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P S Y C H O L O G I C A L  S C I E N C E

A unified model of the task-evoked pupil response
Charlie S. Burlingham1*†, Saghar Mirbagheri2*†, David J. Heeger1,3*

The pupil dilates and reconstricts following task events. It is popular to model this task-evoked pupil response as 
a linear transformation of event-locked impulses, whose amplitudes are used as estimates of arousal. We show 
that this model is incorrect and propose an alternative model based on the physiological finding that a common 
neural input drives saccades and pupil size. The estimates of arousal from our model agreed with key predictions: 
Arousal scaled with task difficulty and behavioral performance but was invariant to small differences in trial duration. 
Moreover, the model offers a unified explanation for a wide range of phenomena: entrainment of pupil size and 
saccades to task timing, modulation of pupil response amplitude and noise with task difficulty, reaction time– 
dependent modulation of pupil response timing and amplitude, a constrictory pupil response time-locked to 
saccades, and task-dependent distortion of this saccade-locked pupil response.

INTRODUCTION
Although the pupil responds most strongly to changes in luminance 
(1, 2) and accommodation (1, 3), it fluctuates in size even in their 
absence (4). During fixation and in the absence of a task, pupil size 
changes constantly and in a seemingly random way (fig. S1A) (4, 5). 
During task performance, pupil size entrains to trial timing, dilating 
and then constricting sluggishly following trial onsets (fig. S1C) 
(6, 7). This so-called “task-evoked” pupil response is modulated in 
amplitude by task demands, behavioral performance, and surprise 
(7–9). Pupil responses covary with sweating and cardiac activity 
(10); measures of peripheral autonomic activity; and spiking activity 
in the locus coeruleus (LC) (8, 11, 12), basal forebrain (11), and dorsal 
raphé (13), which are sources of cortical norepinephrine (NE), 
acetylcholine, and serotonin, respectively. On the basis of these 
observations, many studies have used pupil size as a noninvasive 
measure of arousal level (2, 14–16).

The task-evoked pupil response is commonly used to estimate 
arousal by assuming that pupil size is a linear transformation of task 
events (e.g., stimulus onset, button press, and feedback). Specifically, 
existing models (Fig. 1A) assume that pupil size is the output of 
a dilatory low-pass filter, which operates on a series of impulses 
aligned with task events (17–22). Arousal level, estimated as the 
amplitude of these inputs, is estimated using linear regression. We 
will refer to this approach as the “consensus model,” acknowledging 
that there are important predecessors in the literature (23, 24). 
Although the consensus model is widely used, its central assump-
tion that pupil size is a linear transformation of task events has not 
been tested.

We tested the consensus model with a visual orientation- 
discrimination task in humans. The task was either easy or hard, 
to manipulate arousal, and had a short or long wait time between 
trials (2 or 4 s), which was expected to have little influence on 
arousal. Estimates of arousal from the consensus model failed to 
generalize between 2- and 4-s trials and were highly variable, 
demonstrating that pupil size is not a linear transformation of task 
events. We propose an alternative model linking the task-evoked 

pupil response and arousal, which leverages the “common drive 
hypothesis”—i.e., that pupil size and saccades are driven by a common 
neural input—to constrain estimation of arousal (12, 16, 25–27).

There is substantial support for the common drive hypothesis. A 
transient pupil constriction and redilation locked to saccades was 
reported in humans as early as the 1960s (1, 28–30). Microstimula-
tion of superior colliculus (SC), a subcortical center for saccade 
generation, evokes a transient pupil response for electrical stimula-
tion current levels above or below that required to evoke a saccade 
(12, 25, 27). Furthermore, converging anatomical (2, 26, 31), physio-
logical (1,  12,  26,  32), and pharmacological evidence (4,  33–36) 
supports predominantly parasympathetic control of the task-evoked 
pupil response via the preganglionic Edinger-Westphal (EW) nucleus, 
which receives direct projections from the SC (26). Involuntary 
fixational saccades (including microsaccades in our definition), 
like pupil responses, fluctuate with engagement—entraining to 
task timing. Indeed, pupil size and (micro)saccades are correlated 
in a wide array of tasks (6, 7, 9, 37, 38). Specifically, saccade occur-
rence is suppressed nearly completely at trial onset, resumes quickly 
thereafter, and then is more slowly suppressed again in anticipation 
of the next trial (38–40). The magnitude of this oculomotor sup-
pression has been linked to temporal attention (38, 41), temporal 
expectation (41), task difficulty (40), and perceptual detection 
(42), task variables that have also been linked to pupil responses 
(7, 9, 17, 22, 24).

Our linking model has two channels (Fig. 1B). The first relates 
the common input to saccades, and the second relates the input to 
pupil size. In the first channel, a saccade is generated whenever a 
noisy generator function crosses a fixed threshold. In the second 
channel, the same generator function is amplified by a gain and 
low-pass–filtered, yielding pupil size. The gain and generator func-
tion may vary systematically from trial to trial and from task to task. 
We offer an algorithm, based on this model, that estimates the 
gain and generator function from measurements of pupil size and 
saccade rate.

Our results strongly support the hypothesis that pupil size and 
saccades are driven by a common input (16, 26, 27) and extends that 
hypothesis to account for the influence of arousal on the task-
evoked pupil response. Saccade timing, transformed with our model, 
accurately predicted the task-evoked pupil response. Gain, our 
model’s estimate of arousal, scaled with task difficulty and behavioral 
performance and generalized well between trials with different 
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wait times. The generator function was modulated by the timing 
of the task and behavioral response, suggesting that the generator 
function reflects a cognitive representation of task structure. Our 
model offers a unified explanation for a wide range of phenomena, 
including (i) entrainment of pupil size and saccade occurrence to 
task timing, (ii) modulation of pupil response amplitude with task 
difficulty, (iii) modulation of trial-to-trial pupil noise with task 
difficulty, (iv) reaction time–dependent modulation of pupil re-
sponse timing, (v) a constrictory pupil response time-locked to 
saccades, and (vi) task-dependent distortion of this saccade-locked 
pupil response.

RESULTS
Experimental design
Human observers (N = 10) performed a forced-choice orientation- 
discrimination task on a briefly displayed peripheral grating 
(Fig. 1C). Observers fixated a central cross on a screen while eye 
position and pupil area were measured. On easy trials, the grating 
was tilted far from vertical, and observers achieved approximately 
93% accuracy on average. On hard trials, the grating’s tilt was close 
to vertical, and observers achieved approximately 70% performance 
on average. The task difficulty was changed in alternate runs 
(75 trials per run, 4 s per trial). In a separate version of the task, the 
wait time between trials was shortened, so each trial was 2 s long. 
We fit a computational model (Fig. 1B) to measurements of pupil 
size and saccades (including microsaccades), generating estimates 
of arousal level.

A correct estimate of arousal should be invariant to trial dura-
tion but vary with task difficulty and behavioral performance. 
Manipulating task difficulty should alter arousal, as one needs to be 
more alert to achieve good performance on a more difficult task. 

Small changes in trial duration (i.e., 2 versus 4 s), however, should 
not substantially alter arousal.

Saccade rate predicted the dynamics of the task-evoked 
pupil response
Saccade rate, transformed using our linking model, accurately pre-
dicted the task-evoked pupil response for different tasks and observers. 
We included small saccades and microsaccades in all of our analyses 
(97% were less than 1.5° in amplitude) and will use the term “saccade” 
from here on to refer to both (see Methods for more details). The 
probability of saccade occurrence changed over time within a trial 
(Fig. 2A and fig. S2). It fell after trial onset and rose again thereafter. 
We assumed that a saccade occurred each time a noisy “generator 
function” crossed a fixed threshold (Fig. 2B, Methods, and Eqs. 1 
and 2). Assuming that the variability in the generator function across 
trials was standard normal (i.e., indepedent and identically distrib-
uted, additive Gaussian noise with SD  equal to 1), we solved for its 
expected value across trials (Fig. 2C, Methods, and Eq. 6). That is, 
the expected generator function was simply a nonlinearly compressed 
version of saccade rate, where the nonlinearity was an inverse 
cumulative Gaussian. Next, the expected generator function was 
mean-subtracted, amplified by a gain, and low-pass–filtered using a 
linear filter (Fig. 2D, black dashed curve; Methods; and Eqs. 3 and 7), 
yielding a prediction of the trial-averaged pupil response (Fig. 2E, 
yellow curve). We estimated gain as the scale factor that resulted in 
the best match (least squares, i.e., linear regression) to the pupil data. 
To estimate the linear filter, we measured pupil size following each 
saccade (Fig. 2D, purple curve) and fit it with a parametric function 
(Fig. 2D, black curve; Methods; Eq. 8; and fig. S3A). An additive offset, 
the average pupil size over a run, was added to the prediction of pupil 
size. For each observer, we modeled the post-saccade refractory period 
by adjusting the saccade rate function (see Methods). The measured 

A B C

Fig. 1. Models of the task-evoked pupil response and task protocol. (A) Consensus model. Arousal-related input (impulses at stimulus onset and reaction time plus a 
time-on-task boxcar) is filtered by a dilatory low-pass filter, predicting pupil size on a single trial (17–19, 22). (B) Linear-nonlinear linking model. The generator function, 
with normally distributed noise (n) added to its expected value (t), is (i) subjected to a threshold and post-saccade refractory period, giving rise to a sequence of saccades, 
and (ii) multiplied by a gain and filtered by a constrictory low-pass filter, producing pupil size. Generator function,  reduced by 3× and low-pass–filtered for visualization. 
Refractory period, gray regions. (C) Task, orientation discrimination around vertical. Timing, 0.2-s stimulus presentation, followed by a 3.8-s interstimulus interval (ISI). 
Observers had to respond during the ISI with a button press and immediately received auditory feedback (correct, incorrect). Design, alternation between separate easy 
(approximately 90% correct) and hard (approximately 70% correct) runs, 75 trials each. Fixation cross, green or red, indicating easy or hard difficulty. Stimulus, grating 
(enlarged for visualization).
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task-evoked pupil response was a close match to the model prediction 
for all observers (fig. S4; median R2 across all runs and observers, 
81%; mean R2, 71%; max R2, 98%; min R2, 0%; N = 143 runs; see the 
Supplementary Materials for comments on individual differences).

Gain and arousal
Gain, but not offset, scaled with task difficulty
We used our linking model to make predictions of the task-evoked 
pupil response separately for easy and hard trials. Accuracy in the 
orientation-discrimination task was much higher for easy than for 
hard runs, confirming that our manipulation of task difficulty was 
effective (t test: t = 39.75, P < 1 × 10−6, N runs = 143). The data and 
model predictions were similar in shape and amplitude, and this 
was true for both easy and hard trials (Fig. 3B and fig. S4). The model’s 
R2 was not a significant predictor of task difficulty in a mixed effects 
logistic regression (t = 1.14, P = 0.25, N = 143; see the “Statistical 
analysis” section in the Supplementary Materials for details).

