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Abstract

The pharmacological chaperone, isofagomine (IFG), enhances acid b-glucosidase (GCase) function by altering folding,
trafficking, and activity in wild-type and Gaucher disease fibroblasts. The in vivo effects of IFG on GCase activity, its substrate
levels, and phenotype were evaluated using a neuronopathic Gaucher disease mouse model, 4L;C* (V394L/V394L + saposin
C-/-) that has CNS accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) as well as progressive neurological
deterioration. IFG administration to 4L;C* mice at 20 or 600 mg/kg/day resulted in life span extensions of 10 or 20 days,
respectively, and increases in GCase activity and protein levels in the brain and visceral tissues. Cerebral cortical GC and GS
levels showed no significant reductions with IFG treatment. Increases of GC or GS levels were detected in the visceral tissues
of IFG treated (600 mg/kg/day) mice. The attenuations of brain proinflammatory responses in the treated mice were
evidenced by reductions in astrogliosis and microglial cell activation, and decreased p38 phosphorylation and TNFa levels.
Terminally, axonal degeneration was present in the brain and spinal cord from untreated and treated 4L;C* mice. These data
demonstrate that IFG exerts in vivo effects by enhancing V394L GCase protein and activity levels, and in mediating
suppression of proinflammation, which led to delayed onset of neurological disease and extension of the life span of 4L;C*
mice. However, this was not correlated with a reduction in the accumulation of lipid substrates.
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Introduction

Gaucher disease is caused by mutations in GBA1 that encodes

acid b-glucosidase (glucocerebrosidase, GCase, EC3.2.1.45). The

resultant defective GCase leads to accumulation of the substrates,

glucosylceramide (GC) and glucosylsphingosine (GS) [1]. The

disease has three clinical variants: Type 1 is primarily a visceral

and nonneuropathic disease whereas types 2 and 3 are a

continuum of neuronopathic and visceral diseases ranging from

acute (type 2, infantile) to subacute (type 3) progressive CNS

degenerative diseases [1,2].

Enzyme therapy with regular infusions of mannose-terminated

recombinant human enzymes (imiglucerase, Genzyme; velaglucer-

ase alfa, Shire) has become the standard-of-care for significantly

involved type 1 patients [3]. The effects on liver, spleen,

hematologic parameters, and bone are dose dependent [4,5].

Children show excellent responses in growth and bone disease to

enzyme therapy [6]. Alternatively, reductions in GC levels can be

achieved by partial inhibition of GC synthase, an essential enzyme

in the biosynthesis of complex glycosphingolipids [7], i.e. substrate

reduction therapy (SRT). SRT with N-butyldeoxynojirimycin

(miglustat) shows improvement in some Gaucher disease

parameters [8]. Eliglustat Tartrate {(1R,2R)-Octanoic acid [2-

(29,39-dihydro-benzo [1,4] dioxin-69-yl)-2-hydroxy-1-pyrrolidin-1-

methyl-ethyl]-amide-L-tartaric acid salt}, an analog of 1-phenyl-2-

decanoylamino-3-morpholino-1-propanol (PDMP), is a novel

potent inhibitor (IC50,24 nM) of GC synthase. This compound

significantly reduces GC accumulation in visceral tissues and cells in

the Gaucher disease mouse model [9,10]. In addition, phase 2

studies in humans show therapeutic effects that mimic those of

higher dose enzyme therapy [11]. However, the compound does not

reach significant levels in the brain since it is a pGP substrate. [9].

Directly modulating mutant enzyme activity by small molecules

was proposed as an attractive alternative approach to treat

Gaucher disease using pharmacological chaperones [12,13].

Competitive inhibitors specific for such enzymes could stabilize

mutant enzyme proteins in endoplasm reticulum, assist the

enzyme trafficking to lysosome, and restoring the activity

[13,14]. IFG, a potent inhibitor of GCase, is an effective in vitro

pharmacological chaperone that can enhance selected mutant

GCases in fibroblasts [14,15]. IFG treatment of human patient

fibroblasts facilitates mutant enzyme trafficking to lysosome and

enhances protein and activity levels for the mutant GCases N370S,

V394L, and L444P [14,15,16].
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Here, IFG was evaluated in vivo in a neuronopathic GCase

deficient mouse model [17] for its effect on mutant GCase activity,

substrate levels, and phenotypic improvement.

