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A B S T R A C T   

In recent years, the residues of neonicotinoid insecticide in food and environmental samples have attracted 
extensive attention. Neonicotinoids have many adverse effects on human health, such as cancer, chronic disease, 
birth defects, and infertility. They have substantial toxicity to some non-target organisms (especially bees). 
Hence, monitoring the residues of neonicotinoid insecticides in foodstuffs is necessary to guarantee public health 
and ecological stability. This review aims to summarize and assess the metabolic features, residue status, sample 
pretreatment methods (solid-phase extraction (SPE), Quick, Easy, Cheap, Effective, Rugged, and Safe (QuECh-
ERS), and some novel pretreatment methods), and detection methods (instrument detection, immunoassay, and 
some innovative detection methods) for neonicotinoid insecticide residues in food and environmental samples. 
This review provides detailed references and discussion for the analysis of neonicotinoid insecticide residues, 
which can effectively promote the establishment of innovative detection methods for neonicotinoid insecticide 
residues.   

1. Introduction 

Neonicotinoid insecticides act as modulators at the nicotinic 
acetylcholine receptors (nAChR) of the insect’s central nervous system, 
and they are utilized extensively in different fields as crop protection 
and pest control. Because of their high efficacy against a wide range of 
insect pests (whiteflies, aphids, beetles, and some Lepidoptera species) 
and their versatility of use, neonicotinoid insecticides have become the 
most widely used insecticides in terms of the global market (above 25% 
in 2014) (Bass et al., 2015). 

Although they have the advantage of pest control and food produc-
tion, neonicotinoids have many adverse effects on human health, such as 
cancer, chronic disease, birth defects, and infertility (Han et al., 2018), 

and they have substantial toxicity to many non-target organisms 
(especially bees) (Ihara & Matsuda, 2018). Neonicotinoids are widely 
persistent in human surroundings: They extensively occur in soil (park 
and residential soil (Zhou et al., 2018), planting soil (Wang et al., 
2012b)), water (irrigation water (Hua et al., 2017), surface water (Yi 
et al., 2019), tap water (Ghiasi et al., 2020), etc.), drinking (fruit juice 
(Li et al., 2020), milk (Liu et al., 2015), wine (Rodríguez-Cabo et al., 
2016), etc.), foods (fruits (Khwankaew et al., 2018), vegetables (Wata-
nabe et al., 2015), grains (Wu et al., 2020b, etc.) and even biological 
samples (plasma and urine (Tadashi et al., 2014)), which dramatically 
increases the risk of the humans being exposed to neonicotinoid in-
secticides. Therefore, many countries and organizations have estab-
lished maximum residue limits (MRLs) for neonicotinoid insecticides in 
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fruits, vegetables, cereal products, and other edible products. However, 
the residue levels and detection rates of neonicotinoid insecticides are 
high in numerous reports (Yi et al., 2019; Sánchez-Bayo & Hyne, 2014; 
Li et al., 2020; Song et al., 2018; Dankyi et al., 2014), and in some cases 
residues are even over the MRLs (Zhang et al., 2020b; Wang et al., 
2012a). 

Therefore, it is crucial to monitor the residues of neonicotinoid in-
secticides. Since the early 1990s, when the first neonicotinoid (IMI) was 
introduced, numerous analytical methods have been devised to quantify 
neonicotinoid insecticides, such as high-performance liquid chroma-
tography (HPLC) with either ultraviolet (UV), diode-array-detector 
(DAD) detection or mass spectrometry (MS) detection, immunoassays, 
optical and electrochemical sensor. Moreover, efficient sample pre-
treatment methods are required to remove the matrix interferences and 
improve the enrichment factors, such as solid-phase extraction (SPE), 
liquid–liquid extraction (LLE), Quick, Easy, Cheap, Effective, Rugged, 
and Safe (QuEChERS), and numerous novel sample preparation 
methods. Eventually, these proposed analysis methods have been 
applied to extract and determine neonicotinoid insecticides in many 
sample matrices, including foodstuffs (fruits, vegetables, grains, and 
edible commodities), and environmental samples (water and soil). 

This review focuses on the articles about neonicotinoid insecticides 
analysis in foodstuffs and environmental samples. The main point of this 
review is to summarize and discuss the metabolism, residue status, 
sample pretreatment and detection methods for neonicotinoid in-
secticides analysis. This review maybe a valuable database to provide a 
reference for neonicotinoid insecticide residues analysis. 

2. Neonicotinoid insecticides and their metabolites 

Seven neonicotinoids are commercially available worldwide: IMI, 
ACE, THI, THX, CLO, DIN, and NIT. The neonicotinoids (Fig. 1.) are 
classified into three generations, including the chloropyridinyl com-
pounds (first generation, IMI, NIT, ACE, THI), chlorothiazolyl com-
pounds (second generation, THX, CLO), tetrahydrofuryl compounds 
(third generation, DIN), and other introduced neonicotinoids (IMID, 
FLO, PCD, SUL, FLU, GUA, CYC). Research have shown that some of 
their metabolites exhibit comparable or even higher toxicity than the 
parent compounds, such as CLO, which is 1.36 times as toxic as its 
parent THX to bees (Apis mellifera) (Iwasa et al., 2004); IMI-olefin, which 
is twice as toxic as the original IMI to bees (Apis mellifera) (Codling et al., 
2016); 4-hydroxy imidacloprid is as active as IMI to whitefly (Nauen 
et al., 1999). Moreover, they are highly persistent in the environment, 
with half-lives of several months or even years under natural conditions. 

The main metabolites of the most commonly used neonicotinoid in-
secticides that have been identified in agricultural and environmental 
samples are shown in Table 1. The frequent metabolic reactions included 
nitro reduction, demethylation, cyano hydrolysis, hydroxylation, olefin, 
guanidine and urea formation, ring-opening, etc. Moreover, some arti-
cles have discussed the metabolic pathways of neonicotinoid in-
secticides in plants (Motaung 2020) (spinach (Ford & Casida 2008), 
pistachio (Faraji et al., 2017), and onion (Thurman et al., 2013)) and 
environments (Faraji et al., 2017) (soil (Anjos et al., 2021; Ma et al., 
2021) and water (Carla et al., 2014; Matthew et al., 2016)) using high- 
resolution mass spectrometry (HRMS). There are differences in the 
metabolism, translocation, and accumulation of neonicotinoid metabo-
lites in various substrates. These differences mainly depend on the types 
of microbial and enzymes in the subjects. Hence, the metabolites of 
neonicotinoid insecticides are also of interest to many researchers, and it 
is also a hot spot for neonicotinoid insecticides analysis. 

