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ABSTRACT It is generally recognized that proteins constitute the key cellular compo-
nent in shaping microbial phenotypes. Due to limited cellular resources and space,
optimal allocation of proteins is crucial for microbes to facilitate maximum proliferation
rates while allowing a flexible response to environmental changes. To account for the
growth condition-dependent proteome in the constraint-based metabolic modeling of
Escherichia coli, we consolidated a coarse-grained protein allocation approach with the
explicit consideration of enzymatic constraints on reaction fluxes. Besides representing
physiologically relevant wild-type phenotypes and flux distributions, the resulting pro-
tein allocation model (PAM) advances the predictability of the metabolic responses to
genetic perturbations. A main driver of mutant phenotypes was ascribed to inherited
regulation patterns in protein distribution among metabolic enzymes. Moreover, the
PAM correctly reflected metabolic responses to an augmented protein burden imposed
by the heterologous expression of green fluorescent protein. In summary, we were able
to model the effects of important and frequently applied metabolic engineering
approaches on microbial metabolism. Therefore, we want to promote the integration of
protein allocation constraints into classical constraint-based models to foster their pre-
dictive capabilities and application for strain analysis and engineering purposes.

IMPORTANCE Predictive metabolic models are important, e.g., for generating biological
knowledge and designing microbes with superior performance for target compound
production. Yet today’s whole-cell models either show insufficient predictive capabilities
or are computationally too expensive to be applied to metabolic engineering purposes.
By linking the inherent genotype-phenotype relationship to a complete representation
of the proteome, the PAM advances the accuracy of simulated phenotypes and intracel-
lular flux distributions of E. coli. Being equally computationally lightweight as classical
stoichiometric models and allowing for the application of established in silico tools, the
PAM and related simulation approaches will foster the use of a model-driven metabolic
research. Applications range from the investigation of mechanisms of microbial evolu-
tion to the determination of optimal strain design strategies in metabolic engineering,
thus supporting basic scientists and engineers alike.
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For many decades, metabolic models have been developed to describe, unravel, and
understand the drivers of microbial phenotypes. In their simplest forms, these mod-

els quantitatively connect observable phenomena such as carbon source consumption
and biomass formation, leading to seminal empirical growth laws such as the Monod
equation (1). In general, coarse-grained models aid in explaining the dependencies
between intracellular processes and corresponding phenotypes (2–7). Constraint-
based modeling techniques facilitate the prediction of growth rates and by-product
secretion, as well as the investigation of metabolic flux distributions solely based on
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the stoichiometry of biochemical reaction networks and an appropriate cellular objec-
tive function (8–12). The development of genome-scale constraint-based models
(GEM) fostered the investigation of fundamental biological phenomena (9, 13, 14), the
systematic analysis of complex omics data sets (15–18) and the suggestion of favorable
genetic perturbations for the overproduction of desired chemicals (19–23).

The utilization of GEMs has made valuable contributions to systems biological anal-
yses and metabolic engineering. However, the GEM’s predictive capabilities of cellular
phenotypes strongly rely on ad hoc capacity bounds on key reactions (15, 24), without
which basic phenomena such as overflow metabolism are not observable in silico. The
consideration of additional cellular processes and properties in metabolic reconstruc-
tions resolved these predictive insufficiencies of GEMs. In this manner, macromolecular
expression (ME) models couple metabolism to gene expression by linking enzyme con-
centrations to metabolic reactions and accounting for the transcriptional and transla-
tional processes leading to enzyme expression (25). ME models simultaneously simu-
late maximum growth and substrate uptake rates and the underlying responses on the
mRNA level, as well as the corresponding gene expression profiles at metabolic steady
state (26). Thus, ME models facilitate holistic insights into intracellular processes and
how they are affected by environmental, biochemical, or genetic perturbations
(27–29), while reliably informing about corresponding flux distributions. As advanta-
geous ME models are for correct predictions at the flux or phenotypic level, their detail
and complexity can be cumbersome for future applications in strain design approaches.
Many other approaches exist that add various resource or spatial constraints to classical
stoichiometric models to investigate otherwise undisclosed growth laws (30–36). However,
most of them are either similarly computationally expensive or demand a tremendous
number of mostly unknown parameters.

Cellular protein allocation and its regulation have previously been suggested as the
main drivers of metabolic phenomena and a key process behind bacterial growth laws
(3, 5–7, 37–39). The incorporation of protein constraints in GEMs exploits the principles
of protein allocation as a fundamental growth law. It simultaneously allows for the use
of established, tractable, and intuitive constraint-based modeling methods. By dividing
the limited proteome into three growth-variant sectors representing (i) ribosomal pro-
teins, (ii) anabolic enzymes, and (iii) catabolic enzymes and one invariant housekeeping
protein sector, the constrained allocation flux balance analysis (CAFBA) framework
computes the optimal partitioning between these protein sectors and the correspond-
ingly weighted flux rates to reach maximum growth (37, 39). Thus, CAFBA accounts for
the trade-off between a limited protein availability for biosynthesis and growth and
enables a quantitative prediction of pathway usages under various conditions, particu-
larly suboptimal growth yields during overflow metabolism. The integration of enzyme
kinetics into a GEM of Saccharomyces cerevisiae and Escherichia coli in the form of
explicit enzymatic constraints on flux rates facilitated the utilization of proteomics data
(40). The respective GECKO framework (GEM with enzymatic constraints using kinetic
and omics data) gives detailed insights into metabolic realizations based on proteome
measurements and predicts growth phenomena even without augmented protein
concentration data.

Here, we introduce an approach that consolidates protein allocation and enzymatic
constraints on metabolic fluxes of an E. coli GEM. The resulting protein allocation
model (PAM) represents the major protein sectors and their various ratios with chang-
ing growth conditions (41). The PAM predicts experimentally observed phenotypes
and intracellular flux distributions at maximum growth and on various growth media.
Besides the wild-type behavior, the PAM’s predictive ability is demonstrated for strains
harboring gene deletions or expressing heterologous proteins. In line with previous
studies, we emphasize the fundamental role of protein allocation in steering microbial
metabolism. Therefore, the PAM framework is envisioned as a practical approach to
improve the rational design of microbial production strains, as it enables rapid dry-lab
screening of design and cultivation strategies with improved reliability.
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RESULTS
Accounting for the total proteome in genome-scale metabolic models. A key

challenge for microbes is distributing the limited proteins to the intracellular proc-
esses in a way that allows for maximum growth under a given environmental con-
dition. While the concentration of ribosomes efficiently meets the demand of pro-
tein biosynthesis under mildly nutrient-limited to unlimited conditions (5, 42, 43),
the protein household for energy and biomass precursor production generally
contains unutilized and underutilized enzymes (44) to allow for a flexible response
to environmental changes. Three major protein sectors cover this condition-de-
pendent proteome and represent (i) translational protein, including ribosomes,
(ii) metabolically active enzymes, and (iii) un- as well as underutilized enzymes (3).
We will refer to the latter as the unused enzyme sector for simplicity. The fourth
protein sector covers the housekeeping proteins, whose abundance is constant
under any growth condition. Consequently, this sector cannot cause condition-de-
pendent phenotypes. The biomass synthesis equation covers its constant demand,
but the protein allocation toward the housekeeping sector does not need to be
modeled separately.

To quantitatively account for the condition-dependent protein allocation, we
modeled and added each relevant protein sector independently to the E. coli K-12
MG1655 GEM iML1515 (45) (Fig. 1). We refer to the resulting model as the protein
allocation model (PAM). The mass concentration, f , of each sector is a linear func-
tion of one or more inherited variables or fluxes of iML1515. They have been partly
fitted to experimental proteomic data as depicted in Table 1 and are described in
detail in Materials and Methods.