Results

Treatment of 4L;C* mice with IFG
The in vivo effects of IFG were tested using 4L;C* mice that

develop neurological signs, including a duck-like waddling gait at

,30 days, and then die from progressive CNS disease by ,48

days. Three to five days prior birth, IFG was added to the drinking

water of pregnant dames in a dose calculated to provide ,20 mg/

kg/d based on measured water intake (see methods). At postnatal

day 7 (P7), one cohort was maintained on 20 mg/kg/d IFG and a

second cohort on 600 mg/kg/d (Fig. 1A). The body weights (BW)

of the mice were recorded from P7 to terminal stage. The 4L;C*

mice receiving 20 mg/kg/d IFG showed normal increases of BW

to ,35 days and then declined to ,70% of WT levels at terminal

stage (Fig. 2A). The trend of BW change was similar to that

observed with untreated 4L;C* mice. These treated 4L;C* mice

developed the characteristic duck-walk gait at 40-44 days and their

life span was 54 days on average or about 6–10 days longer than

untreated mice (Fig. 2B). The 4L;C* mice receiving 600 mg/kg/d

showed slow decreases in BW after 50 days (Fig. 2A). They did not

develop duck-walking, but showed spastic-like gait starting 47–50

days (Fig. 1B). The average life span was 63 days or about 15–18

days longer than controls, or ,34% increase in lifespan (Fig. 2B).

The untreated and 20 mg/kg/d IFG treated 4L;C+/2 mice

showed comparable BW attainments to WT and exhibited a

normal phenotype during the entire study period. In comparison,

4L;C+/2 mice treated with 600 mg/kg/d IFG showed slightly

lower body weight (data not shown). The untreated 4L;C* mice

are infertile and male 4L;C* mice treated with 20 or 600 mg/kg/d

IFG produced only a single litter.

Additional regimes of IFG treatment were tested. The 4L;C*

mice were treated with IFG in a 3-day-on/4-day-off trial. These

mice received IFG starting 3-days prior birth at 20 mg/kg/d as

above. Then, IFG was stopped from P3 to P7 (4-days off) and then

it was given at 20 mg/kg/d for the next 3 days (3-day on). The

cycle was continued until the end stage. The mice on this 3-day-

on/4-day-off schedule showed no differences of phenotype, onset

of signs, or life span (55 days) compared to the mice receiving

20 mg/kg/d of uninterrupted treatment. If IFG treatment was

started on postnatal day 25 at 600 mg/kg/d, there was less of an

Figure 1. Treatment and phenotypes. (A) IFG treatment regime. IFG was given to pregnant females 3 to 5 days prior birth at 20 mg/kg/d. The
first cohort was continued on 20 mg/kg/d for entire course. The dose for the second cohort was increased to 600 mg/kg/d at postnatal 7days.
(B) Phenotypes of IFG treated 4L;C* mice. The mice with 20 mg/kg/d IFG showed delayed duck-walk gait (arrow) as seen in the untreated 4L;C* mice.
The mice on 600 mg/kg/d IFG showed spastic walk.
doi:10.1371/journal.pone.0019037.g001
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effect on the life span of 4L;C* mice (54 days) compared to starting

the same dose prior to birth (63 days). In 5 litters in which IFG

(600 mg/kg/d) was begun at 3–5 days prior birth, all such pups

died on postnatal days 1 to 3. The pups in one litter survived when

this treatment started 2 days prior to birth. The results indicate

that earlier treatment started had better efficacy, but that non-

toxic doses were needed before the greater benefit of higher doses

could be observed; 600 mg/kg/d extended the life span compared

20 mg/kg/d, and the administration of 600 mg/kg/d prior to

birth is toxic to the pups.

IFG enhanced GCase activity and protein
The mutant GCase activity and protein levels in the tissues

