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Summary
Background: Many of an individual‘s his-
torically recorded personal measurements 
vary over time, thereby forming a time series 
(e.g., wearable-device data, self-tracked fit-
ness or nutrition measurements, regularly 
monitored clinical events or chronic condi-
tions). Statistical analyses of such n-of-1 (i.e., 
single-subject) observational studies (N1OSs) 
can be used to discover possible cause-effect 
relationships to then self-test in an n-of-1 
randomized trial (N1RT). However, a prin-
cipled way of determining how and when to 
interpret an N1OS association as a causal ef-
fect (e.g., as if randomization had occurred) 
is needed.
Objectives: Our goal in this paper is to help 
bridge the methodological gap between risk-
factor discovery and N1RT testing by intro-
ducing a basic counterfactual framework for 
N1OS design and personalized causal analy-
sis.
Methods and Results: We introduce and 
characterize what we call the average period 

treatment effect (APTE), i.e., the estimand of 
interest in an N1RT, and build an analytical 
framework around it that can accommodate 
autocorrelation and time trends in the out-
come, effect carryover from previous treat-
ment periods, and slow onset or decay of the 
effect. The APTE is loosely defined as a 
contrast (e.g., difference, ratio) of averages 
of potential outcomes the individual can the-
oretically experience under different treat-
ment levels during a given treatment period. 
To illustrate the utility of our framework for 
APTE discovery and estimation, two common 
causal inference methods are specified with-
in the N1OS context. We then apply the 
framework and methods to search for esti-
mable and interpretable APTEs using six 
years of the author‘s self-tracked weight and 
exercise data, and report both the prelimi-
nary findings and the challenges we faced in 
conducting N1OS causal discovery.
Conclusions: Causal analysis of an individu-
al‘s time series data can be facilitated by an 
N1RT counterfactual framework. However, 
for inference to be valid, the veracity of cer-
tain key assumptions must be assessed criti-
cally, and the hypothesized causal models 
must be interpretable and meaningful.
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1.  Introduction
Celia wants to know if and how exercise 
affects her body weight. She‘s recorded her 
weight and physical activity (e.g., step 
count) over the past couple of years. She 
looks at her data, and asks, “Is there evi-
dence that changing my average level of 
physical activity and maintaining it at that 
level for a given period of time would af-
fect my weight? If so, how?”

This example illustrates one of many per-
sonal research questions this paper may 
help answer by introducing a basic frame-
work for personalized causal analysis. 
While particular techniques for causal dis-
covery and effect estimation will later be 
presented and applied to the author‘s own 
health data, we will remain agnostic to the 
actual techniques chosen. Rather, these 
methods will be used to demonstrate how 
our framework allows the analyst to state 
causal assumptions precisely, thereby 
strengthening analytical decisions and con-
clusions in single-subject research.

Clinical or biomedical research con-
ducted on one subject or individual is often 
called a single-subject, single-case, or 
n-of-1 study, and an individual who under-
takes an n-of-1 study on herself is said to 
self-track her own data. Such studies have 
been described as idiographic (i.e., popu-
lation-of-one) in the psychological litera-
ture, in contrast to a nomothetic (i.e., 
population-of-many) study that character-
izes a group of individuals [1]. N-of-1 
studies are used in a variety of fields, in-
cluding clinical trials and biomedical re-
search [2–7]. Guidance on n-of-1 trial im-
plementation and analysis has been codi-
fied by various investigators [8–11], and by 
the U.S. Department of Health and Human 
Services Agency for Healthcare Research 
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and Quality (AHRQ) [12]. N-of-1 trials 
have even been offered as a clinical service 
in Australia, Canada, and the United States 
[13, 14]. In the field of mobile health 
(mHealth), Chen et al (2012) [15] pro-
posed that mobile or wearable devices may 
help facilitate implementation of n-of-1 
trials. Barr et al (2015) [16] are currently 
running a randomized controlled trial 
(RCT) to assess the feasibility and effective-
ness of helping chronic-pain patients and 
their clinicians conduct n-of-1 trials using 
a smartphone app. Both AHRQ and a re-
cent Nature article have even included 
n-of-1 trials under “personalized medicine” 
[12, 17].

While statistical methods for causal in-
ference have largely been developed for 
n-of-1 randomized trials (N1RTs), to date 
there are few if any such methods for 
n-of-1 observational studies (N1OSs). We 
define an N1OS as a non-randomized 
single-subject study with the two-part goal 
of discovering both causal effects and pos-
sible N1RT treatments for subsequent test-
ing of putative effects. Toward this end, we 
propose that the randomization-based ap-
proach of the Neyman-Rubin-Holland 
counterfactual framework [18–20] can be 
used to analyze self-tracked N1OS time 
series. In this literature, marginal structural 
models and the time-varying g-formula 
have been extensively developed for ana-
lyzing time-varying effects in longitudinal 
health data [21–23]. However, these two 
methods are used to conduct inference on 
average effects over a target population of 
many individuals, and hence may not 
readily apply to N1OSs. Randomized study 
designs more closely related to N1RTs (that 
may therefore be better suited to develop-
ing N1OS methods) include micro-ran-
domization trials (MRTs) [24] and sequen-
tial multiple assignment randomized trials 
(SMARTs) [25], which are commonly used 
to develop just-in-time adaptive interven-
tions (JITAIs) [26]. While these approaches 
focus on optimizing personalized treat-
ments by finding the best set of treatment 
rules (i.e., rather than treatments) appli-
cable to each individual, they still rely on 
averaging over a set of such individualized 
treatment regimes. (A MRT or SMART 
might be understood as a series of N1RTs 
[12].) 

Causal inference methods that use only 
a single unit’s time series data do provide 
some direction. Aalen and Frigessi (2007) 
[27] and Aalen et al (2012) [28] proposed a 
mechanism-focused approach, rather than 
a counterfactual one. White and Kennedy 
(2009) [29] demonstrated equivalences be-
tween Granger and structural causality 
under a key assumption of conditional ex-
ogeneity, and derived useful methods for 
causal analysis of time series. White and Lu 
(2010) [30] drew formal connections be-
tween Granger and counterfactual-based 
causality, and Lu et al (2017) [31] showed 
how these concepts applied to the setting of 
cross-sectional and longitudinal data 
analysis. A good survey of relevant causal 
inference time series concepts can be found 
in Eichler (2012) [32], Eichler and Didelez 
(2012) [33], and Eichler (2013) [34], who 
connect the theory behind these ideas to 
those of various causal graphing systems. 
Unfortunately, almost all of these develop-
ments focus on econometric or financial 
applications with no direct analogue to the 
health settings of N1RTs. 