3. Residue status and regulation 

Due to the widespread use and persistence of neonicotinoid in-
secticides, the detection rate and level are generally high. In this review, 
positive samples (excluding artificial and laboratory samples) from 45 
reports (including 19 countries and more than 30 matrices) were 
collected through the PubMed database. Table 2 lists the maximum 
residue levels of different neonicotinoid insecticides in various positive 
samples from different countries. Among them, ten neonicotinoid in-
secticides (IMI, ACE, NIT, THI, THX, CLO, DIN, IMID, SUL, FLU) and 
some metabolites are detected in food and environmental samples, and 
the most commonly detected neonicotinoid insecticides are IMI 
(22.5%), ACE (19.5%), THX (17.5%). Multiple neonicotinoid residues 
were present in honey/honey-based products, field soil, tea, and envi-
ronmental samples (water and soil) with high residue levels. Neon-
icotinoid insecticides were detected in honey or honey-based products 
from ten countries. Eight neonicotinoid insecticides (ACE, IMI, THX, 
THI, CLO, DIN, NIT, IMID) were simultaneously detected in honey 
samples from China, and the residue levels (0.041–0.120 mg/kg) were 
very high. SUL and FLU were also determined in honey samples from the 
US. Several metabolites of neonicotinoid insecticides have also been 
detected in edible foods. Overall, neonicotinoid insecticides exist widely 
in human surroundings. Thus, neonicotinoid insecticide residues in food 
and environmental samples should be widely concerned. 

Fig. 1. The market introduction of neonicotinoid insecticides.  
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Table 1 
Main metabolites of the most commonly used neonicotinoid insecticides.  

Neonicotinoid insecticides Metabolites Related articles 

Cotton (Wu et al., 2019), tea plant (Ge et al., 2020), casing soil, and mushroom (Zhang et al., 2020a), apple tree 
(Wu et al., 2020a), soil (Sharon et al., 2006), cardamom (Pratheeshkumar et al., 2016), tomato (Li et al., 2019) 

Cotton (Wu et al., 2019), tea plant (Ge et al., 2020), casing soil and mushroom (Zhang et al., 2020a), apple tree 
(Wu et al., 2020a), soil (Liu et al., 2011), cardamom (Pratheeshkumar et al., 2016), tomato (Li et al., 2019) 

Tea plant (Ge et al., 2020), soil (Sharma & Singh 2014), cardamom (Pratheeshkumar et al., 2016), tomato (Li 
et al., 2019), fruit juice (Li et al., 2020) 

Tea plant (Ge et al., 2020), soil (Sharon et al., 2006), cardamom (Pratheeshkumar et al., 2016), tomato (Li 
et al., 2019) 

Cotton (Wu et al., 2019), casing soil, and mushroom (Zhang et al., 2020a), soil (Sharma & Singh 2014), 
cardamom (Pratheeshkumar et al., 2016), tomato (Li et al., 2019) 

Tea plant (Ge et al., 2020), soil (Sharma & Singh 2014), tomato (Li et al., 2019) 

Metabolites Article (Simon-Delso et al., 2015; Casida 2011) 
Cotton (Wu et al., 2019), tea plant (Ge et al., 2020), apple tree (Wu et al., 2020a), fruit juice (Li et al., 2020), 
honey (Hou et al., 2019) 

Cotton (Wu et al., 2019), tea plant (Ge et al., 2020) 

Tea plant (Ge et al., 2020), soil (Liu et al., 2011) 

Tea plant (Ge et al., 2020), soil (Liu et al., 2011) 

Metabolites Review article (Carla et al. 2014; Simon-Delso et al., 2015; Casida 2011) 
Cotton (Wu et al., 2019), tea plant (Ge et al., 2020) 

Tea plant (Ge et al., 2020) 

(continued on next page) 
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Table 1 (continued ) 

Neonicotinoid insecticides Metabolites Related articles 

Tea plant (Ge et al., 2020) 

Tea plant (Ge et al., 2020) 

Tea plant (Ge et al., 2020) 

Metabolites Article (Simon-Delso et al., 2015; Casida 2011) 

NIT

19 metabolites Drinking water (Noestheden et al., 2016) 

THI THIAC

Soil (Liu et al., 2011) 

Metabolites Review article (Simon-Delso et al., 2015; Casida 2011) 

DIN UF

Peach tree (Xu et al., 2021), fruit juice (Li et al., 2020) 

DN

Peach tree (Xu et al., 2021), fruit juice (Li et al., 2020) 

Metabolites Article (Simon-Delso et al., 2015; Casida 2011) 

IMID 5-OH-IMID

Tea plant (Ge et al., 2020), lettuce, and celery (Tao et al., 2021) 

IMID-olefin

Tea plant (Ge et al., 2020), soil (Liu et al., 2011) 

Lettuce, celery, and radish (Tao et al., 2021) 

(continued on next page) 
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4. Sample pretreatment 

In order to satisfy the analysis concentration and eliminate the 
interference of the matrix, sample pretreatment is a vital step before 
instrument detection. Many traditional and novel extraction methods 
have been established for isolating neonicotinoid insecticides from 
different samples, such as solvent extraction (solid–liquid extraction, 
SLE; LLE), SPE, QuEChERS and other novel miniaturized and automated 
methods (liquid–liquid microextraction, LLME; dispersive solid-phase 
extraction, dSPE; magnetic solid-phase extraction, MSPE; solid-phase 
microextraction, SPME; matrix solid-phase dispersion, MSPD). In 
2021, Watanabe (2021) enumerated the sample pretreatment methods 
that used for neonicotinoid insecticides analysis. Unlike the above re-
view, this work focuses on the following two points: (1) critical factors of 
the commonly used sample preparation methods; (2) novel sample 
pretreatment techniques for the analysis of neonicotinoid insecticides. 

4.1. Solvent extraction 

Solvent extraction is based on the principle of similar phase disso-
lution. The extraction process involves the application of an extractant 
with high solubility for the target analytes from the sample. Due to the 
high polarity of neonicotinoid insecticides, solvents with high polarity 
can better dissolve and extract the analytes from matrices. For solid 
matrix, methanol and acetonitrile are ordinarily employed in neon-
icotinoid insecticides extraction for direct detection with enzyme-linked 
immunosorbent assay (ELISA), electrochemical and optical sensor 
detection, which have high recognition ability to the target analytes. As 
for chromatographic detection, acetonitrile aqueous solution is univer-
sally utilized to extract neonicotinoid insecticides in fruits and agricul-
tural products, and a further purification process is needed to reduce 
interferences of the co-extractives. LLE and LLME are frequently used to 

separate the neonicotinoid insecticides from liquid samples by using 
acetonitrile as the dispersant, CHCl3 or CH2Cl2 as the extractant, and the 
appropriate addition of NaCl can promote the extraction efficiency 
(Pastor-Belda et al., 2016). However, a highly selective method is 
needed to avoid the interference of co-extracts by using LLE and LLME, 
so there are limited reports on the direct application of LLE or LLME for 
the analysis of neonicotinoid insecticides. 

