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Abstract

The intestinal epithelium serves critical physiologic functions that are shared among all ver-

tebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying

these functions have changed over the course of vertebrate evolution. We generated

genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells

(IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC

functions are achieved through common transcriptional regulation. We found evidence for

substantial common regulation and conservation of gene expression regionally along the

length of the intestine from fish to mammals and identified a core set of genes comprising a

vertebrate IEC signature. We also identified transcriptional start sites and other putative reg-

ulatory regions that are differentially accessible in IECs in all 4 species. Although these sites

rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly

conserved IEC expression in a zebrafish reporter assay. Common putative transcription fac-

tor binding sites (TFBS) found at these sites in multiple species indicate that sequence con-

servation alone is insufficient to identify much of the functionally conserved IEC regulatory

information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions,

we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct

population of Notch-positive cells in the intestinal epithelium. Together, these results show

how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo

reporter assays can reveal tissue-specific regulatory information conserved across 420 mil-

lion years of vertebrate evolution. We define an IEC transcriptional regulatory network that

is shared between fish and mammals and establish an experimental platform for studying

how evolutionarily distilled regulatory information commonly controls IEC development and

physiology.
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Author summary

The epithelium lining the intestine is an ancient animal tissue that serves as a primary site

of nutrient absorption and interaction with microbiota. Its formation and function

require complex patterns of gene transcription that vary along the intestine and in special-

ized intestinal epithelial cell (IEC) subtypes. However, it is unknown how the underlying

transcriptional regulatory mechanisms have changed over the course of vertebrate evolu-

tion. Here, we used genome-wide profiling of mRNA levels and chromatin accessibility to

identify conserved IEC genes and regulatory regions in 4 vertebrate species (zebrafish,

stickleback, mouse, and human) separated from a common ancestor by 420 million years.

We identified substantial similarities in genes expressed along the vertebrate intestine.

These data disclosed putative conserved transcription factor binding sites (TFBS)

enriched in accessible chromatin near IEC genes and in regulatory sites with accessibility

restricted to IECs. Fluorescent reporter assays in transparent zebrafish showed that these

regions, which frequently lacked sequence conservation, were still capable of driving con-

served expression patterns. We also found a highly conserved region near mammalian

and fish hes1 sufficient to drive expression in a specific population of IECs with active

Notch signaling. These results establish a platform to define the conserved transcriptional

networks underlying vertebrate IEC physiology.

Introduction

Epithelial cells lining the intestinal tract serve important and evolutionarily conserved func-

tions in animal physiology. The intestinal epithelium is the primary site for absorption and

metabolism of diverse dietary nutrients and xenobiotics, relays metabolic and immunological

signals to the rest of the body, and provides a critical barrier to microorganisms that reside

within the intestinal lumen [1]. Dysfunction in the development and physiology of intestinal

epithelial cells (IECs) has been implicated in a growing number of human diseases, such as

inflammatory bowel diseases [1], colorectal cancer [2], food allergy [3], obesity [4,5], malnutri-

tion [6], and infectious diarrheas [7]. These insights have fueled considerable interest in the

molecular and cellular mechanisms underlying IEC biology.

Due to the common evolutionary origins of the animal intestine, animal models are

invaluable tools in understanding the intestinal epithelium, including its normal develop-

ment and dysfunction. The appearance of a “through gut” with a distinct mouth, anus, and

intermediate regions was an early step in bilaterian animal evolution [1]. It is thought that

many of the anatomic and physiologic features of the intestine are conserved between bila-

terian lineages, with mammals (members of Sarcopterygii) and bony fishes (members of

Actinopterygii) last sharing a common ancestor approximately 420 million years ago [8].

Although lineages within these vertebrate taxa have evolved specific adaptations in their

intestinal anatomy and physiology, fundamental aspects appear to be conserved [9]. For

example, the intestinal epithelium in mammals and fishes comprises functionally similar

IEC subtypes, including absorptive enterocytes and secretory cells such as goblet cells and

enteroendocrine cells. These differentiated cells are rapidly renewed through the action of

IEC stem or progenitor cells residing at the base of villi or rugae [10,11]. Another prominent

conserved feature of the vertebrate intestine is anatomic and physiologic specialization along

the anteroposterior axis. In mammals, the gut is generally composed of a small intestine,

which includes a duodenum in which chemical digestion occurs, a jejunum in which the

majority of nutrients are absorbed, an ileum that specifically absorbs bile salts and vitamin
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B12, and a colon or large intestine in which absorption of water and salts occurs. Though the

intestinal tract of zebrafish and other fishes display anteroposterior regional specialization,

the evolutionary relationship with mammalian intestinal regions has remained unclear. The

zebrafish intestine was originally described to consist of 3 histologically defined segments:

(1) anterior or rostral intestine, also known as the intestinal bulb or segment I; (2) the middle

intestine or segment II; and (3) the posterior or caudal intestine or segment III [12–14].

Though this 3-segment nomenclature has been used to describe the zebrafish intestine from

larval to adult stages, the extent to which intestinal segmental programs are maintained

across zebrafish life stages remains unresolved. Transcriptomic characterization has shown

that the anterior intestine of the adult zebrafish generally expresses genes with similar func-

tion to the mammalian small intestine, while the posterior zebrafish intestine corresponds to

the mammalian large intestine [15]. However, it is generally unknown which gene sets are

expressed in similar anteroposterior patterns across multiple species.