The goal of this paper is to help bridge 
the methodological gap between risk-fac-
tor discovery and N1RT testing by intro-
ducing a basic counterfactual framework 
for N1OS design and analysis. The rest of 
this paper is organized as follows. In Sec-
tion 2, we briefly review the counterfactual 
framework. We then define an idiographic 
causal estimand called the average period 
treatment effect in Section 3, present a 
framework for its specification and analy-
sis, and specify two common estimation 
methods within this framework. In Section 
4, we estimate average period treatment ef-
fects relevant to the author’s weight and 
physical activity data using our framework. 
We conclude in Section 5 with a brief dis-
cussion, and we propose a basic procedure 
for performing n-of-1 causal discovery. 
Further notes and derivations are provided 
in an online Appendix. All analyses were 
conducted in R version 3.3.1. 

2 . Counterfactual-based 
Causal Inference

Throughout this article, we use the follow-
ing notation. Random variables and fixed 

values are written in upper-case and lower-
case, respectively. Let p(A = a) denote the 
probability mass or density of random vari-
able A at a, with shorthand p(a). Let {(A)} 
denote a stochastic process; i.e., a time 
series of random variables. For any index j, 
let {(j)} denote a sequence. For any random 
variable B, let B|A denote the event B con-
ditional on A, with shorthand B|a for B|A = 
a. Let B   A denote statistical indepen-
dence of B and A.

Suppose we have a scalar-valued func-
tion of random variables, as are specified in 
structural equation models [35]. Let the left 
side (i.e., area to the left of the equal sign) 
consist of an outcome or output variable, 
and let the right side consist of three com-
ponents: predictors, a completely random 
zero-mean error or disturbance term ξ that 
is independent of all predictors, and a func-
tion relating these two sets of input vari-
ables to the outcome, with the error term 
suppressed in the function notation unless 
needed for conceptual clarification. Sup-
pose this function is constrained such that 
all inputs must temporally occur before the 
outcome. We define a data-generating pro-
cess (DGP) to be such a time-constrained 
function (e.g., the univariate structural 
equations in White and Lu, 2010 [30]), and 
call the structural equation expression of a 
DGP a data-generating model (DGM).

Counterfactuals have been broadly de-
fined in terms of different types of inter-
ventions [36, 32]. We take a statistics-based 
approach, and consider the types of effects 
identifiable from randomized interventions 
(i.e., randomly selected, assigned, or other-
wise manipulated) [18–20]. Such causal ef-
fects are defined in terms of statistical as-
sociations between a treatment (or inter-
vention) and an outcome if the treatment 
mechanism is ignorable (i.e., hypothetical 
effects at different treatment levels remain 
unchanged regardless of actual treatment 
assignment). For example, ignorability is 
implied if the treatment is randomized. In 
this paper, we only consider the case of ig-
norability implied by randomization, and 
henceforth write “treatment” in place of 
“randomized treatment”. We define an ex-
posure to be a measured phenomenon that 
may be considered a treatment; i.e., all 
treatments are exposures, while the con-
verse does not hold in general. Henceforth, 

⊥
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we use “causal effect”, “treatment effect”, 
and “effect” interchangeably.

Let Y = gY(X,U) denote the DGP of ob-
served outcomes, where X represents an 
exposure, and U represents the set of all 
other (possibly unobserved) outcome pre-
dictors. For a given individual, consider a 
hypothetical value of Y under exposure 
level a and predictor values U if X and U 
are independent. We formalize this concept 
by defining the counterfactual (i.e., 
counterfactual outcome) of Y correspond-
ing to X = a and U as

  , 
where a represents a fixed value that is not 
a predictor. Under causal consistency (CC), 
the observed and counterfactual outcomes 
under X = a are identical; i.e.,

  . 

The term “counterfactual” is used because 
if X = a is in fact observed, then observa-
tion of Ya‘ for any a‘ ≠ a is “counter to fact” 
(i.e., Ya‘ cannot be observed under CC). A 
counterfactual is also called a potential out-
come because it is a potentially observable 
outcome resulting from an exposure.

Each individual i has the counterfactual 
  at U = ui. A 
contrast between   and 
 , where E(·) denotes the expec-
tation function, is called an individual 
treatment effect (ITE). This is the desired 
estimand of counterfactual-based causal 
inference (hereafter, causal inference). Un-
fortunately, an ITE is generally not identifi-
able because for any individual, we cannot 
simultaneously observe both   and 
  (i.e., the fundamental problem of 
causal inference [20]), much less estimate 
their expectations. Now let E(Ya(u)) repre-
sent the average or mean counterfactual 
corresponding to a taken over the popu-
lation of individuals with U = u, often con-
ceptualized as the expected outcome if 
everyone in such a population is random-
ized to treatment a. While not directly ob-
servable due to the fundamental problem, 
this quantity may be consistently estimated 
if U is either fully observed, or partly ob-
served and treatment is randomized (see 
▶ Appendix equations (1) and (3)). Hence, 
comparisons or contrasts of E(Ya(u)) and 

E(Ya‘(u)) may be of interest.
Many authors introduce the counterfac-

tual as Ya, with attendant contrasts between 
E(Ya) and E(Ya‘) called average treatment 
effects (ATEs). These are often the primary 
estimands of interest because in nomo-
thetic studies with randomized interven-
tions, all other outcome predictors U need 
not be observed in order to consistently es-
timate E(Ya). (see paragraph below on esti-
mation). In particular,

  
averages over all other true outcome pre-
dictors, as does E(Ya) by implication. This 
approach is particularly useful when there 
is little heterogeneity in the treatment ef-
fects across, for example, settings, contexts, 
groups, or individuals, that can be formal-
ized using U. (Dependence of the effects on 
U is often the main interest in the literature 
on heterogeneous treatment effects, which 
focuses on conditional ATEs [37].) If E(Ya) 
≠ E(Ya‘) for some a‘ ≠ a, then X is said to 
have an ATE on Y, and we will call X a 
causal predictor (i.e., cause) of Y. For 
example, if treatment is randomized as X = 
0, 1, then possible ATEs include E(Y1) − 
E(Y0) and E(Y1)/E(Y0). If all DGP predic-
tors are causal, we will call this DGP a 
causal process, and its corresponding 
DGM a causal model.