4.2. QuEChERS-like method 

QuEChERS is the preferred method for pesticide analysis, including 
neonicotinoids. At present, three QuEChERS protocols are typically 
used: (1) the original QuEChERS method which is performed with 
acetonitrile and anhydrous MgSO4/NaCl for extraction (Anastasiades 
2003), (2) the American standard (AOAC) which involves the use of 1% 
acetic acid (HOAc) in ACN and anhydrous MgSO4/NaOAc (AOAC Offi-
cial Method, 20070.01), (3) the European standard, EN 15662, which 
involves the use of acetonitrile and anhydrous MgSO4/sodium citrate 
and disodium citrate hydrogenate sesquihydrate (NF EN 15662, 
2009.01). For most food and environmental samples, the anhydrous 
MgSO4/NaCl or AOAC method can obtain satisfactory methodological 
results in the analysis of neonicotinoid insecticides. Moreover, a large 
number of reports have proved that citrate salts (EN 15662) provide the 
best recovery and relative standard deviations (RSDs) for the extraction 
of neonicotinoid insecticides in honey and honey-based products (Tan-
ner & Czerwenka 2011; Kammoun et al., 2019; Jovanov et al., 2014). 
For extraction solvent additives, although the addition of acetic acid had 
no benefit to the recovery of the target analytes, it allows to obtain a 
smaller RSD (Wu et al., 2020b). Moreover, the addition of triethylamine 
(TEA) can adjust the pH of the extraction solvent, which prevents the 
binding of 6-CNA with primary-secondary amine (PSA) (Giroud et al., 
2013). 

Table 1 (continued ) 

Neonicotinoid insecticides Metabolites Related articles 

IMID-3

IMID-4

Celery (Tao et al., 2021) 

IMID-5

Soil (Liu et al., 2011) 

Metabolites Article (Ma et al., 2021; Tao et al., 2021)  
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For sample clean-up, PSA (Jovanov et al., 2014) and PSA/C18 
(Kammoun et al., 2019) can satisfy the purification of a small amount of 
pigment. Agricultural products with high pigment can be de-pigmented 
by adding graphitized carbon black (GCB) (Karthikeyan et al., 2019). 
For tea samples, polyvinylpolypyrrolidone (PVPP) exhibits an excellent 

adsorption effect on the elimination of polyphenols, and a robust 
cationic exchange adsorbent (PCX) can efficiently remove alkaloids 
(Zhang et al., 2020b). In this study, PVPP/PCX replaced the conven-
tionally used PSA/C18 as the clean-up sorbents to reduce the matrix 
effects of neonicotinoid insecticides (ACE, IMI, THI, CLO, THX, NIT, 
DIN, IMID, and N-dm-ACE) from tea (oolong tea, black tea, green tea, 
white tea, yellow tea, and dark tea) by the effective elimination of 
interferences. 

4.3. Solid-phase extraction 

SPE is one of the most prevalent methods for pesticide extraction and 
clean-up of complex samples. It has plenty of merits, such as high 
enrichment factors, flexible selection of the sorbent, ease of use and 
speed. SPE has been widely used to extract neonicotinoid insecticides in 
various substrates. With the development of novel SPE techniques 
(dSPE, MSPE, MSPD, and SPME), SPE has become an attractive 
approach to isolate neonicotinoid insecticides from the complex 
matrices. 

4.3.1. Solid-phase extraction column 
Sorbent medium packed in the SPE column plays a vital role in 

obtaining high enrichment factors and clean-up efficiency. Table 3 
shows a partial list of the parameters of the packed SPE column for 
isolation of neonicotinoid insecticides in foodstuffs and environmental 
samples. Methanol and acetonitrile are generally applied to extract the 
homogenized solid sample because of their high dissolution power for 
neonicotinoid insecticides, low cost, and low toxicity. Anion exchanger- 
disposable pipette extraction and hydrophilic-lipophilic balance SPE 
cartridges (Oasis HLB SPE) can accomplish high-efficiency extraction of 
multiple neonicotinoid insecticides and their metabolites. 

Sorbent materials have a significant influence on extraction effi-
ciency. Many novel adsorption materials (methylamine modified gra-
phene (CH3NH-G), molecularly imprinted polymers (MIPs)) (Shi et al., 
2017; Tang et al., 2008; Yohannes et al., 2014) were encapsulated in 
empty columns as the SPE cartridges to perform the extraction process. 
Zhou et al. (2006) developed an SPE method by applying multi-walled 
carbon nanotubes (MWCNTs) as the packed sorbent for the enrich-
ment of three neonicotinoid insecticides (IMI, ACE, THX). MWCNTs 
have unique tubular structures of nanometer diameter and their large 
length-to-diameter ratio, which allows the target analytes to be pre-
served in the tubular structures of the MWCNTs in an optimal structural 
form. Various parameters that influence the extraction efficiency, such 
as flow rate, sample pH and sample volume, were evaluated. The packed 
SPE column could be reused over 200 cycles. These novel sorbent ma-
terials allow regeneration and reuse of the packed column and can be 
further modified with special functional groups to obtain highly selec-
tive adsorbents to extract the neonicotinoid insecticides. However, it is 
still challenging to simultaneously adsorb multiple neonicotinoid in-
secticides by using these novel sorbents. 

4.3.2. Dispersive solid-phase extraction 
The dSPE is different from the SPE of sorbent packed into a column, 

the extract solution is mixed and agitated with the dispersed adsorbent, 
and then separated by employing high-speed centrifugation. Because of 
the large specific surface area of the extraction sorbents, the equilibrium 
time between the sorbents and sample solution can be considerably 
shortened, and a small amount of adsorbent can satisfy the enrichment 
requirements. The parameters of the extraction procedure play a vital 
role in the enrichment efficiency. The pH of the aqueous solution in-
fluences the existing molecular form of analytes and the charge species 
and density on the adsorbent surface. The ion strength of the medium 
affects the ion-exchange interaction of the analytes towards the 
adsorption materials and the viscosity of the aqueous solution. Addi-
tionally, the types of extraction sorbent, elution solvent and the working 
time guarantee a sufficient extraction and elution of target analytes. 

Table 2 
The pollution status and regulation of neonicotinoid insecticides.  