Arousal should scale with task difficulty because a more diffi-
cult task requires greater alertness to achieve good performance. 
Gain, but not offset, was strongly modulated by task difficulty 
(Fig. 3, C and D). We fit one free parameter per run, gain. The best-
fit gain values, pooled across observers, were significantly larger for 

hard than for easy runs of trials (t test: t = 3.38, P = 9 × 10−4, N = 143 
runs). This difference remained significant in a mixed effects logistic 
regression [F(141) = 10.27, P = 1.7 × 10−3, N runs = 143] in which 
we accounted for systematic differences in gain across observers 
and experimental sessions (see the “Statistical analysis” section in 
the Supplementary Materials for details). Offset, on the other hand, 
was not significantly modulated by task difficulty [logistic regression: 
F(141) = 0.05, P = 0.83, N = 143]. Gain scaled with task difficulty, an 
expected outcome if gain estimates arousal.
Gain was much higher on error trials
A correct estimate of arousal should vary with behavioral accuracy 
because arousal influences performance, and because surprise is 
elicited by tone feedback and confidence influence arousal. We fit 
our linking model separately to pupil data from correct and incorrect 
trials (Fig. 3E and fig. S5), expecting that gain would be higher on 
incorrect trials because of the tone feedback immediately following 
the button press, which was alarming to observers (particularly on 
easy runs), and because of the observer’s own (imperfect) knowledge 
of their probability of being correct. Note the timeline of a trial in 
our task: Observers responded soon after stimulus/trial onset (>50% 
of responses occurred within 0.4 s). Thus, the pupil’s responses to 
the tone feedback, stimulus, and trial onset were “blurred” together. 
Because there were far fewer incorrect than correct trials and, hence, 
fewer saccades and pupil responses to constrain the model estimates, 
the model fits were understandably poorer overall on incorrect 
trials (median R2, 58.16% for incorrect trials; 80.74% for correct; mean 
R2: 55.93 and 70.87%). That said, there were many runs with good 
fits. We used only runs with an R2 over 50% (81.38% of runs for 
correct trials and 37.93% of runs for incorrect trials) for this anal-
ysis to ensure a fair comparison. Gain was 5.58× higher on incor-
rect than correct trials (t test: t = 7.22, P < 1 × 10−6, N runs = 118 
correct, 55 incorrect; Fig. 3E), and this difference was larger in easy 
than in hard runs (fig. S5, A, D, and E). On the other hand, saccade 
rate (averaged across observers) was statistically indistinguishable 
between correct and incorrect trials (cluster-based permutation test: 
P > 0.05 for all time points; fig. S5C). Likewise, the generator func-
tion was similar for correct and incorrect trials, particularly before 
the behavioral report occurred (fig. S5B). “Statistically indistin-
guishable” comes with a caveat here and throughout: that lack of 
evidence of a difference cannot be taken as support for our model, 
but that if we could confirm a difference, it could be taken as 
evidence against our model, i.e., we attempted to falsify our model 
and failed to do so.
Gain, but not offset, varied with reaction time
A correct estimate of arousal should vary with reaction time, as 
arousal is known to influence reaction times. Gain, but not offset, 
was modulated by reaction time (average across trials in a run), and 
the direction of modulation was reversed for easy and hard runs 
(Fig. 3G). That is, the interaction of difficulty and gain was a signifi-
cant predictor of reaction time [gain × difficulty: F(139) = 5.80, 
P = 0.017, N = 143; regression analysis; see the Supplementary 
Materials]. On easy runs, reaction times were faster when gain was 
higher and slower when it was lower. Vice versa, on hard runs, 
reaction times were slower when gain was higher and faster when it 
was lower. The three-way interaction between difficulty, gain, and 
accuracy was also a significant predictor of reaction time [regression: 
F(135) = 6.49, P = 0.012, N = 143]. This corresponded with the 
observation that on the easy runs on which observers had the worst 
accuracy, the negative relationship between gain and reaction time 

A
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Fig. 2. Model fitting. (A) Purple curve, saccade/microsaccade rate in Hz (left axis) 
or probability (right axis), averaged across trials, low-pass–filtered for visualization. 
To model post-saccade refractory period, the measured saccade rate function is 
multiplied by k, the shape parameter of a gamma distribution fit to inter-saccade 
time intervals. (B) Inverting the threshold nonlinearity. Gray distributions, standard 
normal noise (across trials) corrupting generator function (“GF”). Long horizontal 
black line, threshold. Purple tail, integral equal to the mean saccade rate in (A). 
Short horizontal black lines, expected value of the generator function, 10 samples 
only [plotted in full in (C)]. (C) Estimate of expected generator function. Low-pass–
filtered for visualization. Mean-subtracted and multiplied by gain before filtering. 
(D) Linear filter. Black dashed curve, estimated linear filter—a gamma-Erlang function 
fit to the saccade-locked pupil response (purple). (E) Purple curve, task-evoked pupil 
response. Yellow curve, model prediction. Gain, highlighted in light green, is the 
scale factor that gives the closest match between the data and model prediction.
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became even more pronounced (than on the runs with higher accu-
racy). We repeated these regressions but predicting offset instead of 
gain, and all predictions were nonsignificant [offset × difficulty: 
F(139) = 0.06, P = 0.80091; offset × difficulty × accuracy: F(135) = 0.52, 
P = 0.47; N = 143]. Reaction time depended on gain, as expected if 
gain estimates arousal level.
An independent prediction: Amplitude modulation 
of the saccade-locked pupil response with task difficulty 
matches modulation of gain
Our model predicts that the amplitude of the saccade-locked pupil 
response scales with gain (fig. S6, B and D). We measured this pre-
diction (Fig. 3H) as the ratio (model:data) of the ratio (hard:easy) of 
the minimum of the saccade-locked pupil response (fig. S3B) and the 
ratio (hard:easy) of the mean best-fit gain. A perfect model predic-
tion would yield a ratio (model:data) of 1. The median ratio across 
observers was 1.13 (mean, 1.11; SEM, 0.09; for observers O1 to O10: 
1.06, 0.87, 1.188, 1.15, 1.13, 0.82, 0.78, 1.14, 1.22, and 1.73). We esti-
mated the linear filter used in our model fits from the run-averaged 
saccade-locked pupil response, throwing away its run-to-run variability. 
Therefore, this is an independent prediction of the model—that is, 
a prediction about data that was not used to fit the model parameters.
An independent prediction: Pupil noise scaled with gain
In our model, trial-to-trial variability in pupil size (“pupil noise”) is 
inherited from noise in the generator function. We assume that this 
input noise is additive and Gaussian, such that when it is amplified 
by a gain g, its new SD is equal to g (see Methods and Eq. 5). The 
output of any linear filter acting on a Gaussian input will also be 
Gaussian (43), with the property that if you double the input noise, 
the output noise will also double (i.e., a linear mapping). Thus, our 

model predicts that if the best-fit gain is x times larger for hard than 
for easy trials, then the SD of pupil noise should also be x times 
larger. Note that this is an independent prediction of the model, as 
we estimated gain based only on the trial-averaged pupil response, 
ignoring its trial-to-trial variability.

For each observer, we quantified the level of pupil noise by aligning 
the pupil responses from each trial and computing the SD of pupil 
size across trials for every time point from 0 to 4 s (fig. S7A; see the 
Supplementary Materials, Pupil noise analysis and simulation for 
details). The pupil noise level was significantly higher for hard than 
for easy runs for 7 of 10 observers (paired t test, P < 5 × 10−4, N 
observers = 10). For one observer, O5, the pupil noise level was lower 
for hard than for easy runs, but this matched their best-fit gain, 
which was also smaller for hard than for easy. The distribution of 
pupil noise closely resembled a Gaussian (fig. S7, B and C), validating 
our noise model and use of SD as a measure of the noise level. The 
disparity in the pupil noise level between easy and hard runs (“noise 
modulation”) was approximated well by a single scale factor, matching 
our model’s assumption of stationary noise within a trial (fig. S7A).
To quantify our model’s ability to predict modulation of pupil noise 
with task difficulty, we computed three ratios for each observer: (1) 
empirical noise modulation, the ratio (hard:easy) of the average pu-
pil noise level (across time); (2) predicted noise modulation, the 
ratio (hard:easy) of the best-fit gain (Fig.  3I); and (3) the ratio 
between empirical and predicted noise modulation. If ratio no. 3 is 1, 
it means that our model predicted pupil noise modulation perfectly. 
The median ratio no. 3 (data:model) across observers was 0.95 
(mean = 0.89, SEM = 0.09, ratios for each observer O1 to O10: 0.66, 
1.09, 0.64, 1.29, 1.06, 1.19, 1.15, 0.84, 0.55, and 0.46). Although 

A B C D

E F G H I J

Fig. 3. Model predicts difficulty-dependent modulations in the amplitude, timing, and variability of the task-evoked pupil response. (A) Saccade rate was similar 
for easy and hard trials, except immediately after trial onset. Curves, saccade rate in Hz (left axis) or probability (right axis), average over observers. Green, easy runs. Red, 
hard runs (the same color convention throughout). (B) Task-evoked pupil response was larger in amplitude and more delayed when the task was harder. Purple curve, 
task-evoked pupil response. Yellow curve, model prediction. Left, easy. Right, hard. Vertical gray line, time-to-peak. 0 s is trial/stimulus onset. (C) Gain scaled with task 
difficulty. Filled circles, mean gain across all runs and observers. Lines, two SEM (N = 143). (D) Offset did not vary with task difficulty; the same format as (C). (E) Gain was 
much higher for incorrect (N runs = 51) than correct trials (N = 115). (F) Model’s goodness of fit depended on gain (see the Supplementary Materials). R2 was variable for 
low gain and concentrated near 1 for high gain. Each circle, one run (N runs = 143). (G) Gain was correlated with reaction time and sign of correlation depended on difficulty. 
Lines, best-fit regression lines. (H) Model predicted amplitude modulation of the saccade-locked pupil response with task difficulty. Dots, amplitude or gain modulation 
index (AGMI), i.e., ratio (hard:easy) of minimum of saccade-locked pupil response or ratio (hard:easy) of best-fit gain. Error bar, two SEM (N = 15). Purple, data. Yellow, 
model prediction. (I) Modulation of pupil noise with task difficulty. Dots, ratio (hard:easy) of pupil noise level or of best-fit gain. Error bar, two SEM (N = 10). (J) Model 
predicted pupil response timing. Dots, mean difference (easy-hard) in the time-to-peak (s) of the pupil response. Error bar, 2 SEM (N = 15). Top, reaction time–locked pupil 
response. Bottom, trial onset–locked pupil response.
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noise modulation was slightly larger in the model than data (Fig. 3I 
and fig. S7A), the predictions were largely in the right direction, and 
errors were small.

Timing and the generator function
Dynamics of saccade-locked pupil response were modulated 
by trial duration
The model predicts that the saccade-locked pupil response is differ-
ent (distorted) from the underlying linear filter because of the 
threshold nonlinearity for generating saccades. In the data, we 
found that the nature of this distortion depended on trial duration 
(i.e., via differences in the generator function) and was particularly 
bizarre for the 2-s task (fig. S6C), where it caused rippling. Our 
model closely reproduced this task-dependent distortion (figs. S6, 
B and D, and S3), perhaps the most idiosyncratic feature of the data, 
providing a strong piece of evidence in support of the model.
Generator function dynamics were modulated by the timing 
of the task and behavioral response but largely invariant 
to task difficulty
We hypothesize that the generator function reflects the timing of 
the task and behavioral response but is invariant to arousal level. If 
so, we should find that the generator function changes with trial 
duration and reaction time but is the same regardless of task 
difficulty.

We quantified differences in the grand mean generator function 
on easy versus hard trials (fig. S8) by computing the separation 
between them at every time point from 0 to 4 s. We chose d′ as a 

measure of distribution separation, which, in this case (SD = 1; Eq. 1), 
was simply equal to the difference between the two generator func-
tions. We observed a spike in the generator function on easy but not 
hard trials at around 0.5 s after trial onset for most observers.

We computed the time of maximal separation as the maximum 
d′ (over time). O1, O2, O3, O4, O5, O7, and O9 had a large increase 
in d′ (>1.43) sometime between 0.40 and 0.65 s. For context, the 
average d′ over the full trial ranged from 0.30 to 0.47 across 
observers.

To test whether these differences were due to differences in reac-
tion time between easy and hard trials (Fig. 4, A and B), rather than 
difficulty per se, we conditioned the generator function on reaction 
time, task difficulty, or both (Fig. 4A). Data were pooled across 
observers (N = 10). The initial spike in the generator function was 
larger when reaction time was faster, for both easy and hard trials 
(Fig. 4A). There was a region of maximal separation (d′) between 
the generator functions at around 250 ms for both easy and hard 
trials. We next compared the generator functions (easy versus hard) 
for fast (Fig.  4C) or slow (Fig.  4D) reaction times separately and 
found smaller differences. This suggests that “difficulty-dependent” 
modulations in the generator function (fig. S8) were actually driven 
by differences in reaction time between easy and hard trials. There-
fore, the generator function is modulated primarily by reaction time 
rather than task difficulty.

The generator function was also modulated by the timing of the 
task, stretching with trial duration. The generator function sharply 
rose after trial onset and then slowly fell during the wait time after 

A B

C D E
F

Fig. 4. Generator function was modulated by timing of the task and behavioral response. (A) Generator function (“GF”) for fast and slow reaction times (median-split). 
GF computed from average saccade rate (N observers = 10, N trials = 3450) and low-pass–filtered (for visualization). Red, hard runs. Green, easy runs. Light colors, fast RT 
(below median RT). Dark colors, slow RT (above median RT). Gray regions, times of maximum separation between GFs (i.e., >99% quantile of d′ over time). (B) Distribution 
of reaction times for easy and hard trials (N observers = 10, N trials = 3450). Horizontal black lines, medians. (C) GF for fast reaction times (hard versus easy trials), replotted 
from (A). There were no large separations beyond 0.8 s, so only the first 0.8 s are shown. (D) The same as (C), but for slow reaction times. Difficulty-dependent modulations 
in GF were smaller than reaction time–dependent modulations [compare differences between curves in (A) and (C)]. (E) GF for the 2- or 4-s task (N observers = 10; 
N runs = 97 for 4 s, 39 for 2 s). Black curve, 2 s; blue curve, 4 s. The first 0.8 s are in original time base. Top, unstretched data (i.e., raw data). Bottom, from 0.8 to 4 s, GF from 
the 2-s task is time-stretched to be 4 s in duration, revealing that the GF is similar for the 2- and 4-s tasks after time stretching. (F) Distributions of d′ between the GFs 
corresponding to the 2- and 4-s tasks, for 0 to 2 s after trial onset (N = 1000 time points). Cyan, d′ when GF for the 2-s task was time-stretched beyond 0.8 s after trial onset. 
Pink, d′ for raw data (i.e., unstretched).