Estimation of any of these quantities, 
however, requires observed (i.e., not 
counterfactual) outcomes. Let R = 1 denote 
the implementation of randomization to X 
= a, and let R = 0 denote the absence of 
randomization (i.e., corresponding with 
the ecological, natural, or otherwise undis-
turbed state of X). Suppose the outcome 
DGP might vary depending on whether or 
not X is randomized, denoted as Y = 
gY(X,U,R). Then the same outcome will be 
generated whether or not X is randomized 
if gY(X,U,R,ξ) = gY(X,U,ξ). We will refer to 
this equivalence as data-generation invari-
ance (DGI) because it describes invariance 
of the DGP to randomization status. Im-
portantly, note that if DGI holds, then 
p(y|x,u,r) = p(y|x,u), while the converse is 
not true in general. If DGI and CC both 
hold, then E(Ya) can be identified using ob-
served outcomes if R = 1 (see ▶ Appendix 
equations (1)-(2)). If R = 0 (as in Section 
3.3), then p(u|r) = p(u) is also needed to 

identify E(Ya). We will call this last condi-
tion distributional invariance (DI); i.e., all 
other outcome predictors U are indepen-
dent of the randomization status of X. (In 
the ▶ Appendix, we relate our conceptual 
approach and assumptions to the standard 
ITE-based statistics concepts of causal con-
sistency and conditional ignorability/ex-
changeability.)

All observations in an N1OS belong to a 
single individual, and in this sense consti-
tute a single context. Hence, in beginning 
to develop counterfactual theory for single-
subject causal analysis, we will focus on 
some individualized quantity analogous to 
the ATE; one that averages over other out-
come predictors specific to that individual 
throughout the timespan of her self-track-
ed observations. Future methods can and 
should be developed to fashion conditional 
ATEs that more properly account for the 
varied sub-contexts within an individual’s 
own experiences (e.g., seasonality). Finally, 
note that while we can rely on randomiza-
tion to enable estimation of an ATE, we 
generally consider corresponding DGMs 
that are fit in practice to be, at best, ap-
proximations to the hypothesized true 
causal mechanism (i.e., the true and un-
known processes by which a cause pro-
duces an effect). 

3.  Average Period 
 Treatment Effect

In this section, we define an average treat-
ment effect for analytical use in both ran-
domized and non-randomized idiographic 
settings, and introduce a framework for 
specifying and analyzing this average ef-
fect. Two common estimation methods are 
specified within this framework, and sta-
tionarization is briefly illustrated as a way 
to model confounding. We rely on formal-
isms similar to the general dynamic struc-
tural equations of White and Kennedy 
(2009) [29] and White and Lu (2010) [30], 
Section 22.5 in Eichler (2012) [32], and 
Section 5 of Eichler (2013) [34]. Through-
out, we assume that DGI and CC hold.

( ) ( )= ⊥Y U g U X U,a
a
Y

ξ ξ( ) ( )= = ⊥g X a U g U X U, , , ,Y
a
Y

ξ( ) ( )= ⊥Y u g u X U, ,i
a

i a
Y

i i

( )( )ξE Y ui
a

ii

( )( )ξ
ʹE Y ui

a
ii

( )Y ui
a

i

( )ʹY ui
a

i

( ) ( )( ) ( )= = ⊥ = ⊥Y E Y U X a X U E Y U X U,a
U

a
U

a
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3.1  Definition

Let {(X,Y)} represent a stochastic process. 
The standard N1RT is a randomized cross-
over design used to assess an ATE of X on 
Y. However, methods for conducting infer-
ence regarding ATEs are almost exclusively 
nomothetic. In particular, researchers gen-
erally wish to draw inference on the mean 
counterfactual taken over a population of 
individuals, as mentioned previously. Be-
cause there is only one individual in an 
n-of-1 study, the ATE definition in this 
idiographic setting needs to be modified. 
The definition that follows is motivated by 
standard N1RT concepts [12]. 

In the basic N1RT, a two-level treatment 
X is randomized at each time period t, de-
fined as a set of measurement time points. 
Let t(j) denote a time point within period t 
for j = 1, …, mt. Treatment level is random-
ized per period only at t(1), and is other-
wise kept constant; i.e., randomized assign-
ment Xt(1) = a implies Xt(j) = a for j ∈ (2, …, 
mt) if mt > 1. We will call a treatment ad-
ministered in a period consisting of only 
one time point (i.e., mt = 1) a point treat-
ment, and write t instead of t(1) in such 
cases; otherwise, a treatment may be called 
a period treatment for clarification. Con-
sider the simple case of a point treatment, 
where Yt+1 has a time-invariant association 
with Xt and other predictors Wt, there is no 
autocorrelation or time trend in {(W)} 
(e.g., a white noise process, which is a 
strictly stationary time series), and 
{Xt‘,Wt‘} Yt+1 for all t‘ < t. Suppose each 
outcome Yt+1 is independent of and ident-
ically distributed with all other outcomes, 
conditional on {Xt,Wt} (where this relation-
ship is constant over time). Hence, the out-
come DGP is Yt+1 = gY(Xt,Wt). There is no 
autocorrelation in {(Y)}, and because 
p(yt+1), p(xt), and p(wt) are constant over 
time, no time trend exists in {(Y,X,W)}.

Since we are interested in the effect of Xt 
on Yt+1, it is reasonable to think of the pair 
{Xt,Yt+1} as an idiographic unit of observa-
tion. Let   represent the counterfactual of 
Yt+1 corresponding to Xt = a. We define a 
period treatment effect (PTE) to be a 
contrast between   and  for a‘ ≠ a, 
and call a contrast of  and 
 an average period treatment effect 
(APTE). The APTE is the estimand of in-

terest in an N1RT. This mean counterfac-
tual represents the expected outcome if the 
individual is randomized to treatment a at 
t, but not over all time points, as would be 
directly analogous to the interpretation of 
an ATE mean counterfactual (i.e., taken 
over all individuals). This is an important 
distinction, because randomization to a at 
all time points may violate the DI assump-
tion, which is a key condition needed for 
identification of an APTE in the presence 
of confounding, as discussed in Section 3.3. 

In our simple case, there is no carryover 
of effects from any past periods. There is 
no slow onset/activation of the APTE (e.g., 
due to delayed uptake of the treatment), 
and neither is there any slow decay/deacti-
vation. Both {(X)} and {(Y)} are strictly 
stationary processes integrated of order 0 
[38], thus permitting straightforward esti-
mation of the APTE.

3.2  N-of-1 Counterfactual 
 Framework

We present the following framework for 
specifying an APTE that allows for auto-
correlation or a time trend in the out-
comes, or carryover or slow onset/decay of 
the effect. Suppose observations or 
measurements occur at evenly spaced time 
points indexed by j. For any random vari-
able B, let  denote the his-
tory of B at j+1. Let Y and X denote the 
outcome and treatment of interest, respect-
ively, where X is a categorical variable. Sup-
pose  in general, where 
 represents all other predictors of Yj+1. 
Likewise, suppose in general that 
 , where  represents 
all other predictors of Xj and  .