Countries Matrices/max level (mg/kg or μg/L)EU MRLs (mg/kg) 

Austria Honey (Tanner & Czerwenka 2011) (ACE: 0.015− 0.05*, THI: 
0.027− 0.2, total: 0.027) 

Benin River water (Selahle et al., 2020) (total: 7.70) 
Japan River water (Selahle et al., 2020) (total: 0.025) 

Honey (Kammoun et al., 2019) (DIN: 0.002) 
Tea (Yoshinori et al., 2018) (ACE: 0.472− 0.05*, CLO: 0.233− 0.7, DIN: 
3.004, IMI: 0.139− 0.05*, NIT: 0.054, THI: 0.650− 10, THX: 0.910− 20, 
metabolites: 0.100) and tea beverage (ACE: 0.002, CLO: 0.002, DIN: 
0.059, IMI: 0.002, THI: 0.002, THX: 0.006, metabolites: 0.002) 

Canada River water (Selahle et al., 2020) (total: 5.95) 
China River water (Selahle et al., 2020) (total: 0.193), coastal bay water (Li 

et al., 2019) (total: 0.003), surface water (Yi et al., 2019) (IMI: 0.154, 
THX: 0.070, CLO: 0.038, ACE: 0.077, THI: 0.003, total: 0.321) and 
sediment (THX: 0.0002, CLO: 0.0002, ACE: 0.002, THI: 0.0004, total: 
0.003), sediment (Wang et al., 2020) (ACE: 0.167, THX: 0.133), field 
water (Zhang et al., 2017) (ACE: 0.023, CLO: 0.005, DIN: 0.007, IMI: 
0.193, THI: 0.002, THX: 0.002) 
Agricultural samples (Wen et al., 2011) (ACE/IMI: 3.6), brown rice ( 
Wang et al., 2012a) (THX: 0.102− 0.01*) and oat (THX: 0.028− 0.02*) 
and maize (IMI: 0.037− 0.1), chrysanthemum (Qin et al., 2020) (IMI: 
0.398− 2, ACE: 1.570− 3, THX: 0.017− 2), Cucumber (Zhang et al., 
2012) (ACE: 0.004− 0.3, THI: 0.006− 0.5) and (Lu et al., 2020) (ACE: 
0.3− 0.3), rice and soil (Du et al., 2020) (IMI: 0.723), dendrobium 
officinale (Zheng et al., 2015) (ACE: 0.068, IMI: 0.046, THI: 0.002, 
THX: 0.018, NIT: 0.008, CLO: 0.003) 
Honey (Song et al., 2018; Hou et al., 2019; Tao et al., 2019, Hui et al., 
2019) (DIN: 0.102, ACE: 0.068− 0.05*, CLO: 0.113− 0.05*, THI: 
0.042− 0.2, THX: 0.120− 0.05*, IMI: 0.072− 0.05*, IMID: 0.112, NIT: 
0.041), honey (Valverde et al., 2018) (THX: 0.144− 0.05*, CLO: 
0.045− 0.05*), honey (Gawel et al., 2019) (ACE: 0.13− 0.05*, THI: 
0.20− 0.2) 
Fruit juice (Li et al., 2020; Pastor-Belda et al., 2016; Liu et al., 2014) 
(ACE: 0.015, IMI: 0.005, CLO: 0.026, THI: 0.029, DIN:0.008, NIT: 
0.030, THX: 0.019, N-dm-ACE: 0.017, 5-OH-IMI: 0.014, DN: 0.012, 
UF: 0.014, total: 0.056) 
Tea (Zhang et al., 2020b; Liu et al., 2010; Hou et al., 2013) (ACE: 
5.319− 0.05*, IMI: 1.173− 0.05*, THX: 0.153− 20, CLO: 0.465− 0.7, THI: 
0.983− 10, NIT: 0.007, DIN: 0.022, N-dm-ACE: 0.141) 
Dietary samples (Li et al., 2019) (ACE: 0.051, IMI: 0.023, NIT: 
0.0002, DIN: 0.0004, THI:0.005, CLO: 0.002, total: 0.067) 
Peanut milk (Liu et al., 2015) (ACE: 3.69, THX: 8.67) 

Chile Honey (Raquel et al., 2018) (ACE: 0.078− 0.05*, THI: 0.063− 0.2, IMI: 
0.007− 0.05*, total: 0.148) 

US Honey (Giroud et al., 2013) (IMI: 0.068− 0.05*, THX: 0.002− 0.05*, CLO: 
0.001− 0.05*, SUL: 0.005− 0.05, FLU: 0.046, total: 0.061) 
River water (Selahle et al., 2020) (total: 3.29) 

France Beebread (Giroud et al., 2013) (IMI: 0.001− 0.05*, ACE: 0.171− 0.05*, 
THI: 0.177− 0.2, THX: 0.001− 0.05*, total: 0.177) 
Royal jelly (Giroud et al., 2019) (THX: 0.0002− 0.05*) 

Ghana Cocoa bean (Dankyi et al., 2016) (IMI: 0.036− 0.05*, ACE:0.012− 0.05*) 
Cocoa soil (Dankyi et al., 2014) (IMI: 0.251, CLO: 0.023) 

India Rice (Karthikeyan et al., 2019) (THX: 0.07− 0.01*) 
Ireland Honey (Kavanagh et al., 2021) (IMI: 0.018− 0.05*) 
New 

Zealand 
Maize field Soil (Pook & Gritcan 2019) (IMI: 0.014, CLO: 0.109) 

Philippines Field soil (Bonmatin et al., 2021) (total: 0.113) 
Serbia Honey liqueur (Jovanov et al., 2014) (CLO: 2.7− 0.05*) 
Spain Beewax (Yáñez et al., 2013) (THX: 0.153− 0.05*, ACE: 0.061− 0.05*, 

IMI: 0.039− 0.05*) 
Wine (Rodríguez-Cabo et al., 2016) (IMI: 0.014) 

Slovenia Honey (Mrzlikar et al., 2019) (ACE: 0.002− 0.05*, THI: 0.010− 0.2) 
South Africa River water (Selahle et al., 2020) (IMI: 0.109, ACE: 0.021, THI: 

0.008, CLO: 0.008) 
Thailand Five fruit juice (Vichapong et al., 2013) (IMI: 0.006, ACE: 0.0001, 

THX: 0.003, CLO: 0.00004, NIT: 0.001) 
Switzerland Milk (Lachat and Glauser, 2018) (IMI: 0.022− 0.1, ACE: 0.019− 0.2, 

THX: 0.020− 0.05, CLO: 0.023− 0.02, THI: 0.005− 0.05, total: 0.049) 

*Indicates the lower limit of analytical determination. 
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Several established dSPE for detecting multiple neonicotinoid in-
secticides have been listed in Table 4. Due to the high surface area, large 
pore volume, and excellent stability in the water and acid conditions, 
UiO-66 (Cao et al., 2018) was used as the dSPE sorbent to extract IMI, 
ACE, THI, THX, CLO in water samples. Moreover, the addition of amino 
groups on UiO-66 (UiO-66-NH2 (Xu et al., 2020)) may increase the 
electrostatic interactions between the sorbent and analytes, allowing 
efficient extraction of IMI and THX from fruit samples. The amount of 
adsorbent (≤50 mg) used for dSPE is significantly less than that of the 
SPE column, and the dSPE also has a satisfactory recovery. The main 
drawback of dSPE is the need for high-speed centrifugation to realize 
solid–liquid separation. 