Burlingham et al., Sci. Adv. 8, eabi9979 (2022)     20 April 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 16

the button press, i.e., while the observer anticipated the next trial’s 
onset. We hypothesized that the generator function stretches to 
match the duration of this anticipatory period. Five new observers 
performed the task with 2- or 4-s-long trials in separate blocks. We 
compared the generator functions between the 2- and 4-s tasks (Fig. 4E 
and fig. S11C), with and without time stretching (Fig. 4, E and F). 
Data were averaged across observers (N observers = 10, N runs = 97 
for the 4-s task, 39 for the 2-s task). Specifically, we time-stretched 
the generator function (Fig. 4E) from the 2-s task to be 4 s in dura-
tion. We only time-stretched time points beyond 0.8 s, i.e., after 
nearly all button presses (approximately 95%) had occurred (Fig. 4B) 
and when the observer was expecting the next trial to begin. Then, 
we computed the distribution of d′ across the first 2 s of the trial, 
between the 2- and 4-s tasks, before and after time stretching 
(Fig. 4F). d′ was significantly lower for the time-stretched generator 
function (59% reduction in median; t test: t = 10.42, P = 3.29 × 10−24), 
and this comparison was still significant after log-transforming 
the skewed distributions to make them more Gaussian (t = 10.32, 
P = 8.72 × 10−24). Note that other reasonable time cutoffs ranging 
from 0.4 to 1.5 s (corresponding to 57 to 99.6% of button presses 
having occurred) returned the same statistical outcome (P < 0.0001). 
There were also differences in the generator functions between 
the 2- and 4-s tasks before 0.8 s (i.e., the never-stretched region, 
during which stimulus onset, button press, and feedback occur); 
the maximum d′ of 0.38 occurred 290 ms after trial onset (Fig. 4E).
Pupil response timing was predicted by reaction  
time–dependent modulations in the generator function
When present, the transient spike in the generator function on easy 
trials (fig. S8) correctly predicted the advanced time-to-peak of the 
task-evoked pupil response (Fig. 3B). The task-evoked pupil response 
peaked earlier for easy than for hard trials (Fig. 3B and fig. S4). We 
hypothesize that this timing difference is driven by differences in 
the distribution of reaction times (i.e., advanced timing and lower 
dispersion for easy trials), which is reflected in the generator func-
tion’s dynamics (i.e., an early spike in easy but not hard trials). To 
test this, for each observer, we (i) computed the pupil response 
time-locked to trial onset (“trial onset–locked,” equivalent to 
task-evoked) or to button press (“RT-locked”) (fig. S9, B and D) 
and computed the difference (easy minus hard) in the response 
time-to-peak, and (ii) estimated the generator function time-locked 
to trial onset or reaction time (fig. S9A), used our model to predict 
pupil size (fig. S9, C and E), and computed the difference (easy 
minus hard) in the model response’s time-to-peak. If our explanation 
is correct, the model prediction should capture the timing differences 
(easy versus hard) seen in the data.

For the trial onset–locked pupil response, the timing difference 
(time-to-peak for easy minus hard) was statistically indistinguish-
able for model and data (t test: t = −1.09, P = 0.30, N = 15) with an 
average of −274.3 ms for data (SEM, 62.3) and −202.7 ms for model 
(SEM, 42.4), i.e., only a 71.6-ms difference between model and data 
(Fig. 3J). After removing one outlier (O7, who had an abnormal 
biphasic pupil response, causing the time-to-peak to be very low), 
the difference dropped to 25 ms. For the RT-locked pupil response, 
the timing difference was also statistically indistinguishable between 
model and data (t test: t = −0.81, P = 0.43, N = 15), with an average 
of −102.8 ms for data (SEM, 53.6) and −46.7 ms for model (SEM, 55.4), 
i.e., a 56.1-ms difference between model and data. After removing 
the outlier (O7), this difference dropped to 10.1 ms. Thus, timing 
differences in the task-evoked pupil response were driven by a spike 

in the generator function present on easy but not hard trials, which 
was linked to faster reaction times. When the spike was also present 
on hard trials (i.e., in the RT-locked generator function), these tim-
ing differences disappeared. This demonstrates that pupil response 
timing reflects reaction time–dependent modulations in the gener-
ator function.

Model comparison
Pupil response amplitude depends jointly on gain 
and generator function
The amplitude of the task-evoked pupil response, commonly used 
as a heuristic measure of arousal level, depends on both gain and the 
dynamics of the generator function. We separately quantified the 
components of pupil response amplitude (i.e., maximum pupil size 
relative to trial onset baseline) due to the gain and generator 
function by analyzing our model’s prediction before and after gain 
modulation for easy versus hard runs (fig. S10). The pregain model 
prediction captured some of the differences in pupil response 
amplitude between easy and hard runs both for individual observers 
(fig. S10A) and, on average, over all observers (fig. S10B). However, 
the difficulty-dependent change in the generator function and the 
difficulty-dependent change in gain were both needed to account 
for the pupil size measurements.
Comparison with existing models
Our model generalized between tasks with different trial durations, 
whereas the consensus model could not. To assess generalization 
performance, we had a group of observers (N = 5) perform two 
versions of the task, which differed only in the duration of the waiting 
time between trials (2 or 4 s). Pupil and saccade data were markedly 
different for the two trial durations (fig. S11, A and B), but behav-
ioral accuracy was nearly identical (average accuracy across runs, 
2- versus 4-s task, hard: 72.93% versus 72.46%; easy: 96.67% versus 
98.78%; t = 0.82, P = 0.42). A correct model linking arousal and 
pupil size should recover similar parameter estimates of arousal for 
both tasks despite the different pupil size dynamics. Therefore, we 
tested whether the parameters estimated from one dataset applied 
to the other nearly as well, generating accurate predictions of pupil 
size. To do so, we fit either our model or the consensus model to the 
2-s data and evaluated the best-fit parameters on the 4-s data, and 
vice versa. This was done separately for easy and hard runs for each 
observer. We quantified generalization performance as the me-
dian reduction in R2 between the out-of-sample prediction versus 
in-sample fit. For our model, we used the average gain across all 
easy or hard runs for the out-of-sample prediction. For the consen-
sus model, we fit the amplitudes of “arousal-related” impulses at 
trial onset and button press and of a “time-on-task” boxcar (fig. S11D). 
We used these three amplitude parameters (averaged over easy or 
hard runs) for the out-of-sample prediction. For our model, the 
median reduction in R2 across observers was 14.67% (reductions for 
each observer, 4 → 2-s prediction: 10.06, 17.21, 0.60, 36.42, and 
19.94%; 2 → 4 s: 12.14, 20.96, 5.40, 7.01, and 124.66%). For the 
consensus model, the median reduction in R2 across observers was 
46.89% (reductions for each observer, 4 → 2-s prediction: 47.07, 
65.65, 62.33, 16.94, and 59.49%; 2 → 4 s, 21.645, −16.91, 117.31, 7.49, 
and 46.73%). For our model, the median R2 values for the in-sample 
fits were 86.27% (2 s) and 78.62% (4 s). For the consensus model, 
they were 94.16% (2 s) and 39.14% (4 s). Together, these results 
suggest that the consensus model overfits and that its predictions 
are not self-consistent.
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The primary reason that the consensus model fit the 2-s data 
better than the 4-s data was the presence of a large pupil constric-
tion relative to pretrial baseline around 1 s after trial onset in the 4-s 
but not the 2-s task (fig. S11A) (21). The consensus filter is dilatory 
and so cannot capture such constrictions at all (fig. S11D). On the 
other hand, our model predicted this large constriction on the 4-s 
data and the much smaller constriction in the 2-s data (fig. S11A). 
The reason is simply the prolonged generator function (fig. S11C) 
and, hence, prolonged input to the constrictory linear filter. It is 
clear a priori that adding a second linear system with a constrictory 
filter evoked by the button press, as some have proposed (21, 22), 
would make the consensus model’s in-sample fit in the 4-s task much 
better, but it would also make the model even less generalizable. 
This is because, to explain the data, the impulse amplitude of the 
constrictory response would have to be near zero for the 2-s task but 
larger and negative for the 4-s task.
Pupil size is a linear transformation of the generator function, 
not trial events
Model comparisons were performed to assess whether the pupil is a 
shift-invariant linear transformation of impulses time-locked to 
trial events, as existing models assume, or of the gain-modulated 
generator function, as our model assumes. To test these assump-
tions, we computed the ratio of the best-fit scale parameters (i.e., 
gain or impulse/boxcar amplitudes) from the 2- and 4-s tasks. We 
refer to this ratio as the additivity/shift invariance or “ASI” index. If 
pupil size is a linear shift–invariant transformation of its input, this 
ratio should be 1. For the consensus model, the mean ASI index 
across observers was 2.45 × 1011 (SEM, 1.60 × 1011) for the boxcar, 
1.54 × 1010 (SEM, 1.54 × 1010) for the trial onset impulse, and 0.61 
(SEM, 0.13) for the button press impulse. The medians were 0.53, 
0.57, and 0.58, respectively. The reason for the large mean values is 
that the amplitude estimates were unstable because the three pa-
rameters traded off with each other. For our model, the mean ASI 
index across observers was 0.9323 (median, 0.80; SEM, 0.12), i.e., 
closer to 1. Next, we computed a homogeneity/shift invariance or 
“HSI” index. This was the ratio (4 versus 2 s) of the quotient of 
the hard and easy best-fit gain values (our model) or amplitudes 
(consensus model). If pupil size is a linear shift–invariant transfor-
mation for its input, the HSI index should be 1. For the consensus 
model, the mean HSI was 0.09 (SEM, 0.06) for the boxcar, 1.30 × 
1011 (SEM, 1.30 × 1011) for the trial onset impulse, and 6.06 × 1010 
(SEM, 6.06 × 1010) for the feedback impulse. The medians were 
0.01, 3.56, and 2.16, respectively. For our model, the mean HSI 
index was 1.13 (median, 1.17; SEM, 0.18), i.e., closer to 1. Together, 
these results suggest that the pupil is a shift-invariant linear trans-
formation of the gain-modulated generator function, not trial events. 
These results also show that gain was robust to small differences in 
the wait time between trials, as one would expect of an estimate 
of arousal.

DISCUSSION
We propose a model of the task-evoked pupil response, which 
capitalizes on the hypothesis that a common input drives both 
saccades and pupil responses, i.e., the “common drive hypothesis” 
(12, 16, 25–27). Our model estimates two main components, the 
generator function (i.e., the common input) and gain. We hypothe-
size that the generator function reflects task timing and gain reflects 
arousal. To test this idea, we fit our model with saccade and pupil 

size measurements from a visual orientation-discrimination task in 
which task difficulty and trial duration were varied. The model 
accurately predicted pupil size from saccade rate. Estimates of gain 
were modulated by task difficulty and behavioral accuracy, but not 
by trial duration. On the other hand, the estimated generator func-
tion was modulated by the trial duration, but not by difficulty or 
accuracy. Both the gain and generator function were modulated by 
reaction time.

Existing models assume that pupil size is a linear transformation 
of arousal-related impulses at the time of trial events. Such models 
failed to generalize across trials with different timing despite achieving 
nearly perfect in-sample fits, demonstrating that this assumption is 
false and that these models are overfitting. On the other hand, our 
model achieved good generalization and fits. One implication is 
that it is necessary to measure both saccades and pupil size to 
correctly estimate the input to the pupil and to thereby constrain 
estimation of arousal.

Our model provides a unified explanation for a number of seem-
ingly disparate observations, including entrainment of pupil size 
and saccade rate to task timing, amplitude modulation of pupil 
responses with task difficulty, modulation of trial-to-trial pupil noise 
with task difficulty, a constrictory pupil response time-locked to 
saccades, task-dependent distortion of this saccade-locked pupil 
response, and reaction time–dependent modulations of pupil re-
sponse timing. These results provide strong support for the hypothesis 
that a common input (the generator function) drives saccades and 
pupil size, a saccade occurs when the generator function crosses a 
threshold, the task-evoked pupil response is a gain-modulated 
and low-pass–filtered transformation of the generator function, and 
arousal corresponds to the gain.