We first distinguish between a treatment 
and an exposure. If Rj-1 = 1, then Xj has no 
predictors by definition. We denote this 
mechanistic relationship by re-specifying 
the DGP as  ; in par-
ticular,  . 
For example, suppose randomization to 
either treatment or control occurs at 
every time point; i.e., Xj = 1, 0, respectively. 
Then one reasonable DGM is 
 , where I(b) = 
1 if expression b is true and I(b) = 0 other-
wise, and ξj−1 is uniformly distributed be-
tween 0 and 1.

Treatment periods are constructed as 
follows. Partition {(j)} into {(t)} such that 
t = (t(1), …, t(mt)), where treatments in 
period t are observed at each point t(j); i.e., 
{(t)} is a structured time series. Let Xt(j) de-
note the categorically defined treatment at 
time point j = 1, …, mt in period t. Ran-
domization for period t can be imple-
mented at {Rt(j-1) : j ∈ (1, …, mt)}. The last 
outcome for period t occurs at t(mt+1) ≡ 
t+1(1), and the outcomes for treatment 
period t are {Yt(j+1) : j ∈ (1, …, mt)}. Our 
general formulation permits randomiza-
tion of multiple treatments within a period; 
e.g.,  could represent a dynamic 
treatment regime [39] in a JITAI, MRT, or 
SMART. However, we will only consider 
the standard N1RT case where only the 
first treatment is randomized, and then 
held constant for the rest of the period; i.e., 
Rt(0) = 1 and Rt(j-1) = 0 for j ∈ (2, …, mt), and 
implies Xt(j) = a for j ∈ (1, …, mt). In this 
way, an N1RT might be a type of cluster-
randomized trial in which a period consti-
tutes a cluster, or perhaps a kind of non-
adaptive MRT with period treatments.

Suppose each treatment effect is 
bounded, and may stabilize or destabilize 
over time after treatment introduction. We 
define the association (e.g., coefficient in a 
linearized model) of an outcome with a 
predictor as stable if their associations at 
{t(j), t‘(j)} are identical for any pair of peri-
ods {t, t‘ ≠ t} at any j. If all outcome-predic-
tor associations are stable, then 
 for exactly equal input values 
at {t(j), t‘(j)}, and we write  instead. 
We define the association of an outcome 
with a predictor as period-stable if their as-
sociations at {t(j), t(j‘)} are identical for any 
pair of points {j, j‘ ≠ j} at any t. If all stable 
outcome-predictor associations are period-
stable, then  for exactly equal 
input values at {j, j‘}, and we write gY(·) in-
stead. Henceforth, we only consider stable 
associations for simplicity.

Suppose we have randomized period 
treatments (i.e., Rt(0) = 1 and Rt(j-1) = 0 for j 
∈ (2, …, mt)) with period-stable associ-
ations. In the rest of this section, we assume 
all distributional statements are condi-
tioned on Rt(j-1), and therefore suppress this 
notation. For any random variable B, let 
 . 
Suppose the outcome DGP is 

⊥

+Yt
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1
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a
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1
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 where there is no auto-
correlation or time trend in {(V)}. Hence, 
there is no carryover or slow onset/decay, 
and no autocorrelation or time trend in 
either {(X)} or {(Y)}. The mean counterfac-
tual corresponding to Xt(j) = a is therefore 
 . (See ▶ Ap-
pendix equations (1)-(3) for derivations of 
this and all remaining mean counterfactual 
expressions stated in this section.) Let 
αt(j+1)(a‘, a) denote a contrast function of 
 and  , where a‘ ≠ a. We now 
redefine the APTE as a function of some 
pre-specified subset {αt(k+1)(a‘, a) : k ∈ k}, 
where k ⊆ {1, …, mt}. In the current simple 
case, αt(j+1)(a‘, a) = αt(a‘, a) for j ∈ (1, …, mt) 
because all associations are period-stable, 
and αt(a‘, a) = α(a‘, a) for all t because all 
associations are stable. Hence, k = (1, …, 
mt) might be specified, along with apte(a‘, 
a) = α(a‘, a) for any {a‘, a}.

Suppose autocorrelation in {(Y)} is also 
present, such that  . 
Note that {(X)} Granger-causes {(Y)}, a re-
lated but distinct causal concept; i.e., 
{(X)} can Granger-cause {(Y)} even if {(X)} 
is not a randomized-treatment series 
[40–42]. A model for  can 
be specified and used to estimate an APTE 
specified with  . 
Note that specifying an APTE with 
 is not straight-
forward because Rt(j-1) = 1 only at j = 1; we 
will see how to handle cases in which 
Rt(j-1) = 0 in Section 3.3.

Suppose further that there is a time 
trend in {(Y)}. The same DGP applies, but 
{(Y)} is no longer stationary, which is 
required for consistent estimation of model 
parameters. One option is to define this 
trend to be a function of some predictors of 
Yt(j+1) (see Section 3.5 and ▶ Appendix 
equation (3)), and model  in 
order to estimate an APTE specified with 
 . Explicit 
modeling might be avoided by using a ran-
domization scheme that balances the treat-
ments across periods (e.g., a randomized-
block design limiting the viable block per-
mutations, where a block is defined as a set 
of consecutive periods). However, even this 
approach tacitly assumes some general 
structure to the trend (e.g., linear, quad-
ratic) in order to determine how balance 
can best be achieved.

Now suppose carryover is present from 
ℓ ∈ ℕ lagged effects, such that 
 where 
 . (Since all elements of 
 are randomized, carryover is a type of 
causal interference [43] in that a given 
period´s potential outcomes are a function 
of possible treatment levels in both the 
 current and past periods.) The conditional 
mean counterfactual corresponding to 
Xt(j) = a is therefore

 
.

 The DGM of   that 
needs to be specified and fit is usually un-
known in practice, unfortunately, but 
washouts may be used to avoid having to 
fully specify this DGM.

A washout period can be defined in 
order to eliminate carryover. In a designed-
washout approach, treatment is not admin-
istered during the washout period, which 
would then be excluded from the main 
analysis to estimate the APTE. However, 
not administering treatment is itself a treat-
ment. Let a0 denote such a washout treat-
ment (henceforth, washout). Note that the 
control treatment and washout need not 
be identical, as in the case of an active con-
trol; nor must the washout equal an expo-
sure that occurs naturally (i.e., outside of a 
randomized trial). A designed-washout ap-
proach is a type of randomized-block de-
sign in which at least one washout period is 
assigned immediately following the treat-
ment period (i.e., the block is at least two 
periods long). Suppose enough washouts 
are assigned to cover all lags; i.e. 
 , where a0 is a 1 × ℓ vector with 
every element equal to a0. Also suppose 
that the washouts are assigned properly, 
such that  . 
Hence, a model for  can 
be specified and used to estimate an APTE 
specified with  . 
(Note that this additionally requires ob-
serving all other predictors  .) For 
example, if ℓ = 1 and mt = 1 for all t, then it 
can be shown that washouts are properly 
assigned if a washout period always follows 
a treatment period, and vice versa.