4.3.3. Magnetic solid-phase extraction 
MSPE uses magnetic materials as extraction sorbents and isolates the 

sorbent from the sample solution by an external magnetic field. In 
general, the adsorption capacity of prepared magnetic sorbent for the 
target analytes is equal to or higher than that of the original non- 
magnetic sorbent. Therefore, MSPE not only has all the advantages of 
dSPE but also can solve the drawbacks of the high-speed centrifugation 
required by dSPE. Table 4 lists reports on the use of MSPE for extracting 
multiple neonicotinoid insecticides in water, fruit, vegetable, and milk 

samples. So far, graphene oxide (GO), metal–organic frameworks 
(MOFs), covalent organic frameworks (COFs), nanocellulose, porous 
porphyrin organic polymer and porous carbon have been modified by 
magnetic particles as magnetic extraction sorbents. Additionally, the 
frequently used extraction parameters for neonicotinoid insecticides are 
summarized as follows: (1) the amount of sorbent is less than 50 mg, (2) 
the pH value of the sample solution is controlled between 6 and 7, (3) no 
salt is added, (4) acetonitrile is used as the efficient eluent, (5) the 
volume of eluent is less than 1 mL, (6) many designed sorbents can be 
regenerated and reused. 

Adelantado et al. (2018) developed an ionic liquid-based magnetic 
nanocellulose microextraction to determine six neonicotinoid in-
secticides (IMI, ACE, THI, THX, DIN, CLO) in milk samples. In this work, 
the ionic liquid (C4MIMPF6) was quickly dispersed in milk samples in a 
cloudy form, and the neonicotinoid insecticides were extracted into the 
fine droplets of ionic liquid. Then, the ionic liquid containing target 
analytes from the sample solution was separated by using magnetic 
nanocellulose. It was found that N, O, S atoms on the analytes could 
promote the adsorption between neonicotinoid insecticides and mag-
netic nanocellulose. It also speculated that the differences in adsorption 
of analytes by magnetic nanocellulose depended on the Cl, O, and S 
atoms and Van der Waals. Additionally, the 3D structure of 

Table 3 
Overview of solid-phase extraction methods for the analysis of multiple neonicotinoid insecticides.  

Analyte Sample Extraction Clean-up Detection LOQ or LOD Recovery (%) Ref. 

DIN, NIT, THX, CLO, IMI, ACE, THI, 
FLO, IMI-olefin, IMI-urea, UF, N- 
dm-ACE, CPMF, CPF, TZMU, MNG, 
TFNA, THIAC, CPMA 

Fruits, 
vegetables, 
grains 

ACN (0.1% HOAc) PSA/GCB LC-MS/ 
MS 

10 μg/kg 91.1–105.5 Wu et al. 
(2020b) 

IMI, ACE, THX, THI, NIT, DIN, CLO, 
N-dm-ACE, THIAC, IMI-guanidine, 
IMI-urea, IMI-olefin, d-NO2-IMI 

Honey 1% acetonitrile (20% 
TEA) and ethyl acetate 
(8:2, v/v) in water 

Strata X-CW 
cartridge 

LC-MS/ 
MS 

0.1–0.5 ng/ 
mL 

88.6–109.2 Gbylik- 
Sikorska et al. 
(2015) 

IMI, IMI-olefin, 5-OH-IMI, IMI-urea, 
d-NO2-IMI-olefin, d-NO2-IMI, 6- 
CNA, DIN, UF, DN, THX, CLO 

Honey ACN (2% TEA) C18 SPE cartridge LC-MS/ 
MS 

0.2–15 ng/g 53.5–124.2 
(39.4–49.6 d- 
NO2-IMI) 

Kamel (2010) 

ACE, N-dm-ACE, CLO, DIN, FLO, 
TFNA, IMI, NIT, THI, THX 

Honey ACN PSA LC-MS/ 
MS 

2–10 μg/kg 60–114.2 Tanner & 
Czerwenka 
(2011) 

IMI, ACE, THX, THI, DIN, NIT, CLO, 
N-dm-ACE, 5-OH-IMI, UF, DN 

Fruit juice / Anion exchanger- 
disposable pipette 
extraction 

LC-MS/ 
MS 

0.01–0.1 ng/ 
mL 

71–104 Li et al. (2020) 

IMI, ACE, THX, THI, DIN, NIT, CLO, 
IMID 

Honey / Anion exchanger- 
disposable pipette 
extraction 

LC-MS/ 
MS 

1–10 μg/kg 72–111 Song et al. 
(2018) 

IMI, ACE, THX, THI, DIN, NIT, CLO Water / SDB-RPS SPE disk LC-MS/ 
MS 

0.25–0.5 ng/L 58.9–109.9 Li et al. (2019) 

IMI, ACE, THX, THI, CLO Wine / Oasis HLB SPE/ 
Florisil column 

LC-MS/ 
MS 

0.1–0.2 ng/ 
mL 

77–119 Rodríguez- 
Cabo et al. 
(2016) 

IMI, ACE, THX, THI, CLO Honey / Oasis HLB SPE LC-MS/ 
MS 

0.15–3.25 ng/ 
g 

70.7–113.6 Mrzlikar et al. 
(2019) 

IMI, ACE, THI, THX Bovine milk / Chem Elut 
cartridge 

LC-DAD 0.0–0.04 mg/ 
kg 

85.1–99.7 Seccia et al. 
(2008) 

IMI, ACE, THX, 6-CNA Water / Strata-X cartridges MEKC 0.342–2.672 
μg/g 

85.5–99.1 Ettiene et al. 
(2012) 

IMI, ACE, THX, THI, DIN, NIT, CLO, 
and 20 their metabolites 

Tea Water Presep RPP/ 
ENVIcarb /PSA 
cartridges 

LC-MS/ 
MS 

1.33–33.3 ng/ 
g 

32.9–116.7 Yoshinori et al. 
(2018) 

IMI, ACE, THX, THI, DIN, NIT, CLO, 
IMID 

Sediment CH3OH-water Oasis HLB SPE LC-MS/ 
MS 

0.031–0.091 
μg/kg 

75.5–98.5 Wang et al. 
(2020) 

PYM, IMI, ACE, THI, THX, DIN, NIT, 
IMID, CLO, FLO, TFNA, N-dm-ACE 

Royal-jelly, 
honey 

CH3OH (royal-jelly) Oasis HLB SPE LC-MS/ 
MS 

0.25–5.0 µg/ 
kg 

72.8–106.5 Hou et al. 
(2019) 

IMI, ACE, THX, THI, DIN, NIT, CLO Cucumber, 
eggplant 

Water Oasis HLB SPE and 
Envi-Carb/LC-NH2 

LC-DAD 0.003–0.019 
μg/g 

82–114 Watanabe et al. 
(2015) 

IMI, ACE, THX, THI, DIN, CLO Agricultural 
sample 

ACN Oasis HLB SPE LC-MS/ 
MS 

0.01–0.02 
mg/kg 

82.1–108.5 Wen et al. 
(2011) 

IMI, ACE, THX, THI, DIN, NIT, CLO Royal jelly- 
based products 

Water (10 mM 
ammonium formate) 

Strata ® cartridge LC-MS/ 
MS 

2.5–8.0 μg/kg 83–109 Valverde et al. 
(2015) 

DIN, NIT, THX, CLO, IMI, IMID, ACE, 
THI 

Tea ACN PVPP/GCB LC-MS/ 
MS 

10–50 μg/kg 66.3–108.0 Jiao et al. 
(2016) 

MEKC: micellar electrokinetic chromatography; ACN: acetonitrile. 
/: no solvent extraction. 