Over the past 80 years, measuring pupil size has become a popu-
lar tool for inferring arousal level (16). Inexpensive, noninvasive, 
and high-fidelity pupil size recordings have many advantages over 
the alternatives, i.e., measurement of spiking activity in neuromod-
ulatory loci (8, 12), whole brain imaging (15), and in vivo bio-
chemical recordings (44). A large number of recent publications have 
linked pupil size with behavior (17, 21, 45–47) or neural signals 
(11, 12, 14–16, 26). Approaches to estimating arousal from pupil size 
fall into two categories: heuristic and model-based. A popular heuris-
tic analysis in systems neuroscience involves computing the correla-
tion (or regression) between the time course of pupil size and neural 
activity in some population of interest, where pupil size is treated as 
a measurement of arousal level (14, 15). The implicit assumption is 
that the neural input to the pupil tracks with arousal level and that 
delays and temporal summation caused by the sluggish response of 
the iris muscles (48, 49) do not substantially obscure the underlying 
correlation between the neural signals. Another popular heuristic ap-
proach estimates arousal level based on the height of the pupil re-
sponse (i.e., max or max-min size) (50).

The most popular model-based approach is a linear systems 
model, which assumes that the pupil response is a low-pass–filtered 
transformation of arousal-related neural activity aligned to task 
events (17–20, 22, 29, 51). This assumption is often justified on the 
basis of the physiological findings that LC neurons spike at the time 
of salient events (8) and that LC activity or microstimulation pre-
cedes pupil dilation (11, 12). Some highly cited papers thus claim 
that it is possible to infer activity in the LC-NE system from pupil 
size (52). This consensus model is nearly identical to one that has 
been used in functional magnetic resonance imaging (fMRI), in 
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which the strength of neural activity is inferred by regressing a 
prediction, the convolution of the hemodynamic response function 
with impulses at trial event times, on the fMRI signal. In fMRI, this 
approach was validated by the observation that the fMRI signal 
approximates a shift-invariant linear transformation of local spiking 
activity (53) and that neural activity is time-locked to stimulus 
onsets in many sensory areas of the brain. However, linearity of pupil 
size with respect to its purported input has never before been tested. 
Furthermore, it is unclear whether the neural input to the pupil is 
aligned with trial events. Our model comparisons suggest that both 
assumptions are false—the consensus model’s parameters did not 
generalize across trials with different durations, demonstrating that 
pupil size is not a linear transformation of an input time-locked 
to trial events. Earlier versions of the consensus model (23, 24) 
assumed that the input to the pupil were impulses that could occur 
at any time (analogous to our generator function) rather than being 
time-locked to task events. We found, however, that the parameters 
of such models were not recoverable (see the “Parameter recovery: 
Deconvolution method of Wierda and colleagues” section in the 
Supplementary Materials), suggesting that these models are under-
constrained for pupil size measurements alone.

The challenge of estimating arousal from the task-evoked pupil 
response is that the input to the pupil and arousal level are both 
unknown, making the problem underconstrained. The consensus 
model constrains the problem by assuming that the input’s timing 
is equal to the task timing (which is known because it is set by the 
experimenter) and that the input’s form is equal to some particular 
parametric form (e.g., impulse or boxcar). We adopted a different 
approach in which we used a model to estimate the input to the 
pupil from measurements of saccades rather than assuming its 
timing and form. By analogy, fMRI measurements in early visual 
cortex can be analyzed by adopting a model that maps from the 
pixel intensities of an image to the evoked neural activity (54); such 
models are based on the known anatomy and physiology of the 
brain and include multiple stages comprising nonlinear and linear 
operations (55). The advantage of such “image-computable” models 
is the ability to make predictions of a measurable signal (i.e., the 
fMRI signal) from another measurable physical signal (i.e., an 
image) and to compare the prediction to data under many conditions, 
putting a constraint on the possible operations in between. Here, we 
took a step toward adopting an analogous theoretical framework for 
estimating arousal from pupil size. Future work is needed to develop 
a model that links task structure to the generator function. Currently, 
this mapping is unknown. If this can be achieved, then it will be 
possible to combine our model with this one, yielding a model 
that predicts pupil size from the timing of task events, i.e., a 
“task-computable model.”

We speculate that the generator function, the driver of saccades 
and pupil size, is influenced by multiple aspects of cognition. We 
manipulated trial duration in our study and found that during the 
interstimulus interval (ISI), the generator function stretched with 
trial duration (Fig. 4E), whereas between the stimulus onset and 
behavioral response, it was modulated in a more complex way (Fig. 4E 
and fig. S11C). It is well known that trial duration influences task 
engagement and anticipation (56, 57), as well as uncertainty (if 
duration varies). Thus, modulations in the generator function may 
reveal the extent of task engagement and anticipation. In our model, 
the generator function is simply a transformed version of the trial- 
averaged (micro)saccade rate. Thus, previous results revealing that 

(micro)saccade rate is modulated by temporal expectation and 
attention (38, 41) also support this conclusion. Extending this logic, 
it is well accepted that many cognitive processes can affect (micro)
saccade rate, including attention, working memory, and voluntary 
saccade planning (58, 59). Thus, although we only tested the effect 
of trial duration on the generator function in this study, we expect 
that the generator function reflects many other aspects of cognition.

Our results demonstrate that the amplitude of the task-evoked 
pupil response depends on both the generator function and gain 
(fig. S10), implying that the same measured pupil response can be 
due to many different combinations of the two components. Hence, 
we used model fitting and comparisons to tease out whether pupil 
size modulation was primarily due to changes in gain, changes in 
the generator function (i.e., the input to the pupil), or both. These 
results prompt a reinterpretation of many previous findings relating 
the amplitude of the task-evoked pupil response to various psycho-
logical processes, including memory, learning, cognition, attention, 
and decision-making. Our model makes a strong prediction that 
can aid in this reinterpretation: Psychological processes that influence 
both saccade rate and pupil size do so via the generator function. 
Processes that influence pupil size, but not saccade rate, do so via 
gain (37). Some processes will influence both. Our model is needed 
to quantify these contributions. Another prediction of our model is 
that any variable that affects saccade rate will also affect pupil size. 
The inverse statement that any variable affecting pupil size will also 
affect saccade rate is not implied by our model, and experimental 
evidence speaks against it. For example, arousal influences pupil 
size but not microsaccade rate (59).

Physiological basis
We can only speculate about the physiological basis of the four 
main components of our model: the generator function, threshold, 
gain, and linear filter. We offer a disclaimer that our model is simple and 
abstract by design. Multiple model components could correspond to 
one part of the neural circuitry, or vice versa; one model component 
could correspond to multiple parts of the circuitry. Further ana-
tomical, physiological, and psychophysical experiments are needed 
to determine these correspondences.

We speculate that the generator function corresponds with the 
pooled activity of SC neurons. Specifically, we hypothesize that (i) 
SC drives both saccades and pupil responses, and (ii) SC encodes a 
cognitive representation of the task, including its timing. Support 
for the first of these hypotheses is evidence that the intermediate/
deep layers of the SC (SCi) are a common (indirect) input to the 
muscles that control pupil responses and saccades (12, 16, 25–27). 
SC projects directly to the preganglionic EW nucleus, which controls 
pupil constriction and is most widely known for its role in mediating 
both the pupil’s accommodative near response and light reflex 
(26, 43, 48, 60). SC, most known for its role in saccade generation 
(61), is involved more generally in orienting behaviors (including 
eye, head, and body movements) that guide target selection and 
spatial decisions (62). However, spiking in SC neurons is also locked 
to a pupil response (12, 25, 26), and crucially, microstimulation of 
SC neurons (above or below the threshold for saccade generation) 
evokes a pupil response (12, 25, 27).

Support for the second of the above two hypotheses is evi-
dence that SC neurons encode the saliency of visual, auditory, and 
somatosensory events (63), thus allowing it to build a timeline of a 
task (i.e., reflecting task timing). SCi neurons respond to behaviorally 
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relevant stimuli in a manner that is substantially invariant to their 
particular retinotopic location (64). Optogenetically inhibiting SC, 
even ipsilaterally to a visual stimulus, causes increases in psycho-
physical thresholds in a detection task and increases in lapse and 
guess rates, suggesting that SC activity is important for maintaining 
task engagement (65). Muscimol-mediated inactivation of SCi 
neurons causes biases in target selection, for both saccadic and 
button press responses, despite not causing generic impairment of 
movement, demonstrating that SCi encodes target priority in an 
effector-independent manner (62). We speculate that a cognitive 
representation of task structure generated in higher cognitive areas, 
including dorsolateral prefrontal cortex and anterior cingulate 
cortex, modulates SC activity, which, in turn, controls pupil size. 
This is consistent with previous proposals (16, 26, 31).

We speculate that the threshold in our model corresponds to the 
aggregate behavior of the circuit connecting SC, omnipause neurons, 
the brainstem burst generator, and the extraocular muscles. This 
circuit is known to initiate saccades and maintain eye position in 
the orbit (58). The threshold in our model may approximate this 
entire circuit’s input-output relation—i.e., an abstraction of SC-driven 
saccade initiation. Thresholding of neural activity in SC or frontal 
eye field is likely the most influential model of saccade initiation 
(66, 67).

We speculate that the gain in our model corresponds with 
neuromodulation of activity in the preganglionic EW. A possible 
circuit-mediating gain modulation is the direct inhibitory nor-
adrenergic projection from LC onto EW (2, 26, 68) found in cats. 
However, the existence of this connection in humans is controversial 
(69). There are also direct projections from LC onto SCi, which 
then, in turn, projects to EW both directly and indirectly (via the 
mesencephalic cuneiform nucleus) (16, 26). The picture is enriched 
by the fact that cat EW in fact receives projections from many other 
neuromodulatory nuclei, including the ventral tegmental area, the 
pars reticulata of the substantia nigra, and the raphé nuclei (68, 70). 
If these same afferent connections exist in humans, gain may be 
controlled by a number of neuromodulators, not just by the LC-NE 
system. This would explain why pupil responses have been observed 
locked to microstimulation of neurons in noradrenergic, serotonergic, 
and cholinergic brainstem loci (11–13, 31). One could test this idea 
by measuring EW activity and pupil size with pharmacological 
manipulations that selectively affect these neuromodulators. If drugs 
that selectively affect the dopamine system, for example, gain-modulate 
EW activity, this would provide evidence that the pupil’s gain can 
be influenced by a number of neuromodulators, which collectively 
define “arousal level” (31). This would also explain why pupil re-
sponses are modulated by reward and reinforcement learning (21), 
which are commonly associated with the dopaminergic system.

We speculate that the linear filter in our model corresponds with the 
activity of the iris constrictor muscle driven by the parasympathetic 
nervous system. In the parasympathetic pathway, the constrictor 
muscle is driven by cholinergic neurons arising in the ciliary ganglion, 
which are driven solely by afferents from EW (71). In the sympathetic 
pathway, the iris dilator muscle is under the control of adrenergic 
neurons in the superior cervical ganglion, which is driven by the 
intermediolateral nucleus of the spinal cord (16, 72, 73).

Pharmacological and physiological studies reveal that pupil 
responses during task performance and rest are primarily under 
parasympathetic control and that arousal modulates this circuitry. 
The task-evoked pupil response is nearly eliminated by a local 

parasympathetic antagonist (i.e., applied to the eye) but unaffected 
by a local sympathetic agonist (74), demonstrating that the task-
evoked pupil response is primarily under parasympathetic control. 
Likewise, a local sympathetic antagonist or agonist has no effect on 
pupil size fluctuations at rest, while a local parasympathetic antago-
nist attenuates these fluctuations (4, 5). Enriching this account, an 
orally administered central alpha-2 agonist (i.e., decreases central 
NE) decreases pupil size fluctuations (at rest) in the light but has no 
effect on pupil size in the dark. By contrast, an alpha-2 antagonist 
(i.e., increases central NE) increases pupil size fluctuations in the 
light and has no effect in the dark (33, 34). Together, this suggests 
that global neuromodulation (e.g., related to function of LC) can 
interact with the pupillary light reflex, which is primarily driven by 
the parasympathetic pathway (75, 76). Supporting this idea, very 
high or low arousal attenuates the constrictory pupil response to a 
transient luminance change (1, 5, 35, 74, 75, 77). In an awake cat, a 
startling auditory tone leads to a characteristic rising-and-falling 
pupil response even if the sympathetic pathway is surgically removed, 
although its amplitude is attenuated by 1.5×, and its dynamics are 
more low-pass compared to a normal pupil (32). Stimulation of 
cortex or hypothalamus of a sympathectomized animal causes inhi-
bition of the pupil light reflex, and stimulation of superior cervical 
ganglion in an intact animal does not (32, 75). Likewise, in macaque, 
the modulatory influence of arousal level on the pupillary light 
reflex is nearly the same in a sympathectomized and intact eye (75). 
These results support the hypothesis that inhibition of the para-
sympathetic pathway is the primary driver of the dilatory portion of 
the task-evoked pupil response (32). One study of the light reflex 
found that simply passing the spike train of an EW neuron through 
a constrictory low-pass filter leads to an accurate prediction of pupil 
size (48), suggesting that the relation between EW activity and pupil 
size is linear. This supports our speculation about parasympathetic 
control of the linear filter in our model. Regardless of what drives 
activity in EW, whether it is light, accommodation, sound, self- 
generated movement, or increased cognitive engagement, the pooled 
magnitude of EW activity (via ciliary ganglion) determines the total 
number of acetylcholine molecules released onto the iris constrictor 
muscles and, hence, the magnitude of pupil constriction. Additional 
physiology experiments that test linearity directly by simultaneously 
measuring pupil size and its neural inputs (i.e., the inputs to the 
dilator and constrictor muscles) are needed.

