therefore, a growth chart taken from a longitudinal reference was used
for estimated fetal weight, regardless of fetal sex [82]. Then, Pearson’s r was used to
measure the strength of the linear association between the longitudinal reference and
the model prediction for the same sample set that fell in the range of 20 > GA > 36.
This study tried to predict the EFW in the 50th percentile and considered the median
for the above mentioned reason.

Table 11, shows that most regression models achieved a promising result in GA and
EFW datasets based on MSE. In the GA validation dataset, polynomial regression and
Deep NN achieved a lower MSE of 0.0003 and 0.00072, respectively. However, to ensure
the reliability of each model, all models were used to predict the 50th percentile of GA.
The predicted GA was then compared with the physician’s estimations using Pearson’s
r. After comparing the predicted GA with the physician’s estimation, Table 11 shows that
Deep NN and polynomial regression outperformed all regression models for predicting
the GA, with Pearson’s r of 0.9978 and 0.9958, respectively.
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For Fetal EFW, LinearSVR, XGBRFRegressor, and linear regression achieved the lower
MSE in the EFW validation dataset, as reported in Table 11. Nonetheless, all the models
were used to predict the 50th percentile of EFW in the test dataset to ensure the reliability
of each model’s prediction. Then, it was compared with the longitudinal reference table, as
seen in Appendix A1. As a result, Pearson’s r showed that LinearSVR outperformed all
the models and predicted the EFW in the 50th percentile with the highest association with
the longitudinal reference (r = 0.9989). In addition, XGBRFRegressor showed a low MSE
during validation, and a low association with the longitudinal reference.

Overall, most regression models could predict the GA and EFW in the 50th percentile,
as seen from Pearson’s results in Table 11. It is concluded that the regression models in this
study address the limitations of the formulas currently used to calculate GA and EFW in the
specific period. Without limitation, these models only required measurement of the fetal head
to calculate GA and EFW from the 10th week to the 40th week. This study is the first work that
utilized machine learning to predict the GA and EFW based on fetal head images. A sample
of model prediction for GA and EFW was added to (Supplementary File S1 and File S2), re-
spectively.

Table 11. Result and validation of multiple regression models for GA and EFW prediction.

Fetal GA Prediction
in the 50th Percentile
(13 > GA > 25) Week

EFW Prediction
in the 50th Percentile
(20 > GA > 36) Week

Regression model MSE Pearson’s r MSE Pearson’s r

Polynomial Regression 0.00033 0.9958 9.08723 0.9422

Linear Regression 0.00205 0.9899 0.00035 0.9988

Random Forest Regressor 0.00842 0.9511 6.54380 0.9844

XGBRFRegressor 0.02268 0.9505 0.00018 0.9847

Neural network 0.01392 0.9805 0.00256 0.9946

KNeighbors Regressor 0.00921 0.9582 0.00214 0.9841

SGDRegressor 0.00219 0.9901 0.00146 0.9968

AdaBoostRegressor 0.01086 0.9505 0.00100 0.9843

BaggingRegressor 0.01081 0.9832 0.00281 0.9964

StackingRegressor 0.00824 0.9506 6.93890 0.9843

LinearSVR 0.00199 0.9901 0.00054 0.9989

LGBMRegressor 0.01011 0.9514 7.72867 0.9843

Lasso 0.08300 NA 0.17339 0.8507

VotingRegressor 0.00248 0.9909 0.00031 0.8507

BayesianRidge 0.00206 0.9899 0.00035 0.9988

Deep NN 0.00072 0.9978 0.00068 NA

6. Strength and Limitations

Including US machines in various medical settings is advised; however, this is not
always feasible, due to the cost of purchasing multiple devices or portability concerns.
Mobile Health companies such as Clarius (Clarius Mobile Health Corp., Vancouver, BC,
Canada) [85] developed portable pocket handheld ultrasound scanners that represent
a promising tool in regional anesthesia procedures and vascular accesses [86]. Further-
more, these portable devices are still examined for extensive imaging, such as prenatal
scans, which require a lightweight AI system to maintain high accuracy and low resource.
Therefore, in this work, we deployed lightweight architectures that can be used in portable
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devices without client-server communication. The architectures resulted in fast training
on low-end machines and fast inference without the need for complex client-server archi-
tecture that would pose issues for data privacy and security limitations related to image
resolution that can affect measurement accuracy. In addition to fetal head segmentation,
a regression model was employed to predict GA and EFW in the 50th percentile in all
trimesters based on fetal head features, which current methods cannot do. Furthermore,
the framework in this study can be extended to build a fully automatic AI system in the
client-server to provide a detailed report for any fetal head ultrasound images.