The active enzyme sector. The active enzymes sector covers the protein demand of
all enzymatic reactions of the iML1515 model in a GECKO fashion (40). GECKO introduces

FIG 1 Scheme of the protein allocation model, including the classical metabolic as well as the added proteome level. wT, wUE, and kcat represent the linear
correlation factors between model variables and the translational, unused enzyme, and active enzyme sectors, respectively. Q denotes the housekeeping
protein sector, whose concentration is constant. The dotted lines mark the model-inherent, linear relations between protein sectors and metabolic rates. A
simplified mechanism regulating the microbial proteome, which is not part of the model, is also shown in accordance with the theory proposed in
reference 4. It depicts the activation of catabolic enzyme expressions by the CRP-cAMP complex, whose synthesis is hampered by elevated amino acid
precursor levels. Additionally, the activating effects of the concentration of amino acids and their precursors on protein and amino acid synthesis,
respectively, are sketched.
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enzyme mass balances to classical stoichiometric models and couples the manifestation of
metabolic fluxes to enzyme abundances. That is, each modeled enzyme concentration
within this sector is linearly dependent on the flux rate of the catalyzed metabolic reaction.
The linear relations are based on a simplified rate law of reversible Michaelis-Menten reac-
tions, thus on simple mass action kinetics, which neglects the nonlinear reversibility,
enzyme saturation, and regulation factors (38). With this simplification, enzymes are
assumed to operate at their maximal velocity, at which the turnover number kcat describes
the relation between enzyme concentration and flux rate. Hence, in silico metabolic fluxes
are only limited by the enzyme’s maximum capacity. While this formulation can lead to
biologically more feasible solutions (40), enzymes do not generally operate at their maxi-
mum velocity (46, 47). Therefore, in the PAM context, the turnover number describes an
enzyme’s maximum capacity within a metabolic network operating under unlimited
growth conditions, that is, under maximum growth and substrate uptake rate. The addi-
tional protein burden due to an incompletely used capacity of enzymes, e.g., under car-
bon-limited growth conditions, is accounted for by the unused enzyme sector introduced
in the following section.

The unused enzyme sector. Particularly under nutrient-limited conditions, microbial
cells put enzymes on hold to react quickly to changing environmental conditions (27, 44).
This behavior contrasts with the general assumption that cells make efficient use of limited
resources but reflects a necessary trade-off between maximal resource efficiency and quick
adaptability. However, reversible enzyme kinetics prohibit the simultaneous manifestation
of maximum velocity for all enzymes since the substrate of one enzyme is the product of
another, inflicting opposing driving forces on both enzymes (38). As shown by metabolo-
mics analyses, enzymes operate at substrate concentrations in their KM range under most
physiological situations, thus well below their maximum velocity, and are considered
underutilized (46). Moreover, unutilized enzymes of inactive, mostly catabolic metabolic
pathways may be expressed to allow for swift metabolic adjustments upon changes in the
environmental conditions or substrate availability.

With a detailed analysis of experimental proteomic data of E. coli (41), O’Brien et al. (44)
showed the existence of such under- and unutilized enzymes, which we summarized in
the PAM as the unused enzyme sector. More specifically, O’Brien augmented an E. coli ME
model with a comprehensive proteomic data set covering all enzymes of the iML1515
model (Fig. 2A) and assessed the environment-specific proteome utilization in silico. They
showed that the mass concentration of the active enzyme sector decreases with increasing
growth rates, despite the increased metabolic activity and rising protein requirements.
Conversely, enzymes, which are not catalytically active, accumulate the stronger the car-
bon limitation and the lower the growth rate. This phenomenon is regulated by the cAMP
signaling pathway, which senses the carbon influx (4). We linked the resulting negative
feedback loop between protein expression and substrate uptake caused by the cAMP sig-
naling pathway (Fig. 1) to the functional representation of the unused enzyme sector (see
Materials and Methods for details). As a result, protein allocation toward the unused
enzyme sector decreases with increasing substrate uptake rate and diminishes at the maxi-
mum substrate uptake rate. In this way, the PAM allows for the adaption of substrate-spe-
cific allocation characteristics of the unused enzyme sector.

The translational protein sector. The quantitative description of the translational
protein sector was empirically derived from global E. coli proteome measurements.

TABLE 1Modeled mass concentrations f of protein sectors and their linear dependencies
on inherited variables of the E. coli K-12 MG1655 GEM iML1515a

Protein mass concn Symbol Linear dependency
Active enzymes f AE Flux rates � of metabolic reactions
Unused enzymes f UE Substrate uptake rate �s
Translational protein f T Growth ratem
Total protein f P,c f AE, f UE, f T

aParameters within these linear dependencies and their (data) sources are listed in Table 2.
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The experimental proteomic data set was taken from Schmidt et al. (41), who investi-
gated the quantitative dependencies between protein allocation and growth for a
wide range of conditions, substrates, and different E. coli strains. We processed the
measured protein mass data (fg cell21) to arrive at model-relevant mass units relative
to the cell dry weight (cdw) (g g21

cdw). We found that the translational protein mass con-
centration correlates linearly with the growth rate and modeled this protein sector
accordingly (Fig. 2B). This linear growth dependency depicts a resource-efficient regu-
lation of the translational apparatus to justly provide the proteins necessary for main-
taining maximal division rates in a particular environmental condition, as reported pre-
viously (48, 49).

The total protein concentration constraint. Under most conditions, the total pro-
tein content of an E. coli cell is approximately 0.55 g g21

cdw (50). A proteomic analysis of
various E. coli strains grown under different conditions (41) covered a constant protein
mass concentration of 0.32 g g21

cdw (58% of the total protein content) across conditions.
Therefore, a constant 81%, or 0.26 g g21

cdw (f P,c), is allocated to the three protein sec-
tors, that is, the active enzymes, unused enzymes, and translational protein sectors
(Fig. 2C). The unassigned proteins of the proteomic data set and those not covered by
the experimental data were assigned to the housekeeping protein sector. The protein
fraction f P,c of 0.26 g g21

cdw considered by the PAM is in agreement with the fact that
the growth-dependent part of the proteome constitutes roughly half of E. coli’s total
protein content (3–5, 37, 39, 51). Note that the metabolic cost of the total protein bio-
synthesis in terms of energy and amino acid demand is fully covered by the biomass
equation inherited from iML1515.

The proteins within the data sets of Schmidt et al. (41) not covered by the PAM are
mainly poorly characterized proteins (51% of all the protein fractions within the pro-
teomic data set not covered by the PAM) or are assigned to transcription (8%), replica-
tion (6%), and posttranslational modification (6%). In turn, approximately one-third of
the gene products considered by the PAM have not been quantified by Schmidt et al.
(41). Those proteins are mainly inner and outer membrane proteins (58% of all gene
products in the PAM not covered by the proteomic data set) or allocated to the glycer-
ophospholipid (9%) and alternate carbon (8%) metabolism.

As experimental proteomic data suggest a consistent protein mass concentration
across conditions, we modeled and added the invariable sum of active enzymes,
unused enzymes, and translation protein to the PAM:

FIG 2 Protein mass data of distinct protein sectors under diverse growth conditions taken from Schmidt et al.
(41). (A) All proteins represented by the iML1515 GEM and found in the proteomic data set, comprising the
active and unused enzymes sectors. (B) Translational sector covering proteins assigned to the COG (Clusters of
Orthologous Groups) class “translation, ribosomal structure, and biogenesis,” which are not included in the
iML1515. The black lines in panels A and B are linear fits of the data points resulting in the shown equations
and coefficients of determination R2. (C) Sum of the protein mass concentrations shown in panels A and B. The
horizontal black line marks the 81% of measured protein mass used to constrain protein availability in the
PAM. Glucose chemostat and batch experiments are highlighted in blue and red, respectively. Note that
protein concentrations relative to the cell dry weight (cdw) were related to the total protein concentration of
0.32 g g21

cdw measured by Schmidt et al. (41).
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f P;c ¼ f T 1 f AE 1 f UE ¼ 0:26 g g21
cdw (1)

Here, f T, f AE, and f UE are the variable protein mass fractions of the translational
protein, active enzymes, and unused enzyme sector, respectively. f P,c is the constant
total protein mass concentration. Equation 1 introduces a concise representation of
the capabilities and limits of E. coli’s metabolism and its condition-dependent protein
allocation to stoichiometric modeling approaches. Due to the linear nature of the
added protein allocation and enzyme activity constraints, classical flux balance analysis
(FBA) and other established constraint-based modeling approaches can be applied to
the PAM without a significant loss in computation speed compared to purely stoichio-
metric models.