Our model assumes that pupil response variability is driven 
by the noise in the generator function and scales with gain. While 
previous studies have differentiated between variability in pupil 
responses at rest and during task performance (1, 4, 32), our model 
suggests that these share the same origin and are simply points 
along a continuum defined by the dynamics of the generator func-
tion. At one extreme (spontaneous), the generator function is flat in 
expectation, so saccades and pupil size are unpredictable (fig. S1, A 
and B). This input may be systematic but endogenous (e.g., because 
of interoception or mind wandering) and therefore unpredictable 
to an outside observer and cancels out when averaging over time. At 
the other extreme (task-evoked), the generator function entrains to 
the timing of external events (e.g., trial onsets), so saccades and 
pupil size modulations are more predictable (fig. S1, C, D, and F). 
Pupil fluctuations are of a similar amplitude during task or rest (fig. S1E). 
The assumption here is that the same (primarily parasympathetic) 
circuitry controls both task-evoked and spontaneous pupil fluctua-
tions (5, 74). Previous studies support this idea. Pupil noise in the 
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two eyes is almost 100% correlated, implicating a noise source that 
drives both eyes, i.e., EW or higher in the circuitry (43). Confirming 
this, pupil noise is attenuated if the nerve between the ciliary ganglion 
and its input, EW, is cut (1). Fentanyl, an opioid agonist that atten-
uates inhibition of midbrain structures (like EW), depresses equi-
luminant pupil size fluctuations, suggesting that inhibition of EW 
produces these fluctuations (36). This is consistent with a physio-
logical study showing that EW has a high tonic firing rate, which is 
inhibited by a transient step-up in light level (48)—i.e., arousal may 
also inhibit tonic activity in EW. A statistical analysis by Stanten and 
Stark (43) revealed that pupil noise is multiplicative and Gaussian. 
This can arise from an additive Gaussian noise source followed by a 
gain and then subjected to a linear filter (43, 78–80). Stanten and 
Stark found that the SD of pupil noise scales with both light level 
and fixation depth (accommodation), suggesting that the same 
noise source is shared among all parasympathetic-mediated pupil 
responses. Consistent with this, we found that arousal modulated 
both gain and the SD of pupil noise (fig. S7), bolstering the idea that 
the task-evoked pupil response is parasympathetic-mediated, and 
its noise is inherited from the gain-modulated generator function. 
Stark concluded that this noise source must be in the EW or higher 
(43, 78–80). Our results demonstrate that variability in saccade 
generation and pupil responses is shared, i.e., we hypothesize that 
pupil noise must originate above EW, possibly in SC.

Possible confounds
The saccade-locked pupil response is neither a luminance or 
accommodation response nor an artifact of foreshortening caused 
by a change in eye position (a potential source of error in infared 
eye trackers). Foreshortening error occurs when the detected pupil 
area or diameter is smaller (i.e., a squashed ellipse versus a circle) 
because of gaze direction deviating from screen center (i.e., where 
the eye tracker is angled). The saccade-locked pupil response occurs 
with a delay of 0.9 s and takes approximately 4 s to come back to 
baseline. An artifact based on eye position should arise and dissipate 
much more rapidly than 4 s. Moreover, many of the saccades mea-
sured in our study are corrective (i.e., they are toward the fixation 
point, correcting for drift). These small corrective saccades corre-
spond to a relatively large decrease in pupil size, as opposed to the 
small increase predicted by a reduction in foreshortening. On the 
other hand, real pupil size changes can cause erroneous estimates of 
gaze position (81, 82). However, a multisecond change in pupil size 
would not cause erroneous detection of a saccade, suggesting that 
this artifact cannot alter our conclusions (82). It has been suggested 
that the saccade-locked pupil response occurs because of a transient 
change in luminance (29, 83). Stark ruled out this explanation in his 
1966 paper (28) by varying luminance (i.e., showing a flash of dark-
ness) at variable delays with respect to the time of a voluntary eye 
movement and observed that the saccade-locked pupil response 
effectively quashed the luminance response when they were evoked 
simultaneously. Furthermore, if the saccade-locked responses were 
luminance-evoked, the shape and amplitude of saccade-locked 
responses should be the same during hard and easy runs of our task 
because the overall luminance was the same in each. However, the 
saccade-locked pupil response had a significantly higher amplitude 
during hard than during easy runs. This could not be explained by 
differences in saccade amplitude, which might affect pupil size by 
modulating retinal illumination (see the Supplementary Materials). 
In addition, the shape of the saccade-locked pupil response changed 

markedly between the 2- and 4-s tasks (figs. S3 and S6C). This task 
timing–dependent deformation was predicted quantitatively by our 
model (fig. S6, A, B, and D) but is not predicted by existing models 
of the light reflex. Others have suggested that the saccade-locked 
pupil response is caused by some visual change other than lumi-
nance (84, 85), but again, this does not explain why the amplitude of 
the saccade-locked pupil response scaled with task difficulty despite 
the stimulus being the same. Stark suggested that the saccade-locked 
pupil response was due to changes in accommodation arising from 
switching fixation locations. The eye movements in his study were 
20° in magnitude. This explanation does not make sense for the 
small fixational saccades and microsaccades that were analyzed in 
our study (see the “Saccade detection and rate estimation” section), 
when depth was virtually identical for different fixation locations. 
Furthermore, microfluctuations in accommodation during fixation 
do not predict fluctuations in pupil size (60), and accommodation 
changes during task performance are too small to explain the 
task-evoked pupil response (86). The function of the saccade-locked 
pupil response, if there is one, remains unclear (47); however, its origin 
is clearer. It does not seem to be visually or accommodatively evoked 
[although see (83)]. Its causal link to activity in SCi (12, 25, 27) is the 
strongest evidence we currently have about its control.

Capabilities and limitations
Our method is applicable to eye data collected in a broad array of 
tasks. While we used fixed trial durations and a blocked design (dif-
ferent difficulty levels), our algorithm is readily extendable to tasks 
with event-related designs (with jittered ISI durations across trials), 
tasks with interleaved trial types (see our analysis of error trials), 
and tasks with multiple overlapping sets of conditions. One limita-
tion of our method is that it should be used with equiluminant stimuli 
to avoid eliciting pupil light reflex responses that might drown out 
the smaller arousal- and cognitive-related responses or otherwise 
confound estimation of arousal. To overcome this, it may be possi-
ble to model the pupil light reflex (a linear system) based on the 
luminance of the display and first remove its influence from the 
pupil time series and then apply our model. Another limitation is 
that our model assumes that gain does not change within a trial. We 
suspect that this is approximately true—that the gain changes slowly—
because pupil size changes slowly. Furthermore, our model predicts 
pupil dynamics well, assuming a static gain. Future adaptations of 
our method can perhaps introduce additional assumptions to esti-
mate gain on a finer time scale. One last limitation: Our model 
predicts pupil size from saccade rate. It is impossible to reverse this 
and estimate saccade rate from pupil size because the linear low-
pass filter destroys fine temporal structure in the generator function.

In conclusion, it has long been known that the size of the pupil 
reflects cognition and arousal (1, 7, 16, 21, 47). However, it was 
found only recently that pupil size and saccades share a common neural 
input (12, 25, 27), prompting a revision of existing models of the task- 
evoked pupil response. In the model we propose here, a common, 
noisy input (i.e., generator function) drives both pupil size and sac-
cades, and a gain subsequently modulates pupil size. We find that the 
common input reflects a cognitive representation of task structure 
(including its timing) and that the gain reflects arousal level. We offer 
an algorithm, based on our model, that estimates both components 
from measurements of pupil size and saccades. Our code toolbox is avail-
able at https://github.com/csb0/PCDM and our experimental data 
and code are available at https://archive.nyu.edu/handle/2451/63809.

https://github.com/csb0/PCDM
https://archive.nyu.edu/handle/2451/63809
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METHODS
Observers
Observers (N = 10, 6 females, 4 males) were healthy human adults 
with no known major neurological disorders and with normal or 
corrected-to-normal vision. Five observers (O1 to O5) participated 
in the 4-s task. Five additional observers (O6 to O10) participated in 
both the 2- and 4-s tasks. All observers were naive to the purposes 
of the experiment except O1 and O6 (two of the coauthors). O2, O3, 
O4, O7, and O9 had little to no experience participating in visual 
orientation-discrimination experiments, while the remaining ob-
servers had considerable experience. Experiments were conducted 
with the written consent of each observer. The experimental protocol 
was approved by the University Committee on Activities Involving 
Human Subjects at New York University.

Equipment and setting
Stimuli were displayed on a cathode ray tube monitor (22″ diagonal; 
Hewlett-Packard p1230) with a refresh rate of 75 Hz and a resolu-
tion of 1152 by 870, custom-calibrated for gamma correction. The 
task and visual stimuli were controlled with MATLAB software 
based on the MGL toolbox (gru.stanford.edu/mgl). The observer’s 
eyes were 57 cm from the monitor, and head was fixed in a chin-and-
forehead rest, which minimized head movement. Pupil area was 
recorded continuously during task performance using an Eyelink 
1000 infrared eye tracker (SR Research Ltd., Ontario, Canada) with 
a sampling rate of 500 Hz. Nine-point calibration and validation was 
performed before each run of 75 trials to ensure proper measurement 
of eye position. The room was dark, and the door remained shut 
for the length of the experiment, ensuring that dark adaptation was 
not interrupted. Cell phones were taken away to prevent vibrations 
and light emissions that might alter engagement or arousal.

Task design
Observers performed a two-alternative forced-choice visual 
orientation-discrimination task, which varied in difficulty level in 
alternate runs of trials. We instructed observers to report whether a 
small, peripheral grating was tilted counterclockwise or clockwise 
of vertical by pressing the “1” or “2” keys on a keyboard with the 
nondominant hand. Auditory feedback provided immediately after 
button press indicated accuracy (high tone, correct; low tone, 
incorrect). Observers were asked to fixate a central cross (width, 0.7°) 
and to minimize blinking (average blink rate, 0.13 Hz; range across 
observers, 0.04 to 0.54 Hz). The (equiluminant) color of the fixation 
cross was red on hard runs and green on easy runs to explicitly 
inform the observer of the current task difficulty. We instructed 
observers to be as accurate and as fast as possible in responding and 
to maintain fixation at all times.

The experiment consisted of two sessions conducted on two 
separate days. Each session comprised five separate runs (75 trials 
per run), alternating between easy and hard. Therefore, observers 
performed either three easy runs for the first session and three hard 
runs for the second session, or vice versa. This order was randomly 
chosen. Five of ten observers did two easy runs in their first session. 
Observers could rest between runs for as long as they needed but 
typically rested for less than 1 min. Each run consisted of 75 4-s 
trials, lasting for approximately 5 min each, for a total of approxi-
mately 60 min per session (with breaks).

Each trial consisted of a stimulus presentation of 0.2 s followed 
by an ISI of 3.8 s in the 4-s version of the task or 1.8-s in the 2-s 

version. The observer could only respond during the first 1.8 s of 
the ISI. If observers missed this response window, no tone would 
play, indicating a missed trial. Observers missed the response 
window exceedingly rarely (15 of 6900 trials, i.e., 0.22%).

Before beginning the experiment, observers were trained initially 
for 75 or 125 trials, depending on their familiarity with orientation- 
discrimination tasks. Orientation threshold was measured as the 
staircase value on the final training trial and was used to set the 
initial stimulus tilt in the first hard run of trials in the experiment.