Despite the study’s strengths, the framework still has some constraints that will
need to be overcome in the future. First, downsampling the original images reduced the
measurement accuracy. For example, subsampling images from 128 × 128 to 64 × 64
reduced the PSNR value by 3.1 and mHD by 0.17 mm, as seen in Table 8. Second, fetal GA
and EFW may vary slightly from one group to another, based on ethnicity and gender. This
study did not have this information, so the 50th percentile was predicted as the median.
Moreover, the clinical appliance has to be decided by medical personnel, since the existing
differences between the actual image and the one generated by the proposed model could
be substantial in the medical field.

7. Conclusions and Future Work

This work proposed a new pipeline that utilized transfer learning and ensemble learn-
ing to build ensemble models called ETLM. Eight segmentation networks were evaluated to
build an ensemble model based on the weighted voting method for fetal head segmentation.
These segmented masks were used to accurately measure HC, BPD, OFD, and other values
in ultrasound images. Masks segmented by each model went through a quality assessment
test to ensure the efficiency of ETLM, and were compared with other independent models.
Our experimental results show that the proposed pipeline achieved comparable perfor-
mance to state-of-the-art models in segmentation and measurement. Further, regression
models showed that of the features obtained from the segmented fetal images to build
a new dataset for GA and EFW, only fetal head images were required to predict GA and
EFW. The results of this study were validated with the assistance of an expert physician
and longitudinal reference. This study is the first work that provides a completed approach
from image segmentation to GA and EFW prediction. Future work will include a full
adoption of transfer learning based on a model trained on ultrasound images, regardless of
the domain of the images. Further, a traditional machine learning classifier will be used to
find the best features to reduce ultrasound images’ intensity and noise. Finally, the cavum
septum pellucidum and the lateral ventricle will be segmented, measured, and compared
with the ultrasound machine.

Future work will include a full adoption of transfer learning based on a model trained
on ultrasound images, regardless of the domain of the images. Further, a traditional
machine learning classifier will be used to find the best features that will reduce the
intensity and the noise in the ultrasound images. Finally, we will segment and measure
the cavum septum pellucidum and the lateral ventricle, and compare our results with the
ultrasound machine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12092229/s1, File S1: Sample of Models Prediction for
GA against Doctor calculation. File S2: Sample of Models Prediction for EFW against Longitudinal
reference in 50th Percentile.
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Appendix A. Longitudinal Reference

Table A1. Growth chart for estimated fetal weight regardless of fetal sex.

Gestational Age (Weeks) Estimated Fetal Weight (g) by Percentile
2.5 5 10 25 50 75 90 95 97.5

14 70 73 78 83 90 98 104 109 113
15 89 93 99 106 114 124 132 138 144
16 113 117 124 133 144 155 166 174 181
17 141 146 155 166 179 193 207 217 225
18 174 181 192 206 222 239 255 268 278
19 214 223 235 252 272 292 313 328 340
20 260 271 286 307 330 355 380 399 413
21 314 327 345 370 398 428 458 481 497
22 375 392 412 443 476 512 548 575 595
23 445 465 489 525 565 608 650 682 705
24 523 548 576 618 665 715 765 803 830
25 611 641 673 723 778 836 894 938 970
26 707 743 780 838 902 971 1038 1087 1125
27 813 855 898 964 1039 1118 1196 1251 1295
28 929 977 1026 1102 1189 1279 1368 1429 1481
29 1053 1108 1165 1251 1350 1453 1554 1622 1682
30 1185 1247 1313 1410 1523 1640 1753 1828 1897
31 1326 1394 1470 1579 1707 1838 1964 2046 2126
32 1473 1548 1635 1757 1901 2047 2187 2276 2367
33 1626 1708 1807 1942 2103 2266 2419 2516 2619
34 1785 1872 1985 2134 2312 2492 2659 2764 2880
35 1948 2038 2167 2330 2527 2723 2904 3018 3148
36 2113 2205 2352 2531 2745 2959 3153 3277 3422
37 2280 2372 2537 2733 2966 3195 3403 3538 3697
38 2446 2536 2723 2935 3186 3432 3652 3799 3973
39 2612 2696 2905 3135 3403 3664 3897 4058 4247
40 2775 2849 3084 3333 3617 3892 4135 4312 4515
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