were analyzed in 4L;C* mice (Fig. 3). In the liver, IFG

administration enhanced the mutant GCase activity by 3-fold

at 20 mg/kg/d and by 6-fold at 600 mg/kg/d compared to that

in untreated 4L;C mice. The 6-fold increase of V394L GCase

activity corresponded to ,25% of WT levels, and was similar to

the maximal effect observed in cultured skin fibroblasts from

V394L/V394L or 4L;C* mice (data not shown). On 600 mg/kg/

d, the mutant GCase activity was increased to a lesser extent in

midbrain (1.4-fold) and spleen (1.9-fold). Lung mutant GCase

activity was increased by 3.3-fold or 1.3-fold in the mice treated

with IFG at 600 or 20 mg/kg/d, respectively. Immunoblot

analyses using a specific anti-mouse GCase antibody showed that

IFG increased GCase protein levels in the liver to WT levels

(600 mg/kg/d) and to 21% of WT levels (20 mg/kg/d). In liver,

these respective increases in GCase protein were about 28- or 5-

fold compared to untreated 4L;C* (Fig. 3B). The results indicated

a discrepancy between the activity and protein increases, and

indicate that the IFG in vivo effect on activity was either inefficient

or inhibitory. Also, tissue specific effects were observed with the

liver enzyme having a greater response to IFG than that in the

brain, spleen and lung. Whether this is due to enzyme differences

in the various tissues or, more likely, IFG tissue distribution is

unknown.

Substrate levels in IFG treated mice
GC and GS levels in 4L;C* tissues were determined by LC/MS.

The tissues were collected from IFG treated (20 and 600 mg/kg/

d) 4L;C*, untreated 4L;C* and WT mice at 14, 28, 44 days, and at

terminal stages. Compared to untreated 4L;C*, GC and GS levels

in various tissues were either unchanged or increased (Fig. 4 and

Fig. 5). The longer treatments with 600 mg/kg/d led to GC and/

or GS increases in visceral tissues (Fig. 4B and Fig. 5). The cerebral

cortical levels were not significantly different in treated mice

(Fig. 4A). At terminal stages, GC and GS levels in 600 mg/kg/d

IFG treated brains were increased over baseline (Fig. 4A).

Cerebral cortical lactosylceramide (LacCer) and lactosylsphin-

gosine (LacSph) levels in 4L;C* mice were not reduced by IFG

treatment (Fig. 6). In general, LacCer and LacSph levels were

either increased or unchanged in 600 mg/kg/d IFG treated mice

compared to either untreated or to 20 mg/kg/d treated mice.

Ceramide levels in 4L;C cortex and liver were at WT levels and

were not altered by IFG treatment (data not shown). These data

indicated that GC and GS levels were not substantially reduced in

IFG treated 4L;C* mice. High dose (600 mg/kg/d) IFG caused

accumulation of GC or GS in selected visceral tissues.

Figure 2. Life span and body weight. (A) Both treated and untreated 4L;C* mice had normal growth of their body weight till 35 days. The body
weight of untreated 4L;C* mice started to decline at ,35 days. The mice on 20 mg/kg/d IFG showed decrease of body weight at ,35 days. The body
weight of 4L;C* mice treated by 600 mg/kg/d IFG started decreasing at ,48 days. Their body weight grew slower than untreated 4L;C* mice. (B) The
mice in both cohorts had significantly extended life span to average 54 days (p = 0.0002) by 20 mg/kg/d or 63 days (P,0.0001) by 600 mg/kg/d IFG
treatment relative to the untreated mice (,48 days). The Kaplan-Meier survival curves were analyzed using the Mantel-Cox Test.
doi:10.1371/journal.pone.0019037.g002
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IFG suppressed proinflammation
Proinflammation is a pathologic response in 4L;C* brain as

demonstrated by microglial cell activation and astrogliosis [17].

IFG (20 or 600 mg/kg/d) treated 4L;C* showed decreased

CD68 staining of microglial cells at 44 days, indicating

suppression of microglial cell activation (Fig. 7A). With the

disease progressing to the terminal stages, the CD68 positive

microglial cells increased in both dosage groups (Fig. 7A). GFAP

signals were increased, indicating astrogliosis. In the 20 mg/kg/

d IFG treated 4L;C* brain stem, GFAP signals were weak at 44

days and increased by 57 days, i.e., terminal stage (Fig. 7B).