Stimulus
The stimulus was a grating (diameter 1.5°; spatial frequency, 4 cycles 
per degree; contrast, 100%) multiplied by a circular envelope 
(diameter, 1°) with raised-cosine edges (width, 0.25°). The stimulus 
had a mean luminance (over space) that was equal to the back-
ground luminance (mid-gray), so that it would not be expected to 
evoke a luminance response from the pupil, driven by intrinsically 
photosensitive retinal ganglion cells with large spatial integration 
areas [i.e., wide dendritic trees (87)]. The stimulus was presented in 
the lower right hemifield, 5° from the center of the screen (Fig. 1C). 
On easy trials, the tilt of grating was fixed at ±20° from vertical, 
yielding 93% correct discrimination accuracy on average across 
observers. On hard trials, the tilt of the grating was controlled adap-
tively according to prior performance. Specifically, the absolute 
value of the tilt was controlled by two interleaved two-down–one-up 
staircases with initial thresholds of 5° and 0°, respectively, and an 
initial step size of 1, which converged to 70% discrimination accu-
racy (on average). The tilt’s sign (i.e., clockwise or counterclockwise 
of vertical) on each trial was determined randomly. The staircase 
value (stimulus tilt) on the final trial of a run was carried over to the 
following run or session.

Pupil data preprocessing
Pupil size was recorded as the area of a model ellipse in the arbitrary 
units (AUs) specified by the Eyelink eye tracker’s firmware. The 
Eyelink units are proportional to pupil area (mm2) (88). Therefore, 
it can be easily used in regression models, and if the pupil size (AU) 
in one condition is doubled compared to another condition, that 
relation holds in physical units. Gaze position and pupil area time 
series were linearly interpolated during and 150 ms before and after 
blinks, following (45).

To estimate the saccade-locked pupil response, we first band-pass–
filtered the pupil area time series to remove low frequencies that 
would confound deconvolution and high frequencies that were not 
physiologically plausible (i.e., measurement noise). For all other 
analyses (e.g., for data analysis and model fitting), we just low-pass–
filtered the pupil size signal to remove high-frequency measurement 
noise. The band-pass filter was a Butterworth fourth-order zero- 
phase filter (“filtfilt” in MATLAB) with 0.03- and 10-Hz cutoffs. 
The low-pass filter was a Butterworth second-order zero-phase 
filter with a 10-Hz cutoff.

We used a custom convolution boundary handling method to 
ensure that we did not generate large, artifactual signals at the edges 
of the filtered time series. Boundary handling was performed differ-
ently for the beginning and end of the time series. The first sample 
of the time series was repeated N times and concatenated to the 
front of the time series. The last N samples were mirrored and 
concatenated to the end of the time series. N refers to the length of 
signal. This method was used because the dynamics of pupil size 

http://gru.stanford.edu
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during the task (e.g., padding with a mirror image of the signal) are 
not a good estimate of what was happening before the task and in 
the first few seconds of the first trial. Conversely, the dynamics at 
the end of the task are likely a better model for what will continue to 
happen during the next hundreds of milliseconds after the task ends.

We downsampled the pupil time series just for deconvolutions 
to speed up the computation time. Every eighth sample from the 
time series was preserved, respecting the Nyquist frequency (this 
was after the data were low-pass–filtered with a cutoff of 10 Hz). 
Of the 150 runs of eye data, 7 were removed because of eye tracker 
malfunction/signal quality.

One notable preprocessing method (29) regresses out post- 
saccade pupil responses. On the basis of our results, we advise 
against doing this because these “post-ocular events” share variance 
with the task-evoked pupil response—indeed, they arise from the 
same system.

Saccade detection and rate estimation
Saccades (including microsaccades) were detected with the method 
of Engbert and Mergenthaler (89). A duration cutoff of 7 ms and a 
velocity cutoff of 8 times the SD of the horizontal and vertical velocity 
(degrees/second) were used as inclusion criteria. The distribution of 
saccade amplitudes is unimodal, which has led to varying opera-
tional definitions of a microsaccade (58). Our cutoff (which was similar 
to but slightly more liberal than Engbert and Mergenthaler’s) includes 
small saccades as well as microsaccades. We refer to both of these as 
“saccades” throughout. We included both, which are known to have 
different properties (e.g., the former is voluntary, but the latter is in-
voluntary) (90, 91), because previous studies show that a similar 
constrictory pupil response is observed following either (28–30).

We quantified the impact of including larger saccades [i.e., 
greater than 1.5° in amplitude (91)] on our results by repeating our 
model fitting for each observer and excluding any saccades above 
1.5° in amplitude from all steps. The stimulus was positioned 5° 
diagonally from fixation, and the screen edge was 20° horizontally 
and 15° vertically from the screen edge. Therefore, larger saccades 
might evoke a pupillary light reflex. The proportion of saccades 
larger than 1.5° was 3.12% (average across 15 datasets), i.e., quite 
rare. The median increase in R2 across observers before versus after, 
including an upper threshold on saccade amplitude of 1.5° was 0.3% 
[median absolute deviation (MAD), 0.7%; N = 15 datasets]. The 
median increase in gain was 0.00011 (MAD, 0.00034; N = 15 data-
sets). Thus, the impact of larger saccades on our model fitting was 
negligible, and we obtained comparable results with or without 
them for our chosen task.

Estimation of the saccade-locked pupil response
For each run of trials, we estimated the saccade-locked pupil response 
using deconvolution, a common method for determining the finite 
impulse response function (IRF) of a linear system. We used an 
algorithm similar to the one used by Knapen et al. (29), in which we 
defined a deconvolution design matrix (i.e., a Toeplitz matrix). The 
first column contained ones at the onset times of each saccade and 
zeros everywhere else. Successive columns were shifted by one 
sample. We estimated the IRF by inverting the linear system, given 
the entire measured pupil size time course. We assumed a 4-s dura-
tion for the saccade-locked pupil response, which was sufficient to 
capture the whole response according to informal comparisons of 
different durations and previous studies (29).

Linear-nonlinear linking model
We used a linear-nonlinear linking model to predict pupil size from 
saccade rate and to estimate arousal level. The system’s input, the 
generator function, was assumed to be a time-varying signal cor-
rupted by additive Gaussian noise with SD  equal to 1. The system 
has two “channels” (Fig. 1B), one leading from the generator func-
tion to saccades (Fig. 2A) and the other leading from the generator 
function to pupil size (Fig. 2E).

We can express the generator function on a single trial as

   X  t   ∼ N(   t  , )  (1)

where Xt is the generator function, x represents the possible values 
it can take, t is time from trial onset to end, dt is determined by the 
sampling rate of the eye tracker (i.e., dt = 1/500 s for our data), and 
t is the expected value of the generator function (i.e., across trials).

The channel leading from the generator function to saccades 
contains two operations, the first a threshold nonlinearity and the 
second a post-saccade refractory period. The threshold nonlinearity 
simply subjects the noisy generator function to a fixed threshold, 
represented in Fig. 1B as a step function. Any time the generator 
function rises above the threshold is represented by a one or other-
wise by a zero in a binary sequence. This binary sequence represents 
the time course of saccades (and ignores saccade amplitude). The 
threshold is implemented by mapping trial-averaged saccade rate 
through a nonlinear function (the inverse cumulative distribution 
function of a Gaussian with SD  = 1). The threshold nonlinearity is 
similar to an inhomogeneous Poisson process (see the “Equivalence 
of our model with an inhomogeneous Poisson process” section 
in the Supplementary Materials). The second computation, the 
post-saccadic refractory period, models the phenomenon of inhibi-
tion in saccade generation after a saccade has just occurred as a 
multiplicative scaling of the entire trial-averaged saccade rate func-
tion (see the “Modeling the post-saccade refractory period” section 
in the Supplementary Materials). We adopted a statistical model 
called a renewal process to account for the refractory period by start-
ing with a Poisson process and scaling the rate by 1/k—equivalent 
to preserving every kth saccade (92). The Poisson process has an 
exponential distribution of inter-saccade intervals, but the renewal 
process has a gamma distribution. This channel of the model yields 
an (adjusted) trial-averaged saccade rate function. We can there-
fore write the mapping between saccade rate and the generator 
function as

     t   =   1 ─ k    ∫h  
∞

   N(x;    t  , ) dx  (2)

t is saccade rate (a probability between 0 and 1), k is the shape 
parameter of a gamma distribution fit to the inter-saccade intervals, 
and h is a fixed threshold (arbitrary, but fixed to 1 in our model 
fitting and simulations).

The channel leading from the generator function to pupil size 
contains two operations, a multiplicative gain (i.e., an amplifier) 
and a low-pass filter (i.e., a temporal integrator). The gain simply 
scales the noisy generator function by a number g. We assume that 
gain is constant within a trial and may change across trials but that 
its expected value across trials is g. The model’s prediction of the 
task-evoked pupil response is equal to the convolution of the linear 
filter (see the “Estimating the linear filter” section) with the expected 
value of the mean-subtracted, gain-modulated generator function, 
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plus an additive offset. Mean-subtracting the generator function 
before the gain corresponds with a particular sort of gain modulation, 
in which the DC offset of the generator function does not change 
with gain (like a stereo amplifier might do); only its amplitude (dis-
tance from peak to trough) changes. The model fits data equally 
well without mean-subtracting the generator function, but not 
mean-subtracting makes three unjustifiable assumptions: (i) that 
the gain and DC offset of pupil size are strongly (positively) cor-
related, (ii) that the DC offset is (much) higher than the mean pupil 
size, and (iii) that the threshold depends on gain. Instead, we simply 
mean-subtract the generator function and later add to the model 
prediction an additive offset b, equal to the mean pupil size over a 
run of trials. This second channel of the model yields a prediction of 
trial-averaged pupil area (i.e., the task-evoked pupil response). We 
can write the relation between the task-evoked pupil response and 
the expected value of the generator function as

   p  t   =  l  t   * (g    t   −  E  t   [ g    t   ] ) + b  (3)

where lt is the linear filter, g is the gain, b is the additive offset, 
“*” denotes (circular) convolution, and E denotes an expectation. 
The mean and SD of the gain-modulated generator function are

   E  x   [ g  X  t   ] = g    t    (4)

   √ 
_

 Var(g  X  t  )   = g   (5)

Therefore, both the amplitude and SD of the generator function 
scale with gain.

Parameter estimation
We estimated the generator function and gain using trial-averaged 
pupil and saccade data. We colloquially refer to this estimation 
method as “ascending one channel of the model and descending the 
other,” because we started with measured saccade rate, estimated 
the expected value of the generator function, and finally predicted 
the trial-averaged pupil response, which can be compared to the 
measured pupil response (Fig.  2). This procedure yielded esti-
mates of the expected value of the generator function and three 
parameters—gain, offset, and k—of which only gain was fit sepa-
rately for each run.

To estimate gain, we performed a linear regression between the 
measured and predicted trial-averaged pupil response. Gain was 
equal to the beta value of this regression; i.e., it simply scaled the 
prediction. The predicted pupil response was computed as the 
convolution of the linear filter and the mean-subtracted and amplified 
expected value of the generator function, plus an additive offset 
(mean pupil size over a run) (Eq. 3).

To compute the expected value of the generator function, we 
mapped the adjusted saccade rate function (i.e., “adjusted”: times k, 
see below) through the inverse function of a cumulative normal 
distribution. Saccade rate at time t was assumed to be the integral of 
a Gaussian with SD  = 1 beyond a fixed threshold (i.e., from the 
threshold to infinity). The mean of this Gaussian was the expected 
value of the generator function at time t. The threshold was always 
assumed to be 1, but its value is arbitrary as long as it is fixed. We 
can write the expected value of the generator function t as a 
function of saccade rate t by inverting Eq. 2

     t   = h −     −1 (1 − k    t  ; 0, )  (6)

 is the cumulative probability function for a Gaussian distribu-
tion, and −1 is its inverse. We use Eq. 6 to estimate the expected 
generator function t.

The entire transformation between trial-averaged saccade rate 
and pupil area can be expressed as

  p  t   =  l  t   * g [ (h −     −1 (1 − k    t  ; 0, 1 ) ) −  E  t   [ h −     −1 (1 − k    t  ; 0, 1 ) ] ] + b   (7)

Note that there is a nonlinearity in between saccade rate and 
pupil area: the inverse cumulative Gaussian.

We estimated k, the parameter controlling the post-saccadic 
refractory period, for each observer by fitting a gamma distribution 
to the empirical distribution of inter-saccadic intervals (for justifi-
cation, see the “Modeling the post-saccade refractory period” section 
in the Supplementary Materials). k is the shape parameter of a 
gamma distribution. For each run, we multiplied the saccade rate 
function by k to compensate for the reduction in saccades caused 
by the refractory period, equivalent to preserving only every kth 
saccade (92). The multiplier k on saccade rate scales the input to the 
nonlinearity , meaning that k influences pupil size in a nonlinear 
way (Eq. 7). In practice, however, including k in the model had a 
negligible effect on the model’s parameter estimates and goodness 
of fit (see the Supplementary Materials). Thus, although modeling 
the refractory period was theoretically justified, it was practically 
unnecessary for real data. This was true under the assumption of 
a gamma renewal process or under the assumption of an absolute 
post-saccadic refractory period of 125 ms (93). We confirmed that 
our model fitting procedure was able to recover the gain and genera-
tor function, when specified a priori, with parameter recovery 
simulations (see the “Parameter recovery: our model” section in the 
Supplementary Materials).