Y. Wang et al.                                                                                                                                                                                                                                   



Food Chemistry: X 15 (2022) 100375

8

neonicotinoid insecticides also affected the adsorption of analytes by 
magnetic nanocellulose. 

4.3.4. Other solid-phase extraction 
Other novel solid-phase extraction methods have also been used to 

enrich neonicotinoid insecticides in different matrices. Matrix solid- 
phase dispersion (MSPD) is a widely applied technique for extracting 
pesticides from solid samples. This method consists of mechanical 
mixing of the sample with the dispersing sorbents, which improves the 
complete disruption of the sample matrix. Hence, compared with other 
solid-phase extraction methods, MSPD can omit the step of applying the 
extraction solvent to obtain the crude extraction solution. Furthermore, 
the extraction and elution procedures are performed in an SPE column 
using the optimized solvent. Ettiene’s group (Ettiene et al., 2012) used 
C18 as an adsorbent in MSPD to extract neonicotinoid insecticides in 
soil. The acetonitrile/methanol (9:1, v/v) was the optimal eluent. After 
MSPD, the analytes (IMI, ACE, THX, 6-CNA) were detected by micellar 
electrokinetic chromatography (MEKC). It has good linearity, accuracy, 
and precision. The detection of limits (LOD) ranged from 0.17 to 0.37 
μg/g. The prepared MIPs can also be used as the dispersant of MSPD for 
selective extraction of neonicotinoid insecticide residues (Chen, 2012). 

SPME is a simple sample preparation method which combines 
extraction, separation and enrichment into a single step. In this method, 
the extraction sorbents are packed on a needle, and the constructed 
probes are used as the extraction device. The most significant advantage 
of SPME is the realization of real-time, online monitoring of neon-
icotinoid insecticide changes in plants under normal physiological 
conditions. The SPME can obtain the detection results of the same 
sample for different periods, which avoids batch-to-batch variation in 
samples. However, SPME also has disadvantages such as poor mechan-
ical stability, low fiber volume, and sensitivity issues due to fiber satu-
ration. A polyacrylonitrile/polyvinylpyrrolidone (PAN/PVPP) was 
applied as the SPME fiber for in vivo detection of seven commercial 
neonicotinoid insecticides in lettuce and soybean (Qiu et al., 2019) 
coupled with UPLC-MS/MS analysis. Neonicotinoids are polar com-
pounds which require the SPME probe to have good water-swelling and 

be biocompatible. Thus, the extraction fiber was prepared using PVPP 
and PAN. The in vivo assays provided the distribution characteristics of 
neonicotinoid insecticides over time in the same plants. What’s more, 
the water-swelling SPME probe could be reused for 20 cycles. 

These novel SPE methods (dSPE, SPME, MSPE, and MSPD) have been 
tried to separate neonicotinoid insecticides in various samples. MOFs, 
COFs, GO, and montmorillonite materials have demonstrated good 
extraction efficiency for neonicotinoid insecticides. The adsorption of 
neonicotinoid insecticides by these adsorbents is mainly dependent on 
the following aspects: (1) the adsorbents have a large surface area and 
suitable pore size, which allows neonicotinoid insecticides to be physi-
cally fixed in the cavities; (2) some special functional groups (aromatic 
ring, charge distribution, etc.) exist on the surface of the adsorbent, 
which can form interaction forces with neonicotinoid insecticides 
(pyridine ring or thiazole ring, halogen atoms and nitro functional 
group), such as π-bondings and Van der Waals forces; (3) MIPs can 
accomplish high selectivity adsorption of neonicotinoid insecticides by 
using them as the templates. 

Based on the above, many novel sorbent materials and sample pre-
treatment techniques have been applied to extract and separate neon-
icotinoid insecticides. These new methods simplify the operation 
procedures, reduce the consumption of organic solvents and the time of 
sample preparation, and have great potential to promote the develop-
ment of sample preparation. However, the application of these new 
methods to the analysis of multi-target analytes in complex matrices still 
needs further investigation and validation. At this stage, the conven-
tional SPE and QuEChERS are still the most popular choices for 
analyzing multiple neonicotinoid insecticides and their metabolites in 
different samples. 

5. Analysis method 

Various detection methods have been applied to determine neon-
icotinoid insecticides in foodstuffs and environmental samples. LC 
combined with UV, DAD, MS, immunoassay, optical, and electro-
chemical detection methods have been established to the analysis of 

Table 4 
Overview of dispersive and magnetic solid-phase extraction methods for the analysis of multiple neonicotinoid insecticides.  

Analyte Sample Extractant SPE Salt pH Reuse Elution Detection Recovery Ref. 

IMI, ACE, 
THI, THX, 
CLO 

Water / UiO-66 (40 mg) 15% 
NaCl 

9 10 3 mL acetone LC-MS/ 
MS 

73.7–119.0 Cao et al., 
(2018) 

IMI, ACE, 
THI, THX, 
CLO 

Fruit juice, 
water 

/ Montmorillonite (30 mg) 0.03 g 
Na2SO4 

4 4 0.15 mL 70% 
ACN 

HPLC- 
DAD 

– Khwankaew 
et al. 2018 

IMI, THX Fruit ACN UiO-66-NH2 (50 mg) / 9, 5 8 3 mL ACN 
(0.1% 
methanoic acid) 

UPLC- 
MS/MS 

86–107 Xu et al., 
(2020) 

IMI, ACE, 
THI, THX 

Lemon 
juice 

/ Magnetic 3D-graphene 
(15 mg) 

/ 7 20 0.3 mL acetone LC-UV 88.75–111.60 Liu et al., 
(2014) 

IMI, ACE, 
THI, THX, 
CLO, DIN 

Water / Fe3O4/GO/ZIF-67 (40 
mg) 