The protein allocation model predicts wild-type phenotypes. To benchmark the
PAM’s predictive capabilities, we simulated the wild-type phenotypic behavior on glu-
cose minimal medium and compared the results to extensive literature data (52–59).
The maximum glucose uptake rate, a parameter for the unused enzyme sector, was set
to 8.9 mmol g21

cdw h21, which supported an observed maximal growth rate of 0.65 h21

(52). The simulated data derived with this constraint is in good agreement with experi-
mentally observed phenotypes for a range of carbon-limited conditions and depicts
significant improvements compared to the purely stoichiometric iML1515 model
(Fig. 3). In particular, the acetate secretion trend correctly mirrors the metabolic over-
flow characteristics of E. coli above glucose uptake rates of 4.3 mmol g21

cdw h21 (Fig. 3B).
Despite reasonable projections of growth, acetate secretion, and oxygen uptake rates,
the PAM as well as the iML1515 model overestimate carbon dioxide secretion rates,
pointing to potential inconsistencies in the biomass synthesis equation used in both
models.

The phenotypes simulated by the PAM are also mirrored in the fluxes through cen-
tral metabolic pathways as shown in Fig. 3E. The distribution of the carbon flux among
the metabolic pathways qualitatively follows previous findings (53). Under carbon-

FIG 3 PAM predictions for E. coli phenotypes for a range of physiologically relevant glucose uptake rates in comparison to
data from the literature. (A to D) Predictions (black lines) and experimental data (41, 52–56, 58, 59) (red dots) of (A)
growth, (B) acetate secretion, (C) oxygen uptake, and (D) carbon dioxide production rates are compared. Simulation results
using the original stoichiometric iML1515 model are additionally shown (dashed lines). (E) Simulated fluxes through
central metabolic pathways. The dashed line marks the maximum glucose uptake rate of 8.9 mmol g21

cdw h21, where the
unused enzyme concentration f UE was defined to be zero. In all panels, the red shaded area marks the occurrence of
fermentation resulting in the secretion of acetate.

Alter et al.

March/April 2021 Volume 6 Issue 2 e00625-20 msystems.asm.org 6

https://msystems.asm.org


limited and fully respiratory conditions, flux rates through the Embden-Meyerhof-
Parnas (EMP) pathway, the tricarboxylic acid (TCA) cycle, the pentose phosphate (PP)
pathway, and the glyoxylate shunt (GLYXS) scale linearly with the glucose uptake rate.
The GLYXS activity reflects the need for anaplerosis to compensate for the drainage of
TCA cycle intermediates under slow growth conditions, which has been experimentally
demonstrated (60).

In the vicinity of the turning point from a fully respiratory to partially fermentative
metabolism, the activity of the GLYXS diminishes completely. Beyond glucose uptake
rates of 4.3 mmol g21

cdw h21, limitations in the global protein household impede exclu-
sive ATP production via respiration. As a consequence, the carbon flux is partly
diverted from the NADH-yielding, and thus respiration-fueling, TCA cycle toward ace-
tate. Simultaneously, the split between the EMP and PP pathways starts to increase
with elevated glucose uptake rates in favor of glycolysis. While the NADPH supply
through the PP pathway follows the growth-rate-dependent demand for biomass syn-
thesis, the glycolytic flux (EMP) is accelerated to compensate for the carbon loss to-
ward acetate.

The PAM’s stoichiometric and protein allocation constraints support feasible growth
states beyond the assumed maximum glucose uptake rate (Fig. 3). However, the
increase in growth rate is at the expense of biomass yield, which becomes evident by a
drastic decrease of the flux through the EMP pathway and the TCA cycle and a progres-
sively increasing acetate secretion rate. These simulation results do not necessarily
indicate an underestimated maximum glucose uptake rate since PAM parameterization
stays feasible even for maximum glucose uptake rates far beyond physiologically rele-
vant values (data not shown). In fact, this suggests that the main metabolically limiting
factor for E. coli is neither stoichiometry nor protein allocation. As we will show in the
next section, maximal growth rates may be attributed to a limited, maximum molar
protein synthesis rate, thus indicating transcriptional restrictions as the determining
growth-limiting factor.

Computing maximum substrate uptake rates. Since glucose is the preferred car-
bon source of E. coli, its metabolism and regulation are adapted for an effective glu-
cose utilization, which led us to assume that there are no unused enzymes under glu-
cose-excess conditions. However, it is reasonable to assume that such a state of
adaption does not hold for alternative carbon sources. Thus, experimentally observed
substrate uptake rates may not reflect growth states with (near-)zero unused enzymes.
To enable the PAM to simulate growth on alternative carbon sources without the need
for cultivation data, we approximated maximum substrate uptake rates assuming a
maximum total protein synthesis rate NP,max. NP,max represents a global cellular con-
straint for protein biosynthesis, applicable for any substrate. It manifests at the maxi-
mum substrate uptake rate and therefore at maximum growth at which the unused
enzyme sector approaches zero. In the PAM, NP,max represents the sum of molar synthe-
sis rates of proteins from the active enzymes and the translational sectors.

Based on the PAM and phenotypic data of E. coli grown on several substrates (61), we
found that an NP,max of 2.04 mmol g21

cdw h21 defines maximum substrate uptake rates
(Table S1). For glucose as the sole carbon source, an uptake rate of 9.82 mmol g21

cdw h21 is
predicted accordingly. Interestingly, experimental values suggest that the maximum
growth rate on acetate is approached for an uptake rate of 19.6 mmol g21

cdw h21 and a pro-
tein synthesis rate below NP,max. This phenomenon indicates that protein allocation limits
the maximum growth on acetate. Acetate is metabolized through the TCA cycle and the
GLYXS (61). Energy-yielding routes other than respiration are biochemically impossible
since substrate phosphorylation via the protein-efficient fermentation pathway results in
acetate formation and, hence, a metabolic cycle with zero net carbon uptake. As a conse-
quence, ATP generation solely relies on protein-costly respiration. We assume that the allo-
cation of protein to the respiratory pathway is ultimately limited by the total protein con-
centration f P,c. Thus, ATP supply and cofactor regeneration become the limiting factors
before the maximummolar protein synthesis capability is reached.
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By parameterizing the unused enzyme sector with the substrate-specific maximum
substrate uptake rates, PAM simulations of phenotypes of E. coli grown on alternative
carbon sources showed a good correlation with experimentally observed data (Fig. 4).
The overestimation of growth and acetate secretion rates at the determined maximum
substrate uptake rates (Fig. S1) indicates an unused potential to adapt E. coli to these
alternative carbon sources. This assumption is, for instance, supported by a study by
Fong et al. (62), in which the glycerol uptake rate was evolved to around 15 mmol g21

cdw

h21, which is close to the PAM’s prediction. Interestingly, the shift from glucose to glyc-
erol at the beginning of the evolutionary adaption of E. coli caused immediate, signifi-
cant transcriptional responses. Regulatory mechanisms appeared to significantly affect
the expression of genes associated with catabolism, such as cra and crp, presumably to
nonspecifically scavenge and prepare for alternate substrates. During the adaptive
evolution process, metabolism was focused on the available substrate, glycerol, and
the basal transcriptional state was approached again. Thus, optimal glycerol uptake
and utilization were mediated by changes in transcriptional regulation resulting in the
adaption of catabolism to this sole carbon source. Moreover, flagellar and motility
gene expression decreased during the adaptation, probably increasing the protein
availability for growth-related processes.