Immunoblot analyses of GFAP of 44 day midbrain samples

showed the reduction of GFAP level in IFG treated mice

(Fig. 7C). High dose IFG (600 mg/kg/d) was more effective in

Figure 3. GCase activity and protein. (A) GCase activity was significantly increased in the treated 4L;C* liver by 3-fold in 20 mg/kg/d or 6-fold in
600 mg/kg/d IFG treatment groups, respectively. In the midbrain GCase was significantly increased by 1.4-fold in 4L;C* mice treated with 600 mg/kg/
d IFG, but not changed with 20 mg/kg/d IFG compared to the untreated group. The GCase activity in the 4L;C* spleen was enhanced by 600 mg/kg/d
IFG, whereas both 20 mg and 600 mg/kg/d IFG increased GCase activity in the lung. (B) GCase protein was increased in the liver of IFG (20 or 600 mg/
kg/d) treated 4L;C* mice. GCase protein were determined by immunoblot analyses using anti-mouse GCase antibody and normalized to b-actin signal
in the same sample. The levels were presented as percentage relative to GCase in WT mice. All the tissues used in GCase activity and protein analyses
were from 28 days old mice. The data represent the mean6S.E. for three mice assayed in triplicate and analyzed by Student’s t-test. ***, p,0.001.
doi:10.1371/journal.pone.0019037.g003
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Figure 4. Analyses of GC and GS levels in the cortex and liver by LC/MS. (A) Cortex GC and GS levels in IFG treated 4L;C* did not show
significant reduction relative to the untreated mice. GC and GS levels remained accumulated at terminal stage in 600 mg/kg/d IFG treated 4L;C*
brain. (B) Increased liver GC were detected in 600 mg/kg/d IFG treated 4L;C* mice at 14 and 44 days relative to untreated 4L;C* liver. GS level
decreased in 20 mg/kg/d IFG treated 4L;C* liver at 28 days. GS level in 600 mg/kg/d IFG treated 28 day liver were higher than untreated 4L;C* liver.
The data represent the mean6S.E. and analyzed by Student’s t-test. *, p,0.05 (n = 3 mice). The GC and GS levels were normalized by protein level in
the tissues lysate.
doi:10.1371/journal.pone.0019037.g004
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Figure 5. Analyses of GC and GS levels in the spleen and lung by LC/MS. (A) Spleen GC level in 4L;C* mice was not different from that in the
WT. GS level was accumulated in 4L;C* spleen. By 600 mg/kg/d IFG treatment, GC or GS were increased by 2-fold in 4L;C* spleen at 14 day or 28 day,

Gaucher Disease Therapy
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reducing GFAP signal levels than the lower dose in age matched

samples.

p38 is involved in mediating inflammatory cytokine expression

[18,19]. By immunoblotting with anti-Phosphorylated/active-p38

antibody, decreased phospho-p38 levels were detected in IFG

treated 4L;C* midbrain, and the effect was dose dependent

(Fig. 7D). The mRNA levels of p38a, b, c, and d were not

significantly altered in the treated and untreated 4L;C* relative to

WT, as determined by qRT-PCR analyses (data not shown).

TNFa and IL6 are up-regulated during inflammation. By qRT-

PCR analyses, increased TNFa and IL-6 mRNA levels were found

in untreated 4L;C* midbrains (Fig. 7E) and brain stems (data not

shown). TNFa levels were reduced by ,50% in IFG treated mice

at 44 days and remained at decreased levels until the terminal

stage (51 or 57 days). IL-6 mRNA levels remained elevated during

IFG treatment with either dose at 44 days and at terminal stages.

These results suggest that IFG attenuates the proinflammatory

responses of microglial cells and astrocytes in 4L;C* brain.

Histology
The 4L;C* mice display axonal degeneration in the brainstem

and spinal cord [17]. Axonal degeneration was found by H&E

staining of brain stem and spinal cord sections from the 4L;C*

mice untreated or treated with either 20 or 600 mg/kg/d IFG

(Fig. 8A). Ultrastructural studies showed axonal inclusions in both

treated and untreated 4L;C* mouse brain stems (Fig. 8B),

midbrain and spinal cord (data not shown). These findings show

that IFG treatment did not fundamentally change the brain

pathology in 4L;C* mice.

Discussion

Pharmacological chaperones are a class of small molecules that

enhance enzyme stability and can assist in trafficking of mutant

enzymes from endoplasmic reticulum to normal destination such

as the lysosome for GCase. IFG is a specific reversible GCase

inhibitor (Ki ,20 nM) of WT GCase [20]. The binding of IFG to

the active site of GCase locks the enzyme in its substrate-bound

conformation and thermodynamically stabilizes the enzyme [21].