In an analytic-washout approach, each 
period consists of multiple measurements, 
and the washout subperiod is defined as a 
set of measurements occurring early in the 

period (i.e., the set of early measurements 
with effects from previous time periods). In 
conducting the main APTE analysis, this 
approach involves not collecting, exclud-
ing, down-weighting, or otherwise reduc-
ing the influence of washout subperiod ob-
servations on estimation. Analytic washouts 
may be applied if  for any 
k ∈ kpostwash, where  kpostwash ⊂ {1, …, mt} de-
notes the post-washout subperiod; i.e., the 
later measurements of a period, when there 
are no lingering carryover effects. In such 
cases, an APTE specified with 
 can be 
estimated. Because all associations are 
period-stable, αt(k+1)(a‘, a) = αt(a‘, a) for k ∈ 
kpostwash, and because all associations are 
stable, αt(a‘, a) = α(a‘, a) for all t. The APTE 
might then be specified as apte(a‘, a) = α(a‘, 
a).

Finally, suppose slow onset or decay 
may be present, such that stable effects may 
no longer be period-stable, implying 
 . Suppose subperi-
od-stable effects are present for a subset 
kstable ⊂ {1, …, mt} (i.e., the stable subperi-
od), such that   for 
any k ∈ kstable; i.e., the middle or later 
measurements of a period, when an effect 
is fully activated and stable, before it begins 
deactivating (if applicable). In such cases, 
we will refer to the subperiod intervals be-
fore and after the stable subperiod as the 
stabilization and destabilization subperi-
ods, respectively. An APTE specified with 
 can be estimated by specifying a 
model for  for k ∈ kpost-

wash ⋂ kstable. Because all other associations 
are period-stable, αt(k+1)(a‘, a) = αt(a‘, a) for 
k ∈ kpostwash ⋂ kstable, and because all associ-
ations are stable, αt(a‘, a) = α(a‘, a) for all t. 
The APTE might then be specified as 
apte(a‘, a) = α(a‘, a). Note that the stabiliza-
tion subperiod may be equivalent to the 
washout subperiod if the current and pre-
vious treatment levels differ. For example, 
this could be the case for a binary treat-
ment consisting of mutually exclusive treat-
ment levels; e.g., administration or removal 
of one active treatment that does not desta-
bilize.
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3.3   Confounding

Suppose we now have period exposures in-
stead of treatments; i.e., Rt(j-1) = 0 for j ∈ (1, 
…, mt) at all t. Suppose there is no autocor-
relation or time trend in {(Z)}, and 
 , where 
 and  in 
general. Let  , and let 
 represent  .

If a variable B is a causal predictor of 
both Xt(j) and Yt(j+1), we say that B con-
founds the relationship between Xt(j) and 
Yt(j+1). Suppose every element of  is a 
confounder. This assumption may be too 
strong to defend in practice, but can be re-
laxed using the rules of d-separation [44] 
(specifically, to avoid “M-bias”), a topic 
beyond the scope of this paper. Hence
  

,

in general. However, if

   
, DGI

  ,       DI

then

   ,  (1)

which is identifiable from observed data if 
the inner expectation DGM is known (see 
▶ Appendix equation (5)).

We will jointly refer to DGI and DI as in-
variance to randomization (hereafter, invari-
ance), a concept akin to that of “distribu-
tional stability”; i.e., the joint probability 
distribution of predictors, outcomes, and 
covariates is invariant to the predictor´s in-
tervention regime (e.g., observational vs. 
randomized) [45–47; 32]. Invariance is a 
powerful condition because if it holds, then 
an APTE specified with  can be esti-
mated in the absence of randomization. 
Hence, in discussing the strength of causal 
inference, it is crucial for the analyst to ac-
knowledge that she is making an assump-
tion that invariance holds, and to assess and 
report the veracity of this assumption.

Identifiability of an APTE specified with 
 if Rt(j-1) = 0 also relies on the posi-
tivity condition that  for all xt(j) 
and  ; i.e., all possible combinations of 
Xt(j) and  are theoretically observable. 
(Note that positivity is implied if Rt(j-1) = 1.) 
We implicitly assumed that this condition 
holds in deriving (1), and its importance 
will become particularly apparent in the 
IPW formula of Section 3.4.

In general, post-washout and stable sub-
periods are not properly assigned (let alone 
specified a priori) in non-randomized set-
tings. Instead, kpostwash and kstable can be as-
sumed, and an APTE specified with 
 can be estimated by specifying a 
model for  for k ∈ 
kpostwash ⋂ kstable. As in the randomized case, 
because all other associations are period-
stable, and all associations are stable, the 
APTE might then be specified as αt(k+1)(a‘, 
a) = αt(a‘, a) = apte(a‘, a). The analyst could 
then vary the assumed values of kpostwash 
and kstable, and characterize how the esti-
mated APTE changes.

3.4   Estimation

The following two causal inference meth-
ods are commonly used to estimate an ATE 
in the presence of confounding, assuming 
positivity and invariance hold. Here, we 
specify them for an APTE. If the DGM for 
 , also called an outcome 
model, is correctly specified, then (1) can 
be estimated directly. This is known as the 
g-formula method [48, 49], and in the epi-
demiological literature is also called direct 
standardization [23, 50], or stratification 
elsewhere [51, 52]. The key insight is that 
the outer expectation is taken over  , 
not over  as is required by 
 .

For a binary-valued Xt(j), another strat-
egy is to instead argue that the functional 
form of  , also 
called the propensity model, is correctly 
specified; e.g.,
  
 

where  is uniformly distributed be-
tween 0 and 1. An APTE specified with 

    

IPW formula can then be estimated (see 
▶ Appendix for derivation). This is known 
as the method of inverse probability weights 
(IPWs), which uses the reciprocal (i.e., in-
verse) of the conditional probability of X. 
The conditional probability that Xt(j) = 1 is 
also known as the propensity score because 
it reflects the propensity of receiving expo-
sure a = 1 [53]. Consistent estimation of 
APTEs specified with  is often per-
formed using a Horvitz-Thompson ratio es-
timator (see ▶ Appendix). (Many common 
matching methods also use the propensity 
score as a way to balance covariate values 
between exposure levels in order to esti-
mate putative treatment effects; e.g., by se-
lecting subsamples of the original sample.)