Prediction of E. coli flux distributions. By exploiting the optimality principles of
microbial growth, GEMs give quantitative insights into the intracellular flux distribution
and pathway usage, based purely on stoichiometric constraints. For a particular envi-
ronmental condition of interest, the prediction accuracy of the stoichiometric GEM
generally scales with the amount and accuracy of experimental data introduced to the
model in the form of flux constraints. With a minimum need for such data, i.e., the sub-
strate uptake rate, the PAM allows for an accurate blueprint of the intracellular meta-
bolic processes. A comparison with fluxomics data from multiple studies shows that
flux distributions of the central carbon metabolism of E. coli grown on a minimal glu-
cose medium are well predicted by the PAM, which is indicated by Pearson correlation
coefficients up to 0.97 (Fig. 5). Here, the PAM was constrained with the measured glu-
cose uptake rates, and the unused enzyme sector was parameterized according to the

FIG 4 Comparison of experimentally determined (61) and predicted growth and acetate secretion
rates on different, single carbon sources. Substrate uptake rates were constrained according to the
reported values. Maximum substrate uptake rates were approximated according to a maximum total
protein synthesis rate NP,max (Table S1). The goodness of the correlations between simulations and
experiments for growth and acetate secretion rates were determined using the Pearson correlation
coefficient r and the corresponding P value.
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methodically determined maximum glucose uptake rate, which, in turn, was a direct
model output (cf. the previous section). Thus, protein allocation and enzymatic con-
straints alone enhance constraint-based modeling as a metabolic prediction tool, mak-
ing this modeling approach particularly useful under data scarcity. The relatively large
discrepancies between simulated and experimental flux data for the pyruvate kinase
(53, 63) (Fig. 5B and C) result from the neglect of the phosphotransferase system (PTS)
for glucose uptake in the 13C metabolic flux analysis models. The PTS system transfers
the phosphate group from phosphoenolpyruvate (PEP) to glucose during its import,
thereby producing glucose-6-phosphate and pyruvate. The omission of this alternative
uptake system necessitates an elevated pyruvate kinase flux to balance PEP. In tradi-
tional 13C-based metabolic flux analysis, glucose uptake via the PTS and the ABC trans-
porter cannot be dissected, as they do not affect the 13C isotope patterns of metabo-
lites. It is therefore common to incorporate only one pathway in these models.

We further used the methodically determined maximum substrate uptake rates and
constrained the PAM with measured uptake rates to predict flux distributions for non-
glucose carbon sources (Fig. S2). Here, the prediction capabilities were more diverse,
resulting in high correlations for acetate, galactose, and succinate (r . 0.92) but inter-
mediate to weak predictions, e.g., for fructose or gluconate (r . 0.65). In the case of
gluconate consumption, the Entner-Doudoroff (ED) pathway was experimentally
observed to be the main catabolic route, whereas the simulated carbon flux was
exclusively channeled toward pyruvate through the pentose phosphate (PP) path-
way. The flux split between the PP and ED pathways is highly sensitive to the ratio
in the protein demands of both pathways (data not shown). Consequently, incon-
sistencies in the applied kcat values, particularly of backward reactions, but also the
substrate-dependent differences in the biomass compositions (13) may cause these
observed discrepancies. Further in-depth investigations are needed to validate one
or the other assumption.

PAM explains the growth defect upon heterologous protein expression. Enzyme
overproduction or the expression of heterologous genes is a common strategy in
many biotechnological disciplines. General purposes are introducing novel cellular
functionalities, flux enforcement through a specific pathway, or investigation on cellu-
lar processes via reporter proteins. In any case, the introduced pull of proteins from
the limited native protein household and the resulting metabolic burden inevitably
cause a growth defect.

To investigate and evaluate the response of the PAM to such an induced protein

FIG 5 PAM predictions of intracellular fluxes of the central carbon metabolism of E. coli grown on a glucose
minimal medium. The glucose uptake rate was constrained with experimentally determined values. The unused
enzymes sector was parameterized according to the computationally determined maximum value of 9.82 mmol
g21
cdw h21 based on a maximum total protein synthesis rate NP of 2.04 mmol g21

cdw h21. (A to C) The predictions
are compared with experimental flux data from panels A (61), B (63), and C (53). The goodness of the
correlations was computed based on the Pearson correlation coefficient r and the corresponding P value.
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demand, we simulated growth for a range of expression levels of an enhanced green
fluorescent protein (eGFP) and compared relative growth rates with experimental data
from Bienick et al. (64). For the standard concentration of total condition-dependent
protein f P,c of 0.26 g g21

cdw, the simulated relative growth defect is much more pro-
nounced than to experimentally observed growth for intracellular eGFP concentrations
beyond 0.03 g g21

cdw (Fig. 6A). The use of an E. coli TUNER strain, a derivative of the ge-
nome-reduced BL21 strain optimized for protein expression, in this study, explains this
discrepancy. In this strain, the protein requirements for the growth rate-independent
housekeeping sector are reduced, and more resources are available for the metabolic,
condition-dependent protein sectors, which can be reflected in the PAM by increasing
the total protein concentration f P,c. Accordingly, increasing the protein availability by
expanding f P,c about 20% attenuates the detrimental effects of eGFP expression on
growth and results in an excellent reproduction of experimentally observed pheno-
types (Fig. 6A).

Interestingly, the relation between eGFP expression strength and growth predicted
by the PAM is nonlinear, which contrasts with a previous theoretical postulation (64).
The nonlinearity arises from a combined effect of a protein drain from the translational
and the active metabolic enzyme sectors. The enforced protein drain toward eGFP
causes a decline in the ribosome concentration, resulting in a reduced translation rate.
Under the assumption of a constant total protein concentration, the protein allocation
to the metabolic sectors producing biomass precursors, amino acids, and energy
decreases, which, in a vicious cycle, further decelerates the protein production rate
and growth. This intracellular tug-of-war for proteins is intrinsically manifested in the
PAM, leading to outperformance in predicting protein overexpression phenotypes
over too simplified coarse-grained models.

The PAM also discloses relevant effects of the protein drain on the pathway flux
level. For an increasing eGFP expression strength and the accompanied protein defi-
ciency, central carbon fluxes are progressively diverted to fermentation pathways (ace-
tate secretion) and eventually to the ED pathway. Both routes are more protein effi-
cient but yield fewer energy equivalents per substrate molecule than respiration or the
EMP pathway (39, 65, 66). The PAM confirms this diversion of ATP generation from re-
spiratory to fermentation pathways. The proportion of ATP generated by respiration,
more precisely by the ATP synthase, in the total cellular ATP generation rate

FIG 6 (A) Simulated growth rates relative to the maximum growth rate are shown for a range of
intracellular eGFP concentrations using the PAM with a standard (red line) and increased (blue line)
total condition-dependent protein concentration f P,c (0.26 g g21

cdw and 0.31 g g21
cdw, respectively).

Experimental data are taken from reference 64. P values are derived from Student’s t-test and
indicate how well model predictions explain the experimental data. The dashed lines illustrate the
predicted range of values based on theoretical considerations by Bienick et al. (64). (B) Simulated
fluxes through central metabolic pathways are shown for a range of intracellular eGFP concentrations
and a f P,c of 0.31 g g21

cdw.
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significantly decreases with an increasing eGFP expression (Fig. S3). Thus, the excelled
protein burden enforces a shift toward protein-efficient, substrate-level phosphoryla-
tion in E. coli.