IFG binding affinity for GCase is greater (Ki ,,12 nM) at the

neutral pH of the ER and lesser (Ki ,.50 nM) at the acidic

lysosomal pH (Liou and Grabowski observations). Importantly,

IFG enhances mutant activity in fibroblast having the N370S

[15,20] and the L444P GCase in lymphoid lines and fibroblasts

[16] (Liou and Grabowski unpublished). Using partially purified

N370S GCase, IFG stabilizes the enzyme to thermal denaturation

[21] (Liou and Grabowski unpublished). These findings suggest the

potential for IFG as a therapeutic mutant enzyme enhancer that

either improves enzyme stability or trafficking to the lysosome or

both. The latter would facilitate dissociation of the GCase-IFG

complex in the lysosome and allowing the GCase to bind its

natural substrates. The finding that GCase in IFG treated cells

have enhanced activity after dilution of the inhibitor implies that

the free GCase retains an enhanced conformation for some time

respectively. (B) GC and GS were accumulated in 4L;C* lung. IFG treatment did not reduce the substrate level in 4L;C* lung. Increased GC level was in
600 mg/kg/d IFG treated lung at terminal stage (Age was same as spleen in Fig. 5A). The data represent the mean6S.E. and analyzed by Student’s
t-test. *, p,0.05 (n = 3 mice). The GC and GS levels were normalized by tissue weight.
doi:10.1371/journal.pone.0019037.g005

Figure 6. Analyses of lactosylceramide and lactosylsphingosine levels by LC/MS. Lactosylceramide (LacCer) level was not decreased in IFG
treated 4L;C* cortex relative to the untreated mice. Increased lactosylsphingosine (LacSph) was detected in 600 mg/kg/d IFG treated cortex at 44
days. In the liver, LacSph level was not altered, but LacCer was increased in 600 mg/kg/d IFG treated mice at 44 days. The data represent the
mean6S.E. and analyzed by Student’s t-test. **, p,0.01; *, p,0.05 (n = 3 mice). The GSL levels were normalized by protein level in the tissues lysate.
doi:10.1371/journal.pone.0019037.g006
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after dissociation. Importantly, orally administered IFG distributes

to visceral organs and the brain [16], suggesting an improved

delivery compared to enzyme therapy that has little or no delivery

to lungs, bone marrow, lymphoid tissues, and brain [22].

However, with these promising in vitro assay results, in vivo

demonstration of improved substrate clearance and therapeutic

efficiency remained to be shown.

In this study, a neuronopathic GCase-based mouse model

having the V394L mutation was evaluated for IFG’s in vivo effect

on enzyme activity and substrate levels in CNS and visceral

organs. This model was generated by crossing V394L homozy-

gous to saposin C null mice. V394L homozygous mutant mice

have residual enzyme activity of 4–10% of WT levels that is

sufficient to maintain substrate flux and not present major GC or

GS accumulation or cause a significant abnormal phenotype

[23,24]. Since saposin C deficiency reduces GCase stability to

proteolysis [25], the 4L;C* mice have decreased 4L GCase and

develop a major neurological phenotype associated with

Figure 7. Proinflammation. (A) The brain stem and spinal cord sections were stained with anti-CD68 antibody, a macrophage-like marker. Positive
CD68 signals (brown) on microglial cells demonstrated proinflammation. IFG (20 or 600 mg/kg/d) treated 4L;C* showed decreases of
proinflammation at 44 days and increases of proinflammation at 59 or 64 days (terminal stage). (B) Enhanced GFAP staining (green) was in
untreated 44 days old 4L;C* brain stem. IFG (20 mg/kg/d) treated 4L;C* showed decreases of GFAP signal at 44 days. GFAP signal were increased at
terminal stage at 57 days. (C) GFAP protein in 44 days midbrain tissues was determined by immunoblot. Compared to untreated 4L;C*, GFAP levels
were decreased in 20 mg/kg/d IFG and further reduced in 600 mg/kg/d IFG treated midbrain. (D) Phospho-p38 in 44 days midbrain tissues was
analyzed by immunoblot. Increased Phospho-p38 was in untreated 4L;C* midbrain relative to WT. Phospho-p38 level was decreased in 20 mg/kg/d
IFG treated midbrain and nearly to WT level in 600 mg/kg/d IFG treated mice. (E) TNFa and IL-6 mRNA in midbrain was determined by qRT-PCR. TNFa
and IL-6 mRNA levels were increased by 35- and 13-fold in the untreated 4L;C* midbrain, respectively. In IFG (20 or 600 mg/kg/d) treated midbrain,
TNFa mRNA were reduced at 44 or 45 days and at terminal stage (51 or 57 days). IL-6 mRNA level was not altered by IFG treatment. The data
represent the mean6S.E. and analyzed by Student’s t-test (n = 3 mice, assayed in duplicate).
doi:10.1371/journal.pone.0019037.g007
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accumulation of GS and GC in the brain [17]. Importantly, the