Note that the g-formula method does 
not require specification of the propensity 
model, while the IPW method does not 
require specification of the outcome model. 
An advanced technique called the aug-
mented IPW or doubly robust estimation 
method is useful for gaining statistical effi-
ciency if specifications of both the propen-
sity and outcome models may be reasonably 
asserted as true, with only one of the two 
required to be correctly specified to ensure 
consistent estimation of model parameters.

3.5   Stationarization

Following Lu and Zeger (2007) [54], in this 
section we argue that stationarization may 
be understood as a way to model con-
founding. Estimation of the mean counter-
factual requires both the predictor and out-
come time series to be weak- or wide-sense 
stationary (WSS) processes [38]. If a time 
series is not WSS, the methods of taking 
first differences (or pre-whitening) or de-
trending are commonly employed. If the 
outcomes are continuous, then both are 
special cases of the same general expression 
that can itself be used to specify a model 
for confounding. Throughout this section, 
we assume we have period exposures, and 
suppress the Rt(j-1) = 0 notation.

Suppose Y is continuous. Let
  and 
 , where 
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 and  are 
scalar-valued functions. Suppose

     , (2)

where  , βY and βX 
are conformable coefficient vectors, and 
ξt(j) is completely random zero-mean error 
with finite variance. Noting that 
 , we can 
define the mean counterfactual corre-
sponding to Xt(j) = a as 

 .

Now suppose {(ΔY, ΔX)} is a marginally 
WSS process. For example, this would hold 
for {(ΔY)} if either the first-differenced or 
de-trended process is WSS:  in 
the former case, while  in 
the latter case (for example), such that 
 (i.e., is constant). If Yt(j+1) has 
no predictors, then  is either a con-
stant or completely random with a constant 
mean (e.g., white noise). Rewriting (2) as 
 , we see that 
consistent estimation of βY and βX is 
straightforward if |βX| < 1 where 1 is a vec-
tor of ones.

4.   Empirical Application

A dataset of the author‘s body weight and 
physical activity (PA) spanning six years 
was analyzed. Following Partridge et al 
(2016) [55], we hypothesized that a change 
in PA regimen causes a change in weight. 
Outcomes, exposures, and treatment peri-
ods were first defined or specified. DGMs 
for the g-formula and IPW methods were 
then defined, adjusted for stationarity, and 
used to estimate and interpret putative 
APTEs. All hypothesis tests were perform-
ed at the 0.05 significance level unless 
stated otherwise. Throughout this section, 
we assume we have period exposures, and 
therefore suppress the Rt(j-1) = 0 notation.

4.1   Definitions and Specifications

The raw outcome was defined as per-day 
average body weight, and the constructed 

outcome was defined as the average cen-
tered body weight (ACBW) per week. Cen-
tered body weight was defined as the differ-
ence in body weight in kilograms from the 
empirical average body weight taken over 
all six years. The raw exposure was defined 
as engaging in PA on a given day, where PA 
was defined as some combination of car-
diovascular or resistance training (e.g., 
running, swimming, cycling, rock climb-
ing, weight lifting, push-ups, pull-ups). Fol-
lowing common definitions of one-week 
PA summary variables (e.g., minutes/week, 
steps/week, days/week) [56–59], the con-
structed exposure was defined as the pro-
portion of days per week when any PA was 
reported, among days when body weight 
was reported (i.e., non-missing). The re-
sulting constructed time series consisted of 
290–293 time points, depending on the 
specifications below.

The N1OS treatment was specified as a 
regular pattern of PA spanning one or 
more weeks. However, among eight highly 
relevant RCTs in a systematic review by 
Schoeppe et al (2016) [59] with PA or 
weight as outcomes, studies designed to de-
tect empirically apparent (i.e., statistically 
significant) effects of interventions 
spanned six to 14 weeks. Likewise, many of 
the relevant study periods in a systematic 
evaluation by Afshin et al (2016) [58] were 
at least two, four, or six weeks long. Hence, 
we did not expect to find plausibly stable 
effects for periods shorter than about six 
weeks. To identify possible treatment peri-
od lengths, we conducted changepoint 
analysis on the constructed-exposure 
series. Changepoint analysis detects where 
the mean of an otherwise stationary series 
changes over time, thereby partitioning the 
series into a sequence of segments of vary-
ing length [60]. Once segments were ident-
ified, they were considered to be periods 
with fixed lengths {(mt)} (i.e., considered as 
a priori, pre-specified periods of an N1RT). 
For each segment, PA intensity was defined 
as “high” if the PA segment mean was 
greater than 5/7 (i.e., indicating more than 
5 days of PA in a week); otherwise, PA was 
dened as “low”. The treatment level for 
each one-week-long segment was assigned 
to the previous segment´s treatment level, 
and the segment identifier was likewise 
changed to that of the previous segment, 

thus ensuring each segment was at least mt 
= 2 weeks long.

The analysis outcome was defined as 
weekly ACBW. We assumed each treatment 
might require time to stabilize, but did not 
thereafter destabilize until a change in 
level. Because both treatment levels were 
mutually exclusive, the washout subperiod 
was assumed to be a subset of the stabiliza-
tion subperiod for any period. We assumed 
that effect stability of either high or low PA 
in any period was reached by some stability 
point, i.e., k0. To model carryover or stabili-
zation in periods shorter than k0, dummy 
variables corresponding to each observed k 
< k0 would be included in the model as a 
function of previous treatment and period 
length (because, e.g., the effect of low PA 
might already be stable if preceded by a 
sufficiently long low-PA period). In addi-
tion, we posited that the current outcome 
might depend on the previous outcome, 
and that this dependence varies by treat-
ment level. Hence, we specified the g-for-
mula outcome model as

where kstable = {k : k0 ≤ k ≤ mt}. The stable 
low-PA average baseline effect (ABE) (i.e., 
baseline average ACBW during weeks of 
low PA) and APTE were specified as 
 and 
 for k ∈ 
kstable, respectively, assuming 
 holds (see ▶ Appendix 
for derivation). Hence,  , and the 
corresponding estimators are denoted as 
 and  . The IPW method would be 
applied in a secondary analysis, with its 
propensity model specified based on our 
experiences fitting the outcome model.