Limitations in the protein allocation of single enzymes lead to gene deletion
mutant phenotypes. Alongside the over- and heterologous expression of genes, rear-
rangement of metabolic networks and flux distributions by gene deletions is a core
instrument in metabolic engineering. In recent years, many computational strain
design methods have been developed to accelerate and rationalize the engineering of
microbial cell factories. However, in contrast to the vast number of model-driven strain
design and optimization methods (67), constraint-based methods have often proven
unreliable in predicting phenotypes of gene deletion mutant strains (GMSs). While
GMSs have been shown to evolve toward FBA-predicted phenotypes (68), observed
growth defects and intracellular fluxes of nonevolved GMSs cannot be explained by
stoichiometry and a cellular growth objective alone (69–71).

First, we tested the impact of 10 single-gene deletions on the PAM’s FBA results by
parameterizing the unused enzyme sector with the methodically determined maxi-
mum glucose uptake rate of 9.82 mmol g21

cdw h21. The calculated phenotypes did not
significantly differ from the unperturbed wild-type solutions and, hence, did not com-
pare to experimental data (70, 72) (Fig. S4). Only after constraining the glucose uptake
rate to the measured values did the simulated growth and acetate secretion rates cor-
relate well with the experiments (Fig. 7). Furthermore, a blind test in the form of FBA
simulations augmented with in vivo glucose uptake rates of the GMS, but with an intact
target gene, yielded the same phenotypes (Fig. S5). These results led us to conclude
that the main driver for the observed growth defects of GMSs is a naturally orches-
trated catabolite uptake repression induced by the respective network perturbations.
A gene disruption resulting in a growth phenotype implicates a decrease in the levels
of one or more amino acid precursors since tight proteome coordination (4) hampers
enzyme allocation toward alternative precursor synthesis routes. According to the
coarse-grained model of You et al. (4), which considers the general mechanism of rRNA
transcription (73), low amino acid levels stall ribosomal protein synthesis via ppGpp.
Moreover, low precursor levels, such as oxaloacetate or a-ketoglutarate, lead to an
increased cAMP synthesis and elevated CRP-cAMP levels, which foster the expression
of catabolic enzymes for alternative substrates adding to growth reduction. Elevated
cAMP concentrations, which were experimentally observed in multiple GMSs (74), indi-
cate increased CRP-cAMP activities and support this view on gene deletion triggering

FIG 7 (A and B) Comparison of predicted growth (A) and acetate secretion rates (B) of gene-deletion
mutant strains with experimentally determined values taken from references 70 (circles) and 72
(triangles). Predictions were made applying the PAM and constraining the glucose uptake rates to
observed values.
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the integral feedback of metabolic control. Therefore, we argue that the degree of met-
abolic rewiring in GMSs necessary to overcome growth defects is often low. Indeed,
restoration of growth can be achieved by evolutionary adaption processes that alter
these regulatory patterns (74).

The assumption that a regulatory substrate uptake inhibition shapes GMS’ pheno-
types raised the question if the PAM can quantitatively predict substrate uptake
modes. To tackle this question, we recalled computational frameworks such as minimi-
zation of metabolic adjustment (MOMA) (75), regulatory on/off minimization (ROOM)
(76), and relative change (RELATCH) (69), which determine the metabolic impact of
gene knockout strains. The common principle behind all three methods is the minimi-
zation of the metabolic response to genetic perturbations due to an unchanged regu-
latory system that forces the GMS’ flux distribution toward the original steady state. In
the context of protein allocation, the minimal response principle can be translated as
follows: upon a network perturbation, a GMS establishes a substrate uptake rate so
that increases in protein allocation toward single enzymatic reactions are minimal
compared to genetically unperturbed strains. The cellular objective is to allow for maxi-
mum metabolic activity in the face of knockout-induced flux rerouting and a ham-
pered reallocation of protein due to a strict (wild-type) regulatory regime.

We applied the minimal response principle to the PAM for mutant phenotype pre-
dictions, and we simulated growth optimal flux distributions for a range of substrate
uptake rates (cf. Materials and Methods for a detailed description). For each flux distri-
bution, the difference in the synthesis rate DNe between a reference, wild-type state at
maximum growth and a mutant state is calculated for each enzyme within the PAM.
The GMS’s maximum substrate uptake rate is determined from the flux distribution for
which DNe meets a defined upper bound DNcrit

e for at least one enzyme within that flux
distribution. In doing so, we assign a certain flexibility to the overexpression capacity
of single enzymes, which may be attributed to the activation of underutilized enzyme
capacities. Moreover, if DNcrit

e is met for one enzyme, flux rerouting to circumvent the
saturated enzyme reaction is impossible. Refusing substantial metabolic rewiring con-
forms to experimental observations that unevolved GMSs do generally not show a
large amount of metabolic adjustment to the metabolic network perturbations (68,
75). The strict upper bound DNcrit

e reflects this metabolic rigidity on changes of enzyme
synthesis rates in GMSs compared to the parental wild-type strain.

Figure 8 shows the prediction results in comparison to experimentally determined
phenotypic data (70–72) for an DNcrit

e of 16 nmol g21
cdw h21. DNcrit

e was derived from min-
imizing the discrepancy between simulated and experimentally observed phenotypes
for various single-gene deletion mutants (cf. Materials and Methods for a detailed
description). With one exception, there is a general agreement between predicted and
experimentally determined phenotypes (Pearson correlation: r = 0.81, P = 7.76 �
10–11). By disregarding the Drpe deletion mutant, the Pearson correlation improves to
r = 0.97 with a P value of 1.5 � 10–23. For the omitted outlier, simulations show a near-
wild-type behavior, whereas growth is significantly reduced in the experiment. The in
vivo observed growth defect of the Drpe GMS is peculiar since knockouts of enzymes
adjacent to ribulose-phosphate 3-epimerase, such as gnd, do not show a similar phe-
notype. Even though the gene products of gnd and rpe catalyze consecutive reactions
transforming 6-phospho-D-gluconate to D-xylulose 5-phosphate, an important interme-
diate in the PP pathway, deletion of gnd has a significantly smaller effect on growth, as
does the deletion of rpe. Moreover, the experimentally determined phenotype of a
Drpe GMS from reference 77 was similar to the wild-type E. coli strain and thus
obscures a plausible judgment of the simulated phenotype.

The considerable agreement between experimental and simulated phenotypic data
also applies to intracellular flux data. We computed flux distributions for single-gene
deletions that result in an experimentally proven inactivation of the corresponding
reaction (i.e., we excluded single-gene deletions of isozymes) (71). The predicted flux
responses correlated well with experimentally determined flux data (Fig. 9), noticeable
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on Pearson’s correlation coefficients of r . 0.93, for all tested single deletions, except
for the DtpiA mutant (r = 0.67). For the DtpiA GMS, the experimentally observed rerout-
ing of the glycolytic flux through the methylglyoxal pathway toward pyruvate (71, 78)
contrasts with the PAM results, which suggests the activation of the ED pathway sur-
passes the blocked glycolysis. The simulated behavior can be traced back to an under-
estimated protein demand of the ED pathway, as predictions were improved after
decreasing the kcat values of the two central ED pathway reaction steps phosphogluco-
nate dehydratase and 2-dehydro-3-deoxyphosphogluconate aldolase to 2.5% of the
original values. After reevaluating the maximum glucose uptake rate, the simulations
showed a diversion of the glycolytic flux into the methylglyoxal pathway and acetate
secretion (Fig. S6). This selective adaption of turnover numbers, and thus of protein
costs for the corresponding reactions, resulted in a significant convergence of simu-
lated flux data toward measured values for the DtpiA and also the Drpe GMS (r of 0.90
and 0.99, respectively) (Fig. S7). However, at the same time, flux predictions for the
Dgnd mutant were deteriorated (r = 0.95). Here, flux was shifted from the ED pathway
toward glycolysis, which contradicts experimental data. Nevertheless, the kcat value
adaption only slightly lessened the PAM’s overall predictive capabilities (Fig. S7) and
thus generally points to the need for fine-tuning kinetic parameters to improve the
flux split between pathways across different conditions.