saposin C-/- mice do not show proinflammation until after 6

months of age in the visceral or brain. In addition, the saposin

C-/- mice do not develop any phenotype or pathology until after

10 months of age. In saposin C-/- mouse model, absence of

saposin C reduced GCase protein by ,50% of WT levels and

led to activity reductions, but GC and GS levels are not

increased in the brain and visceral tissues [26]. The phenotype of

4L;C* mouse model mimics some neuronopathic variants of

human Gaucher disease. Here, IFG treatment of 4L;C* mice

enhanced the V394L GCase protein and activity levels up to

25% of WT levels in the livers and about 2-fold in the brain.

This was not accompanied by significant reductions in the

accumulated substrates, GC and GS. Indeed, substrate levels

increased under high dose IFG (600 mg/kg/d) treatment. This

inhibitory effect of IFG and the mutant GCase was clearly toxic/

lethal to developing pups as was evident when pregnant dames

were administered this dose. Lower doses (20 mg/kg/d) did not

have such toxic effect. To overcome such inhibitory effects, an

on/off regimen had been suggested [16]. Here, no differences

were found on the phenotype onset or life span between the on/

off and continuous treatments. Lacking significant reduction of

substrate levels by IFG in this model could be attributed to

inhibitory effect on GCase from locally excessive IFG, and/or

absence of saposin C’s protection.

Despite the lack of IFG effect on the GC and GS levels, the

treatment extended 4L;C*’s lifespan by .25%. Importantly, the

pathological microglial infiltration in the untreated mice was

delayed in the treated mice until the terminal stage. Thus, IFG

treatment slowed disease progression, but did not change the

ultimate disease outcome. Intriguingly, in the IFG treated mice,

proinflammation was suppressed in the middle stage of treatment

(44 days). However, the effect was lost in the terminal state and this

was not different from the end stage in untreated mice. Such

effects on the anti-proinflammatory responses were dose depen-

dent, suggesting specific effect of IFG. Proinflammatory responses

have been associated with neurodegeneration of other lysosomal

storages diseases [27], and anti-inflammatory treatments attenu-

ated the phenotype and extending lifespan [28,29,30]. The

molecular targets for IFG to have such anti-proinflammatory

effects are unknown. TNFa and IL-6 are the proinflammation

cytokines that are dependent on p38 signaling for their production

[18], which has implications in neurodegenerative diseases

[31,32]. IL-6 protein and mRNA levels remained elevated during

IFG treatment. However, the reductions of brain TNFa and

phosporylation of p38 with IFG treatment suggests that these

pathways are involved in the IFG mediated proinflammatory

attenuation. In cell lines, ceramide generated from GC through

the salvage pathway by enhancing GCase activity can reduce

p38-mediated decreases in IL-6 levels, which would be

Figure 8. Histopathology. (A) H&E stained brain stem and spinal cord sections showed axonal degeneration (arrow) in untreated 4L;C* and 4L;C*
mice treated by 20 or 600 mg/kg/d IFG. The tissues were collected at terminal stage. (B) Electron microscopy of brain stem. Axonal inclusions (arrow)
in brain stem were present in untreated 4L;C* (left panel) at 43 days, 20 mg/kg/d IFG treated 4L;C* mice at 55 days (middle panel) and 600 mg/kg/d
IFG treated 4L;C* mice at 62 days (right panel).
doi:10.1371/journal.pone.0019037.g008
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anti-inflammatory [19]. In the brain, the total levels of GC and

ceramide were not affected by IFG, and, therefore, the IL-6

pathway does not appear functional in this in vivo system.

However, p38 phosphorylation was significantly reduced suggest-

ing some connection. One intriguing possibility is that while the

total levels of GC and ceramide remained the same, their

subcellular distribution may have been different. Based on

chaperone function, we could speculate that levels of GC and

ceramide may have been partly corrected in the target organelle

(e.g. lysosome) but not in other compartments.