Stability of both the APTE and ABE 
would be assessed and reported. We rea-
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soned that if k0 equals the true stability 
point, denoted  , then mean effects esti-
mated for k > k0 should vary around the 
true stable APTE regardless of raw series 
start day (i.e., the first day of both raw out-
come end exposure series used to dene each 
constructed series). Hence, we would first 
vary the value of k0 from 2 to the length of 
the second-longest PA segment. The corre-
sponding values of  and  would be 
graphed as a function of k0. We would also 
assess the robustness of our stability find-
ings by varying the start day for each set of 
analyses. Because the constructed variables 
were defined using seven days of data, it 
was reasonable to vary the raw series start 
day from 1 to 7; we would also examine the 
findings for start days 8 to 14.

Missing constructed outcomes and ex-
posures would be imputed as follows. To 
simplify the demonstration of our meth-

k0
*

abe apte

ods, we assumed constructed variables 
were missing completely at random 
(MCAR). (Data were likely to be at least 
missing at random [61, 62], and more re-
fined analyses should examine the sensitiv-
ity of results to such missingness assump-
tions; these are beyond the scope of this 
paper.) Missing values would be linearly in-
terpolated using na. interpolation (), and 
Gaussian noise added to the imputed con-
structed outcomes using the empirical 
means and standard deviations of their 
non-missing counterparts.

4.2 Post Hoc Analyses

The Augmented Dickey-Fuller (ADF) and 
Kwiatkowski-Phillips-Schmidt-Shin 
(KPSS) unit-root tests were performed 
using adf.test() and kpss.test(), respectively, 
to assess stationarity. Stationarity tests of 

{(Yt(j))} indicated that this series was likely 
not stationary across most start days and 
values of k0. However, letting 
 represent the change in 
outcome from the previous outcome (i.e., 
first difference), these tests indicated that 
 might have been stationary in 
most cases. The ADF and KPSS tests were 
also used to assess stationarity of {(Xt-1(1))} 
in each case. Hence, we instead specified 
the following two analyses.

In Analysis 1, the g-formula was used to 
model the change in outcome from the 
previous outcome as

A1-GF

for k0 > 1 (i.e., to allow at least one week for 
a treatment effect to occur), where kstable 
was specified as before. We specified the 
corresponding APTE of interest as

 
 

  

because this quantity represents the total 
mean change in the outcome attributable 
to high PA (after a period of low PA) before 
the high-PA mean effect stabilizes if 
 
for all k < k0, and if 
 (see 
▶ Appendix for derivation); hence, 
 . In particular, β0 = 0 if  , so 
for Analysis 1 we examined trends in 
 across different values of k0 to assess the 
stability assumption.

In Analysis 2, we modeled the change in 
outcome from the previous period‘s last 
outcome or the average of its stable out-
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Fig. 1 Trends in valid (i.e., using stationary series) estimates and residual sums of squares (RSSs) 
across values of k0 for start days 1 to 7. (In each graph, different line types indicate different start days, 
and the red line indicates the median value. In the top row, the dotted lines demarcate an interval with 
a possibly stable APTE. In the left and center columns, the black asterisk indicates start day 3 at stability 
point k0 = 11, which was chosen for illustration in ▶ Figures 2 and 3.)
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4.3 Results and Interpretation

▶ Figure 1 illustrates the trends in valid es-
timates across values of the assumed stabil-
ity point k0 for start days 1 to 7. Findings 
were considered valid only in cases where-
in the exposure {(Xt(1))} and the relevant 
predictor (i.e.,  ,  , or  ) were 
both deemed sufficiently stationary, as in-
dicated by at least one of the two test results 
corresponding to each series. The median 
trends (i.e., across all valid findings at each 
k0) are also plotted. Only values for k0 ≤ 20 
are shown, as estimated effects seem to 
have been either sparse or very noisy past 
k0 = 20. For Analysis 1 (left panel), the 
APTE may have been stable between 11 
and 17 weeks of treatment (indicated by 
the median, plotted in red between the 
dotted vertical lines); however,  did not 
seem to systematically stabilize to zero. For 
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Y
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Y

t 1
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A2-IPW

where  . The ABE and 
APTE were likewise specified as 
 and  for 
k ∈ kstable, but were instead estimated using 
the IPW formula in Section 3.4. Note, how-
ever, that this standard IPW formula can-
not be used to flexibly model unstable 
APTEs; hence, we fit this model using only 
observations in kstable. This limitation 
(coupled with not having known  , or if 
it even existed) greatly reduced the IPW 
method´s immediate utility. We nonethe-
less were able to further assess our stability 
assumptions by comparing the IPW and 
g-formula APTE estimates (as noted 
below).
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comes, whichever occurred last; i.e., 
 where 

  
 . 

We posited that Δt(j+1) might depend on 
 (which the ADF and KPSS 
tests indicated may have been stationary in 
most cases), and that this dependence 
varies by treatment level. The Analysis-2 
outcome model was specified as

  

  
A2-GF

where kstable was specified as before. The 
ABE (redefined as the baseline average 
change in ACBW from  ) and APTE 
were specified as
  and 
 for k 
∈ kstable, assuming   
holds (see ▶ Appendix for derivation); 
hence,  .

A propensity model for Analysis 2 
(A2-IPW) was then specified as follows. 
We posited that treatment assignment at 
the start of the current period may have de-
pended on treatment level during the 
preceding period, and on changes in out-
comes over the past one or two periods, de-
fined as   
where
  

 . 

The treatment propensity model was there-
fore specified as
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Fig. 2 Analysis outcomes: Observed and predicted outcomes using the g-formula, for start day 3 at 
stability point k0 = 11. (In each graph, high and low physical-activity analysis outcomes are plotted as 
black and gray circles, respectively. In the left column, the red and blue lines indicate predicted values 
for Analyses 1 and 2, respectively. In the right column, observed versus predicted analysis outcomes are 
plotted.)
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Analysis 2 (center and right panels), the 
g-formula APTE may have been stable also 
between 11 and 17 weeks of treatment; 
however, the ABE seemed to generally in-
crease. These findings were reflected in the 
corresponding IPW plots. A sensitivity 
analysis using the raw series for start days 
8–14 produced somewhat qualitatively 
similar results (see ▶ Appendix).