Estimating the linear filter
The linear filter was estimated by fitting a parametric form to the 
deconvolved saccade-locked pupil response (Fig. S3A). We optimized 
for the best combination of parameters (n and tmax) that best 
described the saccade-locked pupil response as a gamma-Erlang 
function, a common approach in the pupil modeling literature 
(22, 23, 29). We used the fminsearch function (Nelder-Mead) in Matlab 
for the optimization. The equation for the parametric form was

   l  t   = − f  t   n   e   −  nt _  t  max      (8)

The initial points for n and tmax were randomly drawn from the 
intervals (0,20) and (600,4000), respectively. These initial points 
were chosen on the basis of the parameter range used in previous 
studies (22, 23, 29). Maximum function evaluation and maximum 
iteration both were set to 5 × 104. One set of parameters were fitted 
for each observer. We set f (the scale factor) such that the paramet-
ric form had the same height (minimum) as the measured saccade- 
locked pupil response, equivalent to multiplying the estimated filter 
by a normalization factor (height of filter estimate divided by height 
of saccade-locked pupil response). This meant that estimates of gain 
were relative to the amplitude of each observer’s saccade-evoked 
pupil response. Therefore, gain estimates were in the same range for 
all observers, and gain modulation (i.e., with task difficulty) could 
be compared directly across observers (Fig. 3C). This normalization 
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was a crucial preprocessing step (88) because foreshortening error 
varies for each observer because of the angle of the eye tracker (i.e., 
adjusted for each observer’s height), which affects the range of 
measured pupil response amplitudes (and thus, gains, also). Note 
that this is different from divisive baseline correction (22, 50, 94), in 
which the pupil size signal is divided by its mean to account for a 
supposedly nonlinear interaction between the signal’s amplitude 
and additive offset. We did not perform divisive baseline correction 
on our data because the task-evoked pupil response has been shown 
to scale linearly with baseline within normal range (i.e., not at the 
highest or lowest pupil sizes, where there must be compressive non-
linearities due to biomechanical limits) (50). We set f based on the 
minimum of the saccade-locked pupil response because the alterna-
tive, regression, caused misestimation of the filter’s amplitude and 
other parameters due to distortion of the saccade-locked response 
(caused by the threshold nonlinearity). Setting f in the way that we 
did avoided this, according to our simulations (see below).

The time-to-peak (tmax) and width of this filter (n) varied per 
observer, and these idiosyncrasies were critical for explaining 
variability in the dynamics of the task-evoked pupil response for 
some observers (see the “Individual differences in saccade rate and 
linear filter were sometimes critical to accurately predict pupil size” 
section in the Supplementary Materials), as Denison et al. also 
suggested (22).

We used an (upside-down) gamma-Erlang function as a para-
metric form for three reasons. First, our assumption was that the 
linear filter is low-pass and constrictory. Second, a gamma-Erlang 
function has been shown to model the aggregate input-output 
relationship of a system with cascades of exponential computations 
with different time constants (e.g., a multisynaptic neural circuit like 
the parasympathetic pathway of the pupil) (23). Third, parameter 
recovery simulations revealed that this parametric form eliminates 
a large amount of bias in the filter estimate relative to a ground 
truth filter (see the “Justification for linear filter estimation method” 
section in the Supplementary Materials).

Model comparison
To assess model generalizability, we computed the reduction in R2 
between the in- versus out-of-sample fits as well as ASI and HSI 
indexes (see Results for details). For our model, we computed 
the average gain across all easy and hard runs separately for each 
observer and used these average parameter values for the out-of-
sample model predictions. For the consensus model, we did the 
same but with the best-fit amplitudes for the impulses at trial onset, 
button press, and for the time-on-task boxcar for the easy and hard 
data. The duration of the time-on-task boxcar was from trial onset 
to the mean reaction time. To fit the consensus model, we used the 
Pupil Response Estimation Toolbox (PRET) toolbox (22) to implement 
a model similar to that proposed by Denison et al. (22) and others 
(17, 18, 29). These models are variants of one another but share the 
same overarching assumptions: a linear model with impulses near trial 
events as input and a dilatory linear filter. We did not fit the latency of 
the impulses from the task events, as Denison and colleagues suggest 
doing, because it was not standard and would afford the model too 
much flexibility (also see the “Parameter recovery: Deconvolution 
method of Wierda and colleagues” section in the Supplementary 
Materials). When we did fit these latencies, the in-sample fit of the 
model improved, and the generalizability decreased, consistent with 
the idea that it made the overfitting worse.

For the consensus model only, the computed ASI and HSI 
indexes were sometimes extremely large or small because one of 
the best-fit amplitudes would go to nearly zero on one dataset and 
would be larger than zero for the other dataset. This suggested that 
the three parameters traded off in the consensus model, again 
suggesting that it overfits.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi9979

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
 1. I. E. Loewenfeld, O. E. Lowenstein, The Pupil: Anatomy, Physiology, and Clinical Applications 

(Butterworth-Heinemann, ed. 2, 1999).
 2. R. S. Larsen, J. Waters, Neuromodulatory correlates of pupil dilation. Front. Neural Circuits 

12, 21 (2018).
 3. D. H. McDougal, P. D. Gamlin, Autonomic control of the eye. Compr. Physiol. 5, 439–473 

(2014).
 4. P. R. K. Turnbull, N. Irani, N. Lim, J. R. Phillips, Origins of pupillary hippus in the autonomic 

nervous system. Investig. Ophthalmol. Vis. Sci. 58, 197–203 (2017).
 5. O. Lowenstein, R. Feinberg, I. E. Loewenfeld, Pupillary movements during acute and 

chronic fatigue a new test for the objective evaluation of tiredness. Invest. Ophthalmol. 
Vis. Sci. 2, 138–157 (1963).

 6. E. Hess, J. M. Polt, Pupil size in relation to mental activity during simple problem-solving. 
Science 143, 1190–1192 (1964).

 7. D. Kahneman, J. Beatty, Pupil diameter and load on memory. Science 154, 1583–1585 
(1966).

 8. G. Aston-Jones, J. D. Cohen, An integrative theory of locus coeruleus-norepinephrine 
function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 
(2005).

 9. C. Willems, J. Herdzin, S. Martens, Individual differences in temporal selective attention 
as reflected in pupil dilation. PLOS ONE 10, e0145056 (2015).

 10. C.-A. Wang, T. Baird, J. Huang, J. D. Coutinho, D. C. Brien, D. P. Munoz, Arousal effects 
on pupil size, heart rate, and skin conductance in an emotional face task. Front. Neurol. 9, 
1029–1042 (2018).

 11. J. Reimer, M. J. McGinley, Y. Liu, C. Rodenkirch, Q. Wang, D. A. McCormick, A. S. Tolias, 
Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. 
Nat. Commun. 7, 13289 (2016).

 12. S. Joshi, Y. Li, R. M. Kalwani, J. I. Gold, Relationships between pupil diameter and neuronal 
activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234 (2016).

 13. F. Cazettes, D. Reato, J. P. Morais, A. Renart, Z. Mainen, Phasic activation of dorsal raphe 
serotonergic neurons increases pupil size. Curr. Biol. 31, 192–197.e4 (2021).

 14. M. J. McGinley, S. V. David, D. A. McCormick, Cortical membrane potential signature 
of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).

 15. S. Musall, M. T. Kaufman, A. L. Juavinett, S. Gluf, A. K. Churchland, Single-trial neural 
dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 
(2019).

 16. S. Joshi, J. Gold, Pupil size as a window on neural substrates of cognition. Trends Cogn. Sci. 
24, 466–480 (2020).

 17. J. W. de Gee, T. Knapen, T. H. Donner, Decision-related pupil dilation reflects upcoming 
choice and individual bias. Proc. Natl. Acad. Sci. U.S.A. 111, 618–625 (2014).

 18. P. R. Murphy, E. Boonstra, S. Nieuwenhuis, Global gain modulation generates 
time-dependent urgency during perceptual choice in humans. Nat. Commun. 7, 13526 
(2016).

 19. J. W. de Gee, O. Colizoli, N. A. Kloosterman, T. Knapen, S. Nieuwenhuis, T. H. Donner, 
Dynamic modulation of decision biases by brainstem arousal systems. eLife 6, e23232 (2017).

 20. C. W. Korn, M. Staib, A. Tzovara, G. Castegnetti, D. R. Bach, A pupil size response model 
to assess fear learning. Psychophysiology 54, 330–343 (2017).

 21. J. C. V. Slooten, S. Jahfari, T. Knapen, J. Theeuwes, How pupil responses track value-based 
decision-making during and after reinforcement learning. PLoS Comput. Biol. 14, 
e1007031 (2018).

 22. R. N. Denison, J. A. Parker, M. Carrasco, Modeling pupil responses to rapid sequential 
events. Behav. Res. Methods 52, 1991–2007 (2020).

 23. B. Hoeks, W. J. M. Levelt, Pupillary dilation as a measure of attention: A quantitative 
system analysis. Behav. Res. Methods Instrum. Comput. 25, 16–26 (1993).

 24. S. M. Wierda, H. van Rijn, N. A. Taatgen, S. Martens, Pupil dilation deconvolution reveals 
the dynamics of attention at high temporal resolution. Proc. Natl. Acad. Sci. U.S.A. 109, 
8456–8460 (2012).

https://science.org/doi/10.1126/sciadv.abi9979
https://science.org/doi/10.1126/sciadv.abi9979
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.abi9979


Burlingham et al., Sci. Adv. 8, eabi9979 (2022)     20 April 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

15 of 16

 25. C.-A. Wang, S. E. Boehnke, B. J. White, D. P. Munoz, Microstimulation of the monkey superior 
colliculus induces pupil dilation without evoking saccades. J. Neurosci. 32, 3629–3636 (2012).

 26. C.-A. Wang, D. P. Munoz, A circuit for pupil orienting responses: Implications for cognitive 
modulation of pupil size. Curr. Opin. Neurobiol. 33, 134–140 (2015).

 27. C.-A. Wang, D. P. Munoz, Coordination of pupil and saccade responses by the superior 
colliculus. J. Cogn. Neurosci. 33, 919–932 (2021).

 28. B. Zuber, L. Stark, M. Lorber, Saccadic suppression of the pupillary light reflex. Exp. Neurol. 
14, 351–370 (1966).

 29. T. Knapen, J. W. de Gee, J. Brascamp, S. Nuiten, S. Hoppenbrouwers, J. Theeuwes, 
Cognitive and ocular factors jointly determine pupil responses under equiluminance. 
PLOS ONE 11, e0155574 (2016).

 30. A. Benedetto, P. Binda, Dissociable saccadic suppression of pupillary and perceptual 
responses to light. J. Neurophysiol. 115, 1243–1251 (2016).

 31. S. Joshi, Pupillometry: Arousal state or state of mind? Curr. Biol. 31, R32–R34 (2021).
 32. I. E. Loewenfeld, Mechanisms of reflex dilatation of the pupil. Doc. Ophthalmol. 12, 

185–448 (1958).
 33. M. A. Phillips, E. Szabadi, C. M. Bradshaw, Comparison of the effects of clonidine 

and yohimbine on spontaneous pupillary fluctuations in healthy human volunteers. 
Psychopharmacology (Berl) 150, 85–89 (2000).

 34. M. A. Phillips, E. Szabadi, C. M. Bradshaw, Comparison of the effects of clonidine and 
yohimbine on pupillary diameter at different illumination levels. Br. J. Clin. Pharmacol. 50, 
65–68 (2000).

 35. S. Steinhauer, R. Condray, M. Pless, Pharmacological isolation of cognitive components 
influencing the pupillary light reflex. J. Ophthalmol. 2015, 179542 (2015).

 36. M. P. Bokoch, M. Behrends, A. Neice, M. Larson, Fentanyl, an agonist at the mu opioid 
receptor, depresses pupillary unrest. Auton. Neurosci. 189, 68–74 (2015).

 37. C. Strauch, L. Greiter, A. Huckauf, Pupil dilation but not microsaccade rate robustly 
reveals decision formation. Sci. Rep. 8, 13165 (2018).

 38. R. N. Denison, S. Yuval-Greenberg, M. Carrasco, Directing voluntary temporal attention 
increases fixational stability. J. Neurosci. 39, 353–363 (2019).