Alternatively, off-target effects of IFG might be evoked. IFG is

an iminosugar that is a member of the class of inhibitors for

glycosidases and glycosyltransferases. Iminosugars have therapeu-

tic applications in the diseases associated with the metabolism of

glycoconjugates to treat tumor metastasis, influenza virus infec-

tion, and lysosomal storage diseases [33,34]. Single oral dose of

600 mg/kg to the rat achieves IFG concentration of 1.7 mM in the

brain [16]. The continuous dosing of IFG (20 and 600 mg/kg/d)

used here could have achieved much higher concentration in the

brain than the Ki for GCase (20 nM). At such high concentrations,

IFG could inhibit other glycosidase involved in inflammatory

pathways, e.g. chitinase [35].

This study revealed the importance of in vivo analyses of the

effects of pharmacological small molecules on mutant enzyme’s

function. Clearly, the ultimate effects on substrate reductions are

essential for GCase or other lysosomal enzymes. Thus, ex vivo

results of increasing GCase activity and protein by chaperones are

insufficient to conclude that in vivo substrate degradation will occur

and need to be interpreted cautiously when evaluating additional

new compounds.

Materials and Methods

Materials
The following were from commercial sources: NuPAGE 4–12%

Bis-Tris gel, NuPAGE MES SDS running buffer (Invitrogen,

Carlsband, CA). 4-methyl-umbelliferyl-b-D-glucopyranoside

(4MU-Glc; Biosynth AG, Switzerland). Sodium taurocholate

(Calbiochem, La Jolla, CA). M-PER Mammalian Protein

Extraction Reagent and BCA protein Assay reagent (Pierce,

Rockford, IL). HybondTM-ECLTM nitrocellulose membrane and

ECL detection reagent (Amersham Biosciences, Piscataway, NJ).

Anti-fade/DAPI, Methyl green, ABC Vectastain and Alkaline

phosphatase kit II (Black) (Vector Laboratory, Burlingame, CA).

Rat anti-mouse CD68 monoclonal antibodies (Serotec, Oxford,

UK). Mouse anti-GFAP monoclonal antibody (Sigma, St. Louis,

MO). Rabbit anti-active p38 polyclonal antibody (Promega,

Madison, WI). IFG tartrate was provided by Amicus Therapeutics

(Cranbury, NJ).

Animal care and drug treatment
4L;C* mice generation was as described [17]. Briefly, 4L;C*

(V394L/V394L, saposin C-/-) mice were obtained from cross

breeding saposin C+/-, V394L/V394L male and female mice.

The strain background of 4L;C* was C57BL/6J/129SvEV. In utero

IFG treatment was accomplished by providing the pregnant

dames drinking water containing the requisite amount of IFG for

3–5 days prior to birth. In addition, mothers were kept on IFG

during the weaning period so that the pups had continuous

exposure to IFG via breast milk. Following weaning the mice were

administrated IFG in drinking water under various specified

regimens. Average daily water intake for each mouse is ,5 ml. At

postnatal day 7, cohorts were treated with IFG either 600 or

20 mg/kg/d. Body weight, cage activity, and neurological

phenotypes of the mice were monitored daily. The mice were

maintained in microisolators in accordance with institutional

guidelines under Institutional Animal Care and Use Committee

(IACUC) approval at Cincinnati Children’s Hospital Research

Foundation (CCHRF). IACUC at CCHRF approved the study

described in this manuscript with Animal Use Protocol number

8D10085. Other dosing schemes were as indicated in the text.

Histology and immunohistochemistry
After being anesthetized, the mice were perfused with saline

followed by 4% paraformaldehyde prior tissues dissection. The

tissues fixed in 10% formalin were processed for paraffin sections

and stained with hematoxylin and eosin (H&E). Paraffin sections

of brain and spinal cords were stained with mouse anti-GFAP as

an astrocyte marker. Biotinylated goat anti-mouse IgG and

streptavidin conjugated fluorescent 480 (green) were applied to

the sections. DAPI (blue) in antifade was used for cell nuclei

staining. Tissues fixed in 4% paraformaldehyde were processed for

frozen blocks. Frozen sections were stained with rat anti-CD68

monoclonal antibody [36]. Methyl green was used for cell nuclei

staining. Karnovsky’s fixative was used for ultrastructural studies.