For illustration, we report and interpret 
the set of findings for start day 3 at k0 = 11, 
marked with black asterisks in ▶ Figure 1. 
The valid Analysis-1 estimates were  = 
–1.08kg and  = –0.01kg, with a residual 
sum of squares (RSS) of 104.33. The corre-
sponding estimates for Analysis 2 were 
 = –1.12kg and  = 0.60kg, with a 
RSS of 184.91. Our Analysis-1 results 
meant that 11 weeks of high PA after a 
period of low PA may have reduced ACBW 
by about 1.08kg on average, where the esti-
mated APTE may have been stable be-
tween 11 and 17 weeks of high PA. Our 
Analysis-2 results meant that 11 weeks of 
high PA may have reduced ACBW by 
about 1.12kg on average, while low PA may 
have increased ACBW by about 0.60kg on 
average; the estimated APTE may have 
been stable between 11 and 17 weeks. Both 
sets of findings qualitatively resembled 
those in Naimark et al (2015) [57] in as-
sociation (though not necessarily cau-

apte1
ˆ

0

apte2 abe2

sation): After 14 weeks, the intervention 
group (i.e., who used a health-promoting 
app) increased their PA by 63 minutes per 
week on average, while control subjects de-
creased theirs by an average of 30 minutes. 
Intervention subjects concurrently lost an 
average of 1.44kg, while control subjects 
lost an average of 0.13kg. Our observed 
and predicted outcomes are plotted in 
▶ Figure 2. The top panel shows that the 
Analysis-1 predictions modestly fit the 
analysis outcomes, while the quality of fit 
of Analysis-2 predictions in the bottom 
panel was somewhat mixed. In particular, 
because Analysis 2 assumed APTE stability 
after 11 weeks, it failed to capture trends in 
analysis outcomes during the high-PA in-
terval roughly between time points 20 and 
90. This can likewise be seen roughly be-
tween weeks 40 and 100 in ▶ Figure 3.

As a sensitivity analysis, we assessed the 
analytical impact of raw-variable missing 
data. The median proportions of missing 
values for weekly ACBW and proportion of 
PA days across all values of k0 and all 14 
start days were 0.134 (range: 0.127 to 
0.158) and 0.052 (0.041 to 0.055), respect-
ively. For each analysis outcome and pre-
dictor, we weighted each analysis outcome 
by the total proportion of days without 
missing values out of all possible days that 
could have been used in its derivation. 

Bigger analytic weights corresponded to 
fewer missing raw values (i.e., analytic 
weight of 1 for no missing values, less than 
1 otherwise). The resulting weighted gen-
eralized linear model (weighted-GLM) 
analyses produced similar findings to the 
unweighted analyses (see ▶ Appendix).

A few immediate modeling improve-
ments could be made in a future study by 
noting the following limitations. Our self-
tracked data did not include reliable 
measurements of dietary factors, which 
likely confounded the exposure-outcome 
relationships in both analyses. We also did 
not investigate reverse causality (i.e., the ef-
fect of theoretically manipulable weight on 
PA propensity, e.g., through examining die-
tary patterns as causes), which might help 
disentangle possible causal feedback struc-
tures between ACBW and PA intensity. 
Factors such as aging may also play a role 
in modifying APTEs over time (e.g., by in-
ducing a time trend in an APTE itself). 
While we did not address moderation or 
mediation of APTEs, our framework does 
allow formal specification of such contex-
tual influences. Finally, the impact of noise 
on the first-difference outcome in Analysis 
1 could be characterized using simulations 
in order to assess its impact on both the 
analysis procedure and APTE estimates.

5.   Discussion

We showed how a counterfactual frame-
work based on n-of-1 randomized trials 
can be used to specify and estimate causal 
effects using observational n-of-1 time 
series data. Our framework is modular: It 
allows for nesting such that each time point 
t(j) can itself be specified as a set of sub-
points, thus permitting finer-grained speci-
fication of causal relationships. The frame-
work might also accommodate traditional 
RCTs or series-of-N1RTs (i.e., by adding 
the subscript i to index study participants), 
as well as help formalize or model more 
complex causal mechanisms at different 
scales (using, e.g., hidden Markov models, 
control theory and dynamical systems 
models), or mechanisms that better ac-
count for context (e.g., sufficient-compo-
nent causes [63–65]). In the future, we will 
formalize this framework in terms of causal 

Fig. 3 Average centered body weight: Observed and predicted outcomes using the g-formula, for 
start day 3 at stability point k0 = 11. (The black and gray circles indicate analysis outcomes correspond-
ing to high and low physical activity, respectively, and the red line and blue asterisks indicate predicted 
values for Analyses 1 and 2, respectively.)
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graphs in order to ease conceptualization 
of causal structures.

In an N1OS, a priori definitions and 
specifications that would be used in an 
N1RT may not be reasonable, feasible, or 
even possible. While the analytical goal in 
an N1RT is to estimate a posited causal ef-
fect, the goal in an N1OS is instead to dis-
cover which effects to posit in the first 
place (i.e., causal discovery). We distill Sec-
tion 4 into the following general six-step 
N1OS procedure, which might be used to 
encourage discovery of estimable stable 
APTEs that can address the original re-
search hypotheses by eschewing stationar-
ization of the treatment. 1. Use relevant re-
search (both idiographic and nomothetic) 
to generally dene outcomes and treatments. 
2. Specify treatments, and search for candi-
date sets of treatment periods. 3. Specify 
outcomes and stable subperiods. 4. Specify 
APTEs and models. Assess whether or not 
invariance could hold. 5. Conduct main 
analyses. Assess stationarity. 6. Conduct 
sensitivity analyses, and address missing 
data. These steps can be repeated as the ex-
ploratory study evolves, and relevant ana-
lytical developments should be reported. 
The specifications that yield the best fit and 
interpretability might be highlighted as 
yielding the most conclusive findings. Our 
Section 4 analyses also highlighted the 
commonly encountered analytical tradeoff 
between APTE estimability and interpreta-
bility.

Statistical learning methods can be used 
to strengthen the search and modeling 
components in the above procedure. These 
include the search for sensible treatment 
periods or stable subperiods (e.g., through 
time series clustering), and the search for 
the outcome and propensity models that fit 
the data well. In particular, cross-validation 
and predictive modeling may be quite well-
suited to finding the best-fitting DGMs for 
the g-formula, IPW, or doubly robust esti-
mation methods. This sort of “causal pre-
dictive modeling” [66–69] would incorpor-
ate principles of statistical estimation and 
inference, causal modeling, and statistical 
learning. A number of investigators have 
taken a similar approach towards such 
causal discovery (i.e., what Gelman and 
Imbens, 2013 [67], call reverse causal infer-
ence), in particular van der Laan et al 

(2009) [68], Austin (2012) [69], Athey and 
Imbens (2015) [37], and Spirtes and Zhang 
(2016) [66].

We are excited to see how related efforts 
may likewise help advance idiographic 
causal discovery in the fields of personal-
ized health and medicine. Still, in pursuing 
this line of inquiry, it should be kept in 
mind that “for causal inference, issues of 
design are of utmost importance; a lot 
more is needed than just an algorithm” 
[70]. Rubin (2008) [71] sums it up nicely: 
“For objective causal inference, design 
trumps analysis.”
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