DISCUSSION

Proteins are the major molecular class in cells, and because they are the catalyst for
global cellular functionalities, the importance of the mutual connection between mi-
crobial metabolic behaviors and protein allocation is broadly accepted (3, 5–7, 37–39).
Based on existing techniques for implementing protein allocation and enzymatic con-
straints in constraint-based modeling (37, 40), we implemented a methodology to
account for the total condition-dependent proteome in an E. coli GEM. Besides the
integration of basic enzyme kinetics in the form of turnover numbers to model the
concentrations of active enzymes, the resulting PAM considers simple, linear relations
between microbial growth and the translational protein as well as the unused enzyme
sector to describe 81% of the total protein mass concentration.

The PAM’s accurate predictions confirmed the prominent role of protein allocation in
shaping microbial metabolism. Nevertheless, protein allocation itself appears to be

FIG 8 Comparison between simulated and experimentally determined phenotypes of GMSs without
considering observed glucose uptake rates as model constraints. Predicted growth, glucose uptake,
and acetate secretion rates are plotted against experimentally determined values taken from
references 70 (blue), 71 (green), and 72 (orange). All values were normalized with corresponding wild-
type data. Predictions were made applying the PAM and constraining the unused enzyme sector
according to a maximum glucose uptake rate of 9.82 mmol g21

cdw h21. The maximum overexpression
capacity of single enzymes DNcrit

e was set to 16 nmol g21
cdw h21.
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regulated by biochemical limits. Genetic sequencing results of E. coli strains that have
undergone extensive adaptive laboratory evolution (ALE) (79) suggest a causal link
between transcription limitations and maximum cell proliferation rates. The adapted
strains, all exhibiting a fitness increase of up to 1.6-fold, showed mutations in the rpoB or
rpoC gene leading to single amino acid substitutions in the b/b9 subunit of the RNA po-
lymerase. This subunit is part of the enzyme’s active center. Thus, the observed muta-
tions globally affect transcription (79). We introduced the total molar synthesis rate of
proteins as a proxy for the transcription capability of E. coli since the PAM does not rep-
resent any transcriptional processes. We found that maximum substrate uptake rates,
and consequently maximum growth rates, are dictated by an ultimately limited total
molar synthesis rate of condition-dependent proteins. Based on our study, we presume
that a reduction of transcriptional limitations in evolved E. coli strains allows for an
increased protein allocation toward the metabolically active enzymes and translational
protein sector. A detailed proteomics study is necessary to uncover changing protein
allocation principles in growth-optimized microbial strains and to test this hypothesis
with the PAM.

By recognizing transcriptional limitations as hard constraints for the microbial me-
tabolism and recalling that the presented PAM predictions represent growth optimal
flux states, we deduce a cellular principle, which is supported by previous findings (39);
particularly under substrate-limited conditions, E. coli regulates central cellular proc-
esses to maintain a Pareto-optimum between growth rate and the ability to adapt its
metabolism flexibly to changing environmental conditions. The degree of flexibility is
directly linked to the amount of allocated unused enzymes, which is hard-coded in the

FIG 9 Comparison between experimentally determined and simulated flux distributions of GMSs without considering
observed glucose uptake rates as model constraints. Predicted intracellular flux rates are plotted against experimentally
determined values taken from Long and Antoniewicz (71). All data were normalized with corresponding glucose uptake
rates. Predictions were made applying the PAM and constraining the unused enzyme sector according to a maximum
glucose uptake rate of 9.82 mmol g21

cdw h21. The maximum overexpression capacity of single enzymes DNcrit
e was set to

16 nmol g21
cdw h21.
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PAM. Interestingly, the cell retains a strictly substrate uptake-orientated allocation of
protein to the unused enzyme sector even when protein becomes a metabolically lim-
iting factor, apparent from the onset of overflow metabolism. This preservation of flexi-
bility could allow for an evolutionary advantage in the original environmental niche.
However, it may be a promising target for engineering E. coli or any microbe toward a
high-performance cell factory.

Recently, systems metabolic engineering was emphasized as an integral part of the
development and optimization of microbial cell factories (67, 80–83). Thus, we want to
put the PAM forth to highlight the advantages of considering total condition-depend-
ent proteome allocation for constraint-based modeling techniques that favor more
accurate mutant strain predictions. We showed sound predictions of growth upon a
range of overexpression levels of a nonenzymatic protein. The predictive capability for
the overexpression of enzymes participating in metabolic reactions, e.g., in heterolo-
gously expressed pathways, still needs to be verified. However, the strict regulation of
protein allocation, represented by the functional description of translational protein
and unused enzyme sectors in the PAM, appeared to shape metabolic responses and is
insensitive to genetic interferences. We also confirmed a rather inflexible protein allo-
cation behavior for gene deletion mutant strains. Coherent prediction results were
obtained by allowing only small divergences from a wild-type expression rate of single
enzymes. Hence, in addition to the restrictions mediated by CRP-cAMP, we propose a
link to transcriptional limitations, similar to our observation of maximum growth of
wild-type strains mentioned above. This hypothesis is supported by ALE experiments
in which adaption of single-gene deletion mutants frequently generated mutations
affecting the regulation of global and pathway-specific transcription (74). These muta-
tions possibly eliminate transcriptional hurdles and (partly) restore growth rates.

In summary, we want to stress the importance of protein allocation constraints in
GEMs for the systematic constraint-based reconstruction and analysis (COBRA) and the
design of microbial metabolism without having to sacrifice computational speed or
applicability of established COBRA methods (84). However, the limited availability and
credibility of enzymatic kinetic data, particularly of turnover numbers, still poses a sig-
nificant obstacle in providing PAMs for any microorganism. Therefore, we join the call
to establish a thorough kcatome as part of an accessible, genome-wide kinetome (85).

MATERIALS ANDMETHODS
Formulating the protein allocation model. The protein allocation model (PAM) is based on the E.

coli K-12 MG1655 GEM iML1515 reconstruction (45). It includes linear representations of the protein
mass concentrations of the active enzymes, the unused enzymes, and the translational protein sector as
additional constraints. The sum of the protein mass concentrations of all sectors is kept constant accord-
ing to Equation 1. The modeled protein sectors are described in detail in the following.

The translational protein sector. In agreement with previous studies, a linear correlation between
the translational protein sector f T and the growth rate m (5, 41) was implemented. Therefore, the
inverse of the maximum ribosomal elongation rate wT and a measure f T,0 for an increasing overcapacity
of ribosomes with a decreasing growth rate (43, 86) were used as the slope and intercept, respectively:

f T ¼ f T;01wT m (2)

Both parameters wT and f T,0 were determined for E. coli by fitting Equation 2 to measured, cross-
conditional concentration data of the translational protein sector (41) (Fig. 2B), resulting in values of
50.0 mg g21

cdw (19% of the total protein mass concentration f P,c of 0.26 g g21
cdw) and 36.8 mg h g21

cdw for
f T,0 and wT, respectively. The relative value for f T,0 differs from the visual intercept in Fig. 2B, since pro-
tein mass concentrations in Fig. 2 were related to the total protein concentration of 0.32 g g21

cdw meas-
ured by Schmidt et al. (41).