Glycosphingolipid analyses
Glycosphingolipids (GSLs) in the brain and liver lysates were

extracted and analyzed by LC/MS at the Lipidomic Core at the

Medical University of South Carolina [37]. GC and galactosylcer-

amide in brain were separated for the LC/MS analyses. GC and

GS levels in the tissue were normalized to protein content in the

lysate.

GSLs in spleen and lung tissue (5 mg) were extracted [36], and

GC and GS analyses were carried out at CCHRF by ESI-LC-

MS/MS using a Waters Quattro Micro API triple quadrupole

mass spectrometer (Milford, MA) interfaced with Acquity UPLC

system. Nitrogen was used as nebulizer and argon was used as

collision gas. The source temperature was maintained at 120uC,

and the desolvation temperature was kept at 450uC. The drying

gas (N2) was maintained at ca. 800 L/h whereas the cone flow gas

was off. The multiplier was set at an absolute value of 650. Online

chromatographic separation was achieved using a Supelcosil-LC-

18-DB column (3363.0 mm i.d. 3.0 mm). Gradient elution with

methanol and water charged with ammonium acetate and formic

acid were employed.

Optimized parameters for GC and GS were determined with

individual standard compounds (Avanti Polar lipids, Inc.). For

quantification of GCs, the ESI-MS/MS was operated in the

multiple reaction monitoring (MRM) mode for monitoring

transition pair of the individual protonated precursor ions and

their common product ion m/z 264. GS was monitored by mass

transition m/z 462.3.282.4. Calibration curves were built for

C16, C18 and C24:1 GC using C12 GC as the internal standard.

Quantification of GCs with various fatty acid chain lengths was

realized by using the curve of each GC species with closest number

of chain length. The quantification of GS was based on the curve

using C8 GS as internal standard. The linear response for GCs

and GS was in the range of 50 pg–25 ng. The extracted spleen

and lung samples were suspended in methanol containing internal

standard and injected into the LC/MS. The GC and GS levels in

the spleen and lung were normalized to tissue weight.

Analyses of GCase activity
Tissues were collected from saline perfused mice, homogenized

in 0.25% Na taurocholate and 0.25% Triton X-100 and their

GCase activities were determined fluorometrically [24,38]. Assay

mixtures were incubated in the presence of CBE for 60 min (37uC)
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to correct for the presence of non-lysosomal GCase and b-

glucosidases that cleave 4MU-Glc. WT mice tissues were run in

parallel as control. Data were analyzed by Student’s t-test.

Immunoblots
Mouse liver GCase protein detection by immunoblot was as

described [36]. The amounts of GCase protein were quantitated

with ImageQuant software and normalized to b-actin in the same

samples. Midbrain tissues were homogenized in M-PER Mam-

malian Protein Extraction Reagent and subjected to electropho-

resis on NuPAGE 4-12% Bis-Tris gel. The protein was transferred

to HybondTM-ECLTM nitrocellulose membrane. GFAP protein in

the samples was reacted with anti-GFAP antibody [39]. Anti-

active p38 polyclonal antibody was used to detect Phosphorylated

p38 (Phospho-p38) in the samples resolved on 10% Bis-Tris gel

[19]. The signals were detected with ECL detection reagent

(GE Healthcare, Piscataway, NJ) according to manufacturer’s

instructions.

qRT-PCR
RNAs in midbrain or brain stem tissues were extracted using

TOTALLY RNA kit (Ambion Inc.) and purified with RNeasy

Mini kit (Qiagen). Reverse transcription of total RNA (1 mg) for

each sample was carried out using RT2 First Strand Kit (SA

Biosciences). Quantitative RT-PCR (qRT-PCR) was performed

on ABI Prism 7000 sequence detection system. The primers for

mouse TNFa, IL6, and GAPDH were from SA Biosciences. In

PCR mixtures, cDNA aliquots were analyzed using 400 nM of

each primer and RT2 Real-Time SYBR Green/ROX PCR

master mix (SA Biosciences). PCR amplifications were run in

duplicate as follows: 2 min at 50uC and 10 min at 95uC, followed

by 40 cycles of 15 s at 95uC and 1 min at 60uC. Relative

quantification of TNFa or IL6 referenced to internal control,

GAPDH, was analyzed by DDCt Analysis. The fold changes of

each gene were normalized by WT samples. Three mice from

each group were used and the experiments were repeated twice.
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