/ 7 – 1 mL ACN LC-MS/ 
MS 

83.5–117.0 Cao et al., 
(2017) 

IMI, ACE, 
THI, CLO 

Water / Magnetic porous 
porphyrin organic 
polymer (15 mg) 

– 7 5 1.13 mL ACN LC-DAD 91–99.3 Selahle et al., 
(2020) 

IMI, ACE, 
THI, THX 

Water, 
peanut milk 

/ Magnetic ordered porous 
carbon (10 mg) 

/ 6 – 0.6 mLACN LC-DAD 96.74–112.40 Liu et al., 
(2015) 

IMI, ACE, 
THI, THX, 
DIN, CLO 

Milk Ionic liquid 
(C4MIMPF6) 

Magnetic nanocellulose 
(50 mg) 

– – 1 0.5 mL ACN LC-MS 91.0–109.5 Adelantado 
et al., (2018) 

IMI, ACE, 
THI, THX, 
CLO, IMID 

Vegetable ACN Fe3O4@COF-(NO2)2 (10 
mg) 

/ 7 6 0.1 mL ACN LC-UV 77.5–110.2 Lu et al. (2020) 

IMI, ACE Fruit, water ACN/water 
(1:10, v/v) 
(fruit) 

CoFe2O4@SiO2/GO/ 
MIL-101(Cr)–NH2 (20 
mg) 

4% NaCl 6–7 20 1 mL TEA 
/ethanol (3:7, 
v/v) 

LC-DAD 82.13–102.27 Ghiasi et al., 
(2020) 

/: no solvent extraction; no salt addition. –: not mentioned in the articles. 
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neonicotinoid insecticides. Among these methods, LC-MS is the most 
commonly used method for simultaneously detecting multiple neon-
icotinoid insecticides and their metabolites; immunoassay methods can 
achieve rapid and specific detection of one or several neonicotinoid 
insecticides. 

5.1. LC and LC-MS 

LC-UV/DAD is widely used to detect the original neonicotinoid 

insecticides, and LC-MS enables simultaneous qualitative and quanti-
tative detection of multiple neonicotinoid insecticides and their me-
tabolites. For LC-DAD, the addition of KH2PO4 (0.05 M) in the water 
phase and small injection volume was influential in obtaining a sharp 
peak of NIT, which is highly water-soluble (Obana et al., 2002). For LC- 
MS, formic acid, acetic acid, ammonium formate, ammonium acetate or 
their mixtures are often used as mobile phase additives. As for the 
organic phase, acetonitrile can give a better response than methanol; in 
the inorganic phase, the addition of formic acid produced excellent peak 

Fig. 2. Chemical structures of neonicotinoid insecticides and hapten molecules.  
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shapes and stability than ammonium acetate and pure water (Wu et al., 
2020b). Jiao’s team (2016) investigated several different mobile phase 
additives (for instance, 0.1% and 0.3% formic acid (FA), 5 mM ammo-
nium formate, 5 mM ammonium formate with 0.1% formic acid, no 
additives, 0.02% formic acid, 0.02% acetic acid, 5 mM ammonium ac-
etate and 5 mM ammonium acetate with 0.1% formic acid), and the 
results showed that the signals of all neonicotinoids (DIN, NIT, THX, 
CLO, IMI, IMID, ACE, THI) in MRM were significantly increased and the 
peak uniformity was also improved when 5 mM ammonium formate was 
added to the water phase. They also found that the signals of all eight 
neonicotinoid insecticides were slightly suppressed when both 0.1% 
formic acid and 5 mM ammonium formate were added to the water 
phase. Likewise, Lachat and Glauser (2018) found that the addition of 5 
mM ammonium formate to the aqueous acidic mobile phase improved 
the intensity of five neonicotinoid insecticides (IMI, ACE, THI, THX, 
CLO). Collectively, the addition of ammonium formate to the mobile 
phase can increase the MS signals of neonicotinoid insecticides, but the 
enhancement levels are inconsistent on different instruments (Lachat & 
Glauser, 2018; Jiao et al., 2016; Kammoun et al., 2019). However, the 
effect of mobile phase additives on the MS signals of their metabolites 
has been rarely reported. 

5.2. Immunoassay 

Immunoassays have been proved to be the excellent analytical 
methods for rapid monitoring of neonicotinoid insecticides. It possesses 
such predominant benefits: satisfactory sensitivity and selectivity due to 
the characteristics of antibodies, obviating troublesome sample pre-
treatment procedures, adaptability to various matrices. Meanwhile, the 
most important influencing factor of the immunoassay is the properties 
of the proteins (antigens and antibodies). On one hand, the cross- 
reactivity of antibodies is unavoidable in immunoassay, especially 
endogenous components. On the other hand, the reagents used for 
immunoassay cannot affect the protein properties and have good solu-
bility for the analyte. 

To date, antibodies of several neonicotinoid insecticides have been 
developed, which promoted the advancement of neonicotinoid in-
secticides immunoassay. Fig. 2. lists the chemical structures of neon-
icotinoid insecticides (of which antibodies have been produced) and 
hapten molecules for immunization and assay development. For neon-
icotinoid insecticides with chloropyridine ring (IMI, ACE, and THI) and 
chlorothiazole ring (THX, CLO, and IMID), the design principle of 
hapten molecules is to replace the chlorine atom with a sulfur atom, and 
the chain is extended from the sulfur atom with two methylene groups 
and finally a carboxyl group is introduced. Besides, the branched 
structures of neonicotinoid insecticides can also be modified to form the 
hapten’s arm (Zhao et al., 2019). 

Enzyme-linked immunosorbent assay (ELISA) is a rapid and high- 
throughput screening method. The antibodies obtained from all of the 
above hapten molecules have been applied to establish the ELISA 
methods. The proposed methods have been widely used in different 
samples, including fruits, vegetables, and environmental samples. ELISA 
kits are commercially available for several neonicotinoid insecticides. In 
2013, Watanabe et al. (2013) published a review paper on the appli-
cation of ELISA for the detection of neonicotinoid insecticides. In this 
review, not only the design of the hapten molecules was elaborated, but 
also the sample pretreatment and the application of ELISA in various 
agro-environments matrices were summarized. After that, the developed 
antibodies were introduced to construct immunosensors, which signifi-
cantly improved the sensitivity and reduced matrix interference 
compared with traditional ELISA. 