The unused enzyme sector. An evolutionary characteristic of microbes facing unforeseeable
changes in environmental conditions is the synthesis of unused proteins. This protein hedging empow-
ers the cell to quickly increase central carbon metabolism fluxes upon a sudden increase in substrate
availability or to immediately catabolize a new carbon source (44). Enzyme overabundance also facili-
tates metabolic robustness against genetic perturbations (87). However, these protein reserves signifi-
cantly reduce the growth rate, discussed in depth by O’Brien et al. (44) and Scott et al. (3). Protein
expression and (over)allocation is generally coordinated by the cyclic AMP (cAMP)-dependent signaling
pathway via the cAMP-activated global transcriptional receptor protein (CRP) (4, 88) (Fig. 1). The CRP-
cAMP complex enhances the transcription of over 100 genes by attaching near or at their promoter
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regions, thereby mediating the binding of RNA polymerase for transcription initiation (89). The target
genes are mainly associated with catabolism, and thus, CRP-cAMP aids in stimulating the carbon influx
leading to the accumulation of precursors for amino acids and stimulation of protein synthesis. Amino
acid precursors, such as oxaloacetate or a-ketoacids, inhibit the cAMP synthesis, thus lowering the CRP-
cAMP level and closing the negative feedback loop between protein precursors and substrate uptake.
We refer to You et al. (4) for respective insights into the cAMP signaling pathway. In this way, CRP-cAMP
indirectly coordinates the global protein allocation, including the allocation of unused enzymes, even
though the transcription of only a small fraction of genes is directly affected. Considering the cAMP-con-
trolled signaling pathway as a blueprint for protein synthesis regulation, we modeled the unused
enzyme sector as a negative linear function of the substrate uptake flux, which we mathematically
expressed as

f UE ¼ f UE;02wUE �s (3)

where f UE,0 is the unused enzyme concentration at zero substrate uptake, and �S is the substrate uptake
rate. wUE relates the decrease of the unused enzymes’ concentration to the increase in �S. f UE,0 was
determined from ME model simulations of un- and underutilized enzymes (44), resulting in a value of
0.17 g g21

cdw equivalent to 65% of the total protein mass concentration f P,c. At zero substrate uptake rate
(�S = 0), and therefore at zero growth, the sum of unused enzymes and translational protein f UE,0 1
f T,0 is 0.22 g g21

cdw. Thus, near �S = 0 the PAM explains only a fraction (84%) of the total protein mass con-
centration f P,c which is, however, assumed to be constant under any given condition. We expect this
discrepancy to be caused by deviations from an otherwise constant total protein household in severely
starving cells or specific protein requirements during non-growth conditions. The fraction not explained
by the PAM is compensated for by nonphysiological, random activation of metabolic fluxes when calcu-
lating growth-optimal solutions near substrate uptake rates of zero. Thus, the PAM may produce feasible
solutions at low metabolic activity but hardly represent physiologically relevant flux states.

The slope wUE is a measure of the increase in enzyme usage efficiency with increasing substrate
uptake rate. It is individually assigned for each substrate under the assumption that the unused enzyme
concentration is zero at the maximum substrate uptake rate. Thus, wUE is calculated from

wUE ¼ f UE;0

�s;max
(4)

The maximum substrate uptake rate �S;max needs to be provided as an observable but can be
directly inferred from the PAM by assuming an upper limit in the transcriptional capacity, as shown in
“Determination of Maximum Substrate Uptake Rates.”

The active enzyme sector. To account for the enzyme demand of metabolic fluxes, we integrated
enzyme mass balances for all relevant metabolic reactions in the stoichiometric matrix of iML1515
according to the GECKO framework (40), as explained in the following. The employed enzyme mass bal-
ance formulation (Equation 5) relates the flux �e to the minimally required concentration r e of the
enzyme catalyzing reaction e by the enzyme’s turnover number kcat,e. Since the PAM accounts for the
total proteome by mass, we transformed molar to mass concentrations using the molar mass Me of each
enzyme in the GEM.

r e ¼ �e
Me

kcat ;e
(5)

Eventually, the sum of the concentration of all E enzymes constitutes the metabolically active
enzyme sector f AE and is expressed as

f AE ¼
XE
e

r e (6)

Parameterization of the active enzyme sector is important to facilitate a meaningful relation between
fluxes and enzyme concentrations. For the PAM, we determined kcat values for 2,843 enzymes of the
iML1515 model from queries of the BRENDA (90) database following the protocol of Sánchez et al. (40).

Since simulated maximum growth rates were unreasonably low when applying the initial kcat set,
the kcat data set was manually curated to allow for the computation of reasonable phenotypes (cf. Data
Set S1, sheet 1 for the final data set). Therefore, enzymes were ranked according to the sensitivity of
FBA-derived, maximal growth rates toward their kcat values. Approximately 150 kcat parameters that were
found to be most influential on computed growth rates were reevaluated. For most of the underlying
enzymes, no specific kcat entry could be found in BRENDA, and kcat values had been taken from close
enzyme classes during the automated database queries. This kcat approximation was corrected by man-
ually querying SABIO-RK (91), UniProt (92), and primary literature for more sound values regarding
growth optimality. If no specific data could be found for an enzyme, kcat values from adjacent enzyme
classes were manually selected and assigned to the PAM.

The manual curation effort transformed the primary in vitro kcat estimates to effective (or apparent)
in vivo turnover numbers kapp (48, 93), relating enzyme concentrations to metabolic fluxes under unlim-
ited growth conditions. Recently, measurements of kapp,max, the maximum kapp values across conditions,
were extrapolated to genome scale using machine learning models informed with biochemical and
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enzymatic data (94). Interestingly, although the distribution of kapp,max values is significantly different
from our curated set (Fig. S8), simulations using the PAM parameterized with either or both kapp,max sets
yielded comparable phenotypes (data not shown). Thus, it appears that the ratio of kcat values between
different reactions or pathways is an essential factor for the predictive capability of PAMs in general.

Processing of experimental proteomic data from literature. The experimental proteomic data set
generated by Schmidt et al. (41) was used in this study to parameterize the translational and the unused
enzymes sector of the PAM. To fit the units of the data set to the model variables, the protein mass per
cell measured by Schmidt was converted to dry cell weight-based concentration values:

f P ¼ MP

Vmccdw
(7)

Here, f P is the intracellular concentration (g g21
cdw), and MP is the experimentally determined mass

per cell of a protein or a protein sector P. Vm is the growth rate-dependent cellular volume, which was
thoroughly determined by Volkmer and Heinemann (95). The cell dry weight (cdw) concentration per
cell volume ccdw was assumed to be 268.36 gcdw liter21 (50). Refer to Data Set S1, sheets 2 and 3 for the
complete data set.

UniProt identifiers (92) and the COG classification (Clusters of Orthologous Groups) were used to
match the proteins and protein sectors of the PAM to the proteomic data.

Solving the protein allocation model problem. All flux solutions and corresponding phenotypes in
this work represent growth-optimal solutions of the following, classical FBA-problem amended with
additional protein allocation and enzymatic constraints:

max
�2RjNj ;r 2RjEj

m

s:t:Classical FBA constraints

S� ¼ 0 �
lb
i #�i#�ubi

�i$0 g8i 2 N

Protein allocation constraints

r e ¼ �e
Me

kcat ;e
r e$0

g8e 2 E

f T ¼ f T;01wT m

f UE ¼ f UE;02wUE �s

f P;c ¼ f T1f UE1
XE
e

r e

(8)

Here, S is the stoichiometric matrix of the original GEM, and � i is the flux variable of reaction i from
the metabolic reaction pool N. Note that each reversible reaction in the original GEM is split into irrevers-
ible forward and backward reactions to only allow for positive flux values; hence, the lower and upper
flux bounds �lbi and �ubi are equal to or greater than zero. The additional protein allocation and enzy-
matic constraints comprise the mass concentrations r e for each considered enzyme or enzyme complex,
as well as the mass concentrations of the ribosomal and unused enzyme sector f T and f UE, respec-
tively. All protein allocation constraints in Equation 8 were added to the stoichiometric matrix S of the
GEM iML1515 representing the E. coli K-12 MG1655 strain (45).