 39. M. Rolfs, R. Kliegl, R. Engbert, Toward a model of microsaccade generation: The case 
of microsaccadic inhibition. J. Vis. 8, 5.1–5.523 (2008).

 40. S. Martinez-Conde, S. L. Macknik, Unchanging visions: The effects and limitations 
of ocular stillness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160204 (2017).

 41. D. Abeles, R. Amit, N. Tal-Perry, M. Carrasco, S. Yuval-Greenberg, Oculomotor inhibition 
precedes temporally expected auditory targets. Nat. Commun. 11, 3524 (2020).

 42. A. L. White, M. Rolfs, Oculomotor inhibition covaries with conscious detection. 
J. Neurophysiol. 116, 1507–1521 (2016).

 43. S. Stanten, L. Stark, A statistical analysis of pupil noise. I.E.E.E. Trans. Biomed. Eng. 13, 
140–152 (1966).

 44. J. Krueger, A. A. Disney, Structure and function of dual-source cholinergic modulation 
in early vision. J. Comp. Neurol. 527, 738–750 (2019).

 45. A. E. Urai, A. Braun, T. H. Donner, Pupil-linked arousal is driven by decision uncertainty 
and alters serial choice bias. Nat. Commun. 8, 1–11 (2017).

 46. O. Colizoli, J. W. de Gee, A. E. Urai, T. Donner, Task-evoked pupil responses reflect internal 
belief states. Sci. Rep. 8, 1–13 (2018).

 47. R. B. Ebitz, T. Moore, Both a gauge and a filter: Cognitive modulations of pupil size. 
Front. Neurol. 9, 1190–1203 (2019).

 48. J. Smith, L. Y. Ichinose, G. A. Masek, T. Watanabe, L. Stark, Midbrain single units 
correlating with pupil response to light. Science 162, 1302–1303 (1968).

 49. R. Suzuki, H. Yoshino, S. Kobayashi, Different time courses of bovine iris sphincter 
and dilator muscles after stimulation. Ophthalmic Res. 19, 344–350 (1987).

 50. J. Reilly, A. Kelly, S. Kim, S. Jett, B. M. Zuckerman, The human task-evoked pupillary 
response function is linear: Implications for baseline response scaling in pupillometry. 
Behav. Res. Methods 51, 865–878 (2019).

 51. C. W. Korn, D. R. Bach, A solid frame for the window on cognition: Modeling event-related 
pupil responses. J. Vis. 16, 28 (2016).

 52. M. Megemont, J. McBurney-Lin, H. Yang, Pupil diameter is not an accurate real-time 
readout of locus coeruleus activity. eLife 11, e70510 (2022).

 53. G. M. Boynton, S. A. Engel, G. H. Glover, D. J. Heeger, Linear systems analysis of functional 
magnetic resonance imaging in human v1. J. Neurosci. 16, 4207–4221 (1996).

 54. K. N. Kay, J. Winawer, A. Rokem, A. Mezer, B. Wandell, A two-stage cascade model of bold 
responses in human visual cortex. PLoS Comput. Biol. 9, e1003079 (2013).

 55. M. Carandini, D. Heeger, Normalization as a canonical neural computation. Nat. Rev. Neurosci. 
13, 51–62 (2012).

 56. J. S. Antrobus, Information theory and stimulus-independent thought. Br. J. Psychol. 59, 
423–430 (1968).

 57. L. M. Giambra, A laboratory method for investigating influences on switching attention 
to task-unrelated imagery and thought. Conscious. Cogn. 4, 1–21 (1995).

 58. S. Martinez-Conde, J. Otero-Millan, S. L. Macknik, The impact of microsaccades on vision: 
Towards a unified theory of saccadic function. Nat. Rev. Neurosci. 14, 83–96 (2013).

 59. J.-T. Chen, R. Yep, Y.-F. Hsu, Y.-G. Cherng, C.-A. Wang, Investigating arousal, saccade 
preparation, and global luminance effects on microsaccade behavior. Front. Hum. Neurosci. 
15, 602835 (2021).

 60. J. D. Hunter, J. Milton, H. Luedtke, B. Wilhelm, H. Wilhelm, Spontaneous fluctuations 
in pupil size are not triggered by lens accommodation. Vision Res. 40, 567–573 (2000).

 61. Z. M. Hafed, L. Goffart, R. J. Krauzlis, A neural mechanism for microsaccade generation 
in the primate superior colliculus. Science 323, 940–943 (2009).

 62. S. Nummela, R. Krauzlis, Inactivation of primate superior colliculus biases target choice 
for smooth pursuit, saccades, and button press responses. J. Neurophysiol. 104, 
1538–1548 (2010).

 63. B. White, J. Y. Kan, R. Levy, L. Itti, D. Munoz, Superior colliculus encodes visual saliency 
before the primary visual cortex. Proc. Natl. Acad. Sci. 114, 9451–9456 (2017).

 64. K. H. Lee, A. Tran, Z. Turan, M. Meister, The sifting of visual information in the superior 
colliculus. eLife 9, 1–23 (2020).

 65. L. Wang, K. McAlonan, S. Goldstein, C. Gerfen, R. Krauzlis, A causal role for mouse 
superior colliculus in visual perceptual decision-making. J. Neurosci. 40, 3768–3782 
(2020).

 66. D. P. Hanes, J. Schall, Neural control of voluntary movement initiation. Science 274, 
427–430 (1996).

 67. J. Schall, B. A. Purcell, R. Heitz, G. Logan, T. Palmeri, Neural mechanisms of saccade target 
selection: Gated accumulator model of the visual-motor cascade. Eur. J. Neurosci. 33, 
1991–2002 (2011).

 68. L. Breen, R. Burde, A. Loewy, Brainstem connections to the edinger-westphal nucleus 
of the cat: A retrograde tracer study. Brain Res. 261, 303–306 (1983).

 69. S. Nieuwenhuis, E. J. De Geus, G. Aston-Jones, The anatomical and functional relationship 
between the P3 and autonomic components of the orienting response. Psychophysiology 
48, 162–175 (2011).

 70. T. Kozicz, J. Bittencourt, P. May, A. Reiner, P. D. Gamlin, M. Palkovits, A. Horn, 
C. A. Toledo, A. Ryabinin, The Edinger-Westphal nucleus: A historical, structural, 
and functional perspective on a dichotomous terminology. J. Comp. Neurol. 519, 
1413–1434 (2011).

 71. R. Warwick, The ocular parasympathetic nerve supply and its mesencephalic sources. 
J. Anat. 88, 71–93 (1954).

 72. E. Bruinstroop, G. Cano, V. VanderHorst, J. C. Cavalcante, J. R. Wirth, M. Sena-Esteves, 
C. Saper, Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell 
groups in rats. J. Comp. Neurol. 520, 1985–2001 (2012).

 73. S. Mathôt, Pupillometry: Psychology, physiology, and function. J. Cogn. 1, 16 (2018).
 74. S. R. Steinhauer, G. J. Siegle, R. Condray, M. Pless, Sympathetic and parasympathetic 

innervation of pupillary dilation during sustained processing. Int. J. Psychophysiol. 52, 
77–86 (2004).

 75. O. Lowenstein, Mutual role of sympathetic and parasympathetic in shaping 
of the pupillary reflex to light. Arch. Neurol. Psychiatry 64, 341–377 (1950).

 76. P. Heller, F. Perry, D. L. Jewett, J. Levine, Autonomic components of the human pupillary 
light reflex. Invest. Ophthalmol. Vis. Sci. 31, 156–162 (1990).

 77. R. B. Ebitz, T. Moore, Selective modulation of the pupil light reflex by microstimulation 
of prefrontal cortex. J. Neurosci. 37, 5008–5018 (2017).

 78. L. Stark, Stability, oscillations, and noise in the human pupil servomechanism. Proc. IRE 
47, 1925–1939 (1959).

 79. W. C. Krenz, L. Stark, Systems model for pupil size effect. Biol. Cybern. 51, 391–397 (1985).
 80. S. Usui, L. Stark, A model for nonlinear stochastic behavior of the pupil. Biol. Cybern. 45, 

13–21 (1982).
 81. J. Drewes, W. Zhu, Y. Hu, X. Hu, Smaller is better: Drift in gaze measurements due to pupil 

dynamics. PLOS ONE 9, e111197 (2014).
 82. K. W. Choe, R. Blake, S. hun Lee, Pupil size dynamics during fixation impact the accuracy 

and precision of video-based gaze estimation. Vision Res. 118, 48–59 (2016).
 83. S. Mathôt, J.-B. Melmi, E. Castet, J. M. Abdullah, Intrasaccadic perception triggers 

pupillary constriction. PeerJ 3, e1150 (2015).
 84. J. Slooter, D. van Norren, Visual acuity measured with pupil responses to checkerboard 

stimuli. Invest. Ophthalmol. Vis. Sci. 19, 105–108 (1980).
 85. S. Mathôt, Tuning the senses: How the pupil shapes vision at the earliest stage. Annu. Rev. 

Vis. Sci. 6, 433–451 (2020).
 86. L. Kooijman, D. Dodou, S. Jansen, T. Themans, J. Russell, S. Petermeijer, J. Doorman, 

J. Habl, D. Neubert, M. Vos, J. de Winter, Is accommodation a confounder in pupillometry 
research? Biol. Psychol. 160, 1–13 (2021).

 87. D. M. Dacey, H. Liao, B. B. Peterson, F. R. Robinson, V. Smith, J. Pokorny, K. Yau, 
P. D. Gamlin, Melanopsin-expressing ganglion cells in primate retina signal colour 
and irradiance and project to the lgn. Nature 433, 749–754 (2005).

 88. T. R. Hayes, A. A. Petrov, Mapping and correcting the influence of gaze position on pupil 
size measurements. Behav. Res. Methods 48, 510–527 (2016).

 89. R. Engbert, K. Mergenthaler, Microsaccades are triggered by low retinal image slip. 
Proc. Natl. Acad. Sci. U.S.A. 103, 7192–7197 (2006).



Burlingham et al., Sci. Adv. 8, eabi9979 (2022)     20 April 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

16 of 16

 90. K. Mergenthaler, R. Engbert, Microsaccades are different from saccades in scene 
perception. Exp. Brain Res. 203, 753–757 (2010).

 91. P. Sinn, R. Engbert, Small saccades versus microsaccades: Experimental distinction 
and model-based unification. Vision Res. 118, 132–143 (2016).

 92. J. Victor, S. Nirenberg, Spike trains as event sequences: fundamental implications, in 
Spike Timing: Mechanisms and Function (Boca Raton: Taylor & Francis/CRC Press, 2013), 
pp. 3–32.

 93. R. Amit, D. Abeles, S. Yuval-Greenberg, Transient and sustained effects of stimulus 
properties on the generation of microsaccades. J. Vis. 19, 6 (2019).

 94. S. Mathôt, J. Fabius, E. V. Heusden, S. V. der Stigchel, Safe and sensible preprocessing 
and baseline correction of pupil-size data. Behav. Res. Methods 50, 94–106 (2018).

 95. D. McKeegan, Spontaneous and odour evoked activity in single avian olfactory bulb 
neurones. Brain Res. 929, 48–58 (2002).

 96. G. Maimon, J. Assad, Beyond poisson: Increased spike-time regularity across primate 
parietal cortex. Neuron 62, 426–440 (2009).

 97. B. M. Bolker, M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, 
J.-S. S. White, Generalized linear mixed models: A practical guide for ecology 
and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

Acknowledgments: We thank M. Landy, R. Denison, E. Simoncelli, F. Rieke, and N. Steinmetz 
for comments on the research and E. Merriam and N. Arfaei for help with early versions  
of the experiments. Funding: This research was supported by a National Eye Institute grant 
(R01-EY025330) to D.J.H. and a National Defense Science and Engineering Graduate 
fellowship to C.S.B. Author contributions: Conceptualization: S.M., C.S.B., and D.J.H. 
Methodology: C.S.B., S.M., and D.J.H. Software: C.S.B. and S.M. Formal analysis: C.S.B. and 
S.M. Investigation: C.S.B. and S.M. Writing—original draft: C.S.B. and S.M. Writing—review 
and editing: C.S.B., S.M., and D.J.H. Visualization: C.S.B. Funding acquisition: D.J.H. Supervision: 
D.J.H. Model development: S.M., C.S.B., and D.J.H. Competing interests: The authors 
declare that they have no competing interests. Data and materials availability: All data 
needed to evaluate the conclusions in the paper are present in the paper and/or the 
Supplementary Materials. Our code toolbox is available at https://github.com/csb0/PCDM and 
our experimental data and code are available at https://archive.nyu.edu/handle/2451/63809.

Submitted 14 April 2021
Accepted 4 March 2022
Published 20 April 2022
10.1126/sciadv.abi9979