Immunochromatographic assay (ICA) is a convenient and inexpen-
sive on-site analysis method. The most frequently used extraction sol-
vent is methanol and buffer solution. To date, ICA has been widely used 
for the rapid screening of neonicotinoid insecticides in fruit and vege-
table samples. Fang et al. (2019) group used a high affinity nanogold- 

biotinylated anti-IMI mono-antibody and nanogold-streptavidin probes 
dual labeling of the test lines on the strip to achieve signal amplification. 
The sensitivity of the proposed strip was significantly higher (10-fold or 
even 160-fold) than those of traditional ICA. Tan et al. (2020) developed 
two types of lateral flow immunoassay for IMI detection. The IMI mAb 
was conjugated to colloidal gold and Eu(III)-nanobeads, respectively. 
Both immunochromatographic methods obtained high sensitivity (0.02 
ng/mL) for the determination of IMI in Chinese leeks. Although the ICA 
method is convenient and low-cost enough, its biggest drawback is the 
false-positive results, which require further confirmation using instru-
ment detection. 

5.3. Optical detection 

At present, various optical sensors have been established for the 
detection of neonicotinoid insecticide residue in agricultural products, 
water and soil samples. It contains the following classes: surface plas-
mon resonance (SPR) (Ding et al., 2012), surface-enhanced Raman 
scattering (SERS) (Hassan et al., 2021), fluorescence resonance energy 
transfer (FRET) (Guo et al., 2020), fluorescence polarization immuno-
assay (FPIA) (Shim et al., 2009) and fluorescent detection (Liu et al., 
2020). 

SERS has been recognized as a promising tool for rapid and accurate 
detection in various fields. It has excellent sensitivity, non-invasive 
detection capability, and unique fingerprint effect. Gold and silver 
nanoparticles have been extensively used to develop the SERS methods 
for the detection of neonicotinoid insecticides in agricultural products. 
Mehedi et al. used reduced-graphene-oxide-gold-nano-star (rGO-NS) 
nano-composite (Mehedi et al., 2019) and flower-like silver nanoparticle 
(AgNP) (Hassan et al., 2021) to establish two SERS sensors for rapid 
detection of ACE in green tea. The SERS constructed by rGO-NS could 
provide higher sensitivity, and the pretreatment of green tea was more 
straightforward than the others. Zhao and colleagues (Zhao et al., 2020) 
developed a paper-based SERS based on 3D silver dendrites (SD)/elec-
tropolymerized molecular identifiers/silver nanoparticles (AgNPs) 
sandwich hybrid. In this assay, dendrite-like 3D silver materials and 
AgNPs formed the first and secondary enhancement of the amplification 
strategy, respectively, and molecular identifiers coated upon the SD 
layer as interlayer was used for IMI capture and enrichment. Owing to 
the strong identification ability of molecular identifiers, a simple sample 
pretreatment could meet the extraction of IMI in different samples 
(Chinese chives, crown daisy, soybean and cucumber). 

Fluorescence analysis is one of the most popular optical techniques. 
A large number of chemical materials (quantum dots (Hua et al., 2017), 
metal − organic framework (Liu et al., 2020), AuNPs (Qi et al., 2016), 
etc.) were applied for signal enhancement. In addition, molecularly 
imprinted and aptamer were utilized for the accurate recognition of 
neonicotinoid insecticides. At the same time, fluorometric sensors can 
help to provide ultra-high sensitivities. Even for solid samples, the ho-
mogenization supernatants can be directly analyzed using these sensors. 

5.4. Electrochemical detection 

The electrochemical method has drawn great attention due to its low 
cost, rapid response and high sensitivity. In recent years, different kinds 
of electrochemical sensors have been designed for neonicotinoid in-
secticides testing, such as cyclic voltammetry (CV) (Shi et al., 2020), 
different pulse voltammetry (DPV) (Ganesamurthi et al., 2020), square- 
wave voltammetry (SWV) (Oliveira et al., 2018). Electrodes with addi-
tional nanomaterial decorations can realize signal amplification for the 
detection of target analytes, which has significant contribution to the 
sensitivity improvement of analytical methods. Electrochemical sensors 
have high sensitivity (fM) and a wide linear range. Moreover, the sample 
preparation procedure for electrochemical detection is also simple 
enough, and the target pesticides can be directly detected or extracted 
by using organic solvents (methanol, acetonitrile, acetone, etc.) with 
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low toxicity or buffer solution (PBS or PB solution). A novel dual signal 
amplification strategy for aptasensor employing reduced graphene with 
silver nanoparticles and Prussian blue-gold nanocomposites was devel-
oped to detect ACE (Shi et al., 2020). The reduced graphene oxide-silver 
nanoparticles (rGO-AgNPs) provided a large specific surface area for 
subsequent material immobilization and amplified current signal, and 
Prussian blue-gold nanoparticles (PB-AuNPs) significantly improved the 
electrical signal output and sensitivity of the aptasensor. The analysis 
experiment exhibited a super-high sensitivity to ACE with a detection 
limit of 0.30 pM (S/N = 3), which met the requirements of the vast 
majority of daily leaf vegetable testing. 

Both optical and electrochemical sensors are powerful tools for 
signal amplification and significantly improving sensitivity, and their 
high selectivity does not require cumbersome sample pretreatment. 
However, the inability to simultaneously screen and quantify multiple 
neonicotinoid insecticides is their vital drawback, and these sensors 
need to be combined with special detection instruments. Thus, the 
miniaturization and multi-array chips of these sensors is a promising 
development for them to achieve rapid and on-site detection. 

6. Conclusions and challenges 

This review provides a concise summary of neonicotinoid in-
secticides and their metabolites and discusses the contamination status 
of neonicotinoid insecticides. Importantly, it presents an overview of 
recent progress in sample pretreatment technology and detection 
methods for the determination of neonicotinoid insecticide residues in 
foodstuffs and environmental samples. In addition, the vital conditions 
of each method have also been summarized. Among these methods, SPE, 
QuEChERS, LC-DAD and LC-MS/MS are the most ordinarily used 
methods for the extraction and detection of multiple neonicotinoid in-
secticides and their metabolites. 

For sample preparation, various novel sample preparation (dSPE, 
SPME, MSPE, and MSPD) methods have been designed and some 
extraction sorbents have also been applied for extraction and enrich-
ment of neonicotinoid insecticides from complex matrices. Compared 
with traditional sample pretreatment technologies, these methods use 
fewer adsorbents and organic solvents, convenient operation and low 
cost. Although these novel extraction methods have been applied to 
extract the analytes, the applicability and stability of the methods for a 
large number of real samples still need further investigation. At the same 
time, the screening of multiple neonicotinoid insecticides and their 
metabolites under the novel extraction procedures remains a challenge. 

For sample detection, LC-UV/DAD is usually used for the detection of 
original neonicotinoid insecticides, and LC-MS/MS is an irreplaceable 
method for simultaneous determination of neonicotinoid insecticides 
and their metabolites. Many other methods (immunoassay, optical and 
electrochemical detection) have been established to achieve sensitive, 
rapid, real-time and on-site detection. However, the repeatability and 
robustness of these methods still need further confirmation. Addition-
ally, applying of these techniques to achieve simultaneous detection of 
multiple neonicotinoid insecticides still presents significant challenges. 
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