Each reaction e from pool E, comprising all reactions linked to one or more genes via a gene-pro-
tein-reaction (GPR) relation, is assigned to precisely one protein with a unique turnover number
kcat,e and molar mass Me. In case a reaction e is catalyzed by an enzyme complex (multiple genes are
connected via logical AND operators in the GPR relation), the molar mass Me is the sum of molar
masses of the participating gene products. If two or more enzymes can catalyze the same reaction
independently from each other (multiple genes are connected via logical OR operators in the GPR
relation), the isozymes are merged into one hypothetical protein with a molar mass equal to the
mean of the molar masses of the merged isozymes. Molar masses of enzymes were calculated as the
sum of molar masses of the amino acids constituting the respective primary sequences reduced by
the mass of one water molecule per peptide bond. The amino acid sequences were retrieved from
the KEGG database (96) by queries with the GEM-inherent, KEGG-specific gene identifiers. The kcat
values for all enzymatic reactions in the model were derived as described in the previous section.
The final set of curated kcat values and molar masses of enzymes used throughout this study can be
found in Data Set S1, sheet 1.

The translational and unused enzyme sectors f T and f UE are linearly related to the growth rate
m and the substrate uptake rate �s, respectively. The linear equations of both sectors (Equation 8)
are parameterized with condition-dependent proteomic data (41, 44) as discussed in the respective
Materials and Methods sections and, except for the maximum substrate uptake rate �s, parameters
are maintained for any simulation in this work. Finally, the total mass concentration of condition-de-
pendent protein f P,c is kept constant according to Equation 1 and comprises the sum of the transla-
tional sector f T, unused enzyme sector f UE, and active enzyme sector r e. An overview of the
applied parameters is given in Table 2.

Determination of maximum substrate uptake rates. By applying the PAM with parameterized pro-
tein sectors and minimal medium constraints, maximum uptake rates for single substrates were
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determined assuming a maximally allowable total protein synthesis rate NP,max. NP represents the sum of
molar synthesis rates of proteins from the active enzymes, unused enzymes, and the translational sector.
At the maximum substrate uptake rate, and therefore at maximum growth, the unused enzyme sector is
zero. Thus, the maximum total protein synthesis rate NP,max is

NP;max ¼ m
f T

MR
þ
XE
e

�e=kcat ;e

 !
(9)

Here, MR is the sum of the molar masses of all 21 ribosomal subunits of 3.5� 105 g mol21, and �e is
the fluxes of each enzymatically catalyzed reaction e.

We hypothesized that there is a unique maximum total protein synthesis rate NP,max which deter-
mines maximum uptake rates for any given substrate. Knowledge of NP,max would allow the determina-
tion of maximum substrate uptake rates and the parameterization of the unused enzyme sector (cf.
Equations 3 and 4) solely based on model simulations. A correspondingly parameterized PAM should
therefore be able to correctly predict phenotypes for substrate-limited conditions.

To test this hypothesis, we simulated NP,max values for substrates considered by Gerosa et al. (61)
using PAMs parameterized with a wide range of maximum substrate uptake rates. More specifically, the
unused enzyme sector was parameterized at each of the tested maximum substrate uptake rates accord-
ing to Equation 4. Growth rates were simulated by optimizing the parameterized PAMs for growth and
constraining the substrate uptake rate to the experimentally determined value. These simulated growth
rates were then compared with the observed values by computing the absolute difference. At an NP,max

of 2.04 mmol g21
cdw h21, the sum of absolute differences between simulated and measured growth rates

was minimal. For each of the considered substrates, maximum uptake rates (parameter of the PAM)
leading to NP,max by applying the experimentally observed substrate uptake rate (constraint) were
extracted and are shown in Table S1.

eGFP overexpression. Expression of eGFP was simulated by introducing an additional column to
the stoichiometric matrix of the PAM representing a protein with a mass of 2.8� 104 g mol21. Thus,
the expression strength of eGFP (g h21 g21

cdw) is controlled by the respective model variable describ-
ing the protein’s intracellular concentration and the growth rate. To identify the total protein con-
centration that represents the elevated protein availability in the E. coli TUNER strain used by
Bienick et al. (64), the correlation between eGFP concentrations and growth rates relative to the
wild-type was computed with the PAM for a range of total protein concentration values f P,c. For
each f P,c, the summed difference between simulated and measured relative growth rates was calcu-
lated as a measure for the agreement between simulation and experiment. Student’s t-test was
applied to determine the f P,c yielding the best possible correlation between measurements and
simulations.

Phenotype determination of gene deletion mutants. The deletion of a gene was simulated by
identifying all reactions connected to this gene via the model-inherent GPR rules and setting the respec-
tive upper bounds to zero. To predict maximum substrate uptake rates of GMSs, enzyme synthesis rates
were calculated from growth-optimal flux distributions for a wide range of substrate uptake rates. The
synthesis rate Ne of an enzyme e was computed from flux distributions by

Ne ¼ r e �m (10)

where m and r e are the growth rate and the molar concentration of enzyme e, both being optimization
variables to the PAM.

For each tested substrate uptake rate, the maximum difference in the computed enzyme synthesis
rate DNmax

e between the GMS and a reference state representing a wild-type strain grown under sub-
strate-unlimited conditions was identified among all modeled enzymes. By scanning DNmax

e values from
high to low substrate uptake rates, the maximum substrate uptake rate for a GMS is found as soon as
DNmax

e meets a critical value DNcrit
e (also termed maximum overexpression capacity). Thus, the corre-

sponding metabolic mode supports a maximally achievable growth rate under a limited flexibility to
change or reallocate protein among metabolic pathways and their single reactions. We assumed the
level of restriction in flexibility DNcrit

e to be the same in any GMS according to phenotypic data of GMS
from Long et al. (70), Long and Antoniewicz (71), and Fong et al. (72). We found that a DNcrit

e of
16.0 nmol g21

cdw h21 leads to a minimal sum of errors between predicted and observed growth, substrate

TABLE 2 Source and values of universal PAM parameters applied for all simulations in this study

Parameter Symbol Value Source
Total protein concentration f P,c 258.0 mg g21

cdw Derived from the sum of experimentally determined protein
masses under different environmental conditions (41)

Intercept translational protein sector f T,0 49.9 mg g21
cdw Derived from fitting and extrapolating proteomic data of

translational protein (41)
Slope translational protein sector 36.8 mg h g21

cdw Derived from fitting proteomic data of translational protein (41)
Intercept unused enzymes sector f UE,0 171.1 mg g21

cdw Derived from fitting and extrapolating proteomic data of all
proteins included in the iML1515 metabolic model (41, 44)
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uptake, and acetate secretion rates. The corresponding comparisons of experimentally determined and
predicted phenotypes as well as flux distributions are shown in Fig. 8 and 9, respectively.

Implementation. All conducted simulations, model reconstructions, and data analyses were per-
formed in MATLAB 2018a on a Windows 7 machine with 16 GB of RAM and an AMD FX-8350 eight-core
(at 4.00GHz) processor. COBRA toolbox functions (84) and the Gurobi Optimizer (8.0.0; Gurobi
Optimization, Inc.) were utilized to process and solve the metabolic models. All MATLAB functions neces-
sary to handle and build a protein allocation model (PAM) from a COBRA format-based, stoichiometric
reconstruction are provided on GitHub (https://github.com/Spherotob/PAM_public).
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