Recent studies have begun to identify transcription factors (TFs) and regulatory regions

that contribute to the identity and function of IECs in individual species [16–19]. For example,

CDX2 acts as a master sequence-specific TF that regulates intestinal patterning and epithelial

identity in mice and zebrafish [18,20,21] and controls chromatin access to regulatory regions

for other TFs that specify IEC identity in mammals, such as the small intestinal TFs HNF4A

and GATA4 [18,22–24]. IEC subtype specification is similarly controlled through transcrip-

tional regulatory mechanisms. These include Wnt signaling [25] and a Notch signaling cascade

that uses downstream TFs such as RBPJ, ATOH1, and HES1, which direct IEC specification

into secretory or absorptive lineages [12,17]. Still, it remains uncertain which portions of the

regulatory framework defining IEC function are conserved, hindering the utility of model

organisms to help dissect relevant signaling mechanisms, transcriptional programs, and dis-

ease states.

Genome-wide accessible chromatin assays can identify cell type and condition-specific cis-

regulatory regions. These nucleosome-depleted regulatory regions contain transcription factor

binding sites (TFBS) that provide a critical insight into the underlying transcriptional networks

that define tissue identity. However, recent studies have found accessible regulatory regions

largely similar when comparing IEC stem cells and their downstream subtype progenitor

intermediates, in spite of differences in gene expression [17]. Similarly, gene expression

changes induced in IECs upon colonization with a microbiota were not associated with overt

alterations in the accessible chromatin landscape [16]. Together, these findings suggest that

aspects of IEC cell plasticity, differentiation, and environmental response are not driven by

gross changes in the accessible chromatin landscape, making key regulatory regions difficult to

identify. Differential expression or binding of lineage-specific or environmentally responsive

TFs [16,26] or chromatin modifiers like the histone deacetylase HDAC3, which plays impor-

tant roles in how IECs respond to microbes [27], may partially explain the lack of gross chro-

matin accessibility changes in certain IEC populations [16,17]. However, it remains unclear

which regulatory mechanisms serve similar roles in IEC function in different species or if con-

served accessible chromatin regions across species can identify important regulatory mecha-

nisms that have not been easily identified within a single species [28].

In this study, we tested the hypothesis that conserved IEC functions are achieved using con-

served transcriptional regulatory mechanisms. We profiled the transcriptome and accessible

chromatin landscape of IECs from 4 evolutionarily distant vertebrates: zebrafish, stickleback,

mouse, and human. We found substantial overlap at a transcriptional level including a com-

mon group of IEC signature genes, evidence for common regulation of IEC subtype specifica-

tion, and unexpected similarity between gene expression along the length of the intestine from

fish to mammals. These transcriptional similarities were not easily explained by neighboring
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conserved regions that were commonly accessible in IECs. However, using accessible chroma-

tin regions and TFBS prediction we were able to recover common IEC-related regulatory

information genome wide and at several important representative loci, despite a scarcity of

sequence conservation around genes commonly expressed in IECs for over 420 million years.

Results

Intestinal epithelial gene expression is conserved in vertebrates

In order to understand the extent of gene expression similarity across vertebrate intestinal

epithelia, we compared newly generated gene expression data from IECs isolated from adult

human colon, adult zebrafish intestine, adult stickleback intestine, and from data we previ-

ously generated from adult mouse colon and ileum [16] (Fig 1A). We find a strong correla-

tion in gene expression between fish and mammalian IECs throughout the dynamic range of

the transcriptome (Fig 1B and 1C, S1A Fig). Using principal component analysis (PCA) and

hierarchical clustering, we find that the expression of orthologous genes is more similar

amongst IECs across species than mouse IECs are to other mouse tissues (Fig 1B–1E, S1 and

S2 Figs). Furthermore, unrelated RNA sequencing (RNA-seq) data from whole mouse intes-

tine cluster with data from all vertebrate IECs (Fig 1D and 1E) [29]. These results reveal that

gene expression levels in IECs are similar across these 4 vertebrate species and suggest that

many aspects of IEC physiology have been conserved since the common ancestor of mam-

mals and fish.

In our PCA of mRNA expression from IECs and mouse tissues, we found that principal

component 1 (PC1) separated mammalian and fish IECs from all other tissues. We identified

470 genes whose expression levels highly correlate with PC1 and exhibit high expression in

IECs relative to other tissues, though their expression and function is not necessarily exclusive

to IECs (Fig 1D and 1E, S1 Fig, S1 Table, Materials and methods). These IEC signature genes

are representative of physiologic functions and cell types in the intestinal epithelium and

include genes involved in lipid, carbohydrate, and protein metabolism (Fig 1F and 1G, S2

Table). IEC signature genes, including retinol binding protein 2 (RBP2, with rbp2a assigned as

the zebrafish ortholog by Ensembl), fatty acid binding protein 6 (FABP6), and cadherin 17

(CDH17), are amongst the most highly expressed genes in IECs from several species (Fig 1H,

S1D Fig). In addition, we identified genes indicative of different IEC subtypes within the intes-

tinal epithelium including RBP2 [30] and FABP6 (enterocyte) [31], peptide YY (PYY; enter-

oendocrine) [32], and polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6; goblet cells)

[33], consistent with our RNA-seq data representing heterogeneous populations of IECs (S1D

Fig). Ribosomal protein genes and translation components were also highly represented within

this signature, consistent with the intestinal epithelium being one of the most highly-prolifer-

ative tissues [33]. Amongst the IEC signature genes, we found TFs known to be involved in

development and function in the intestine, including the epithelial-specific E26 transforma-

tion-specific (ETS) TF ELF3 [34],HNF4A [18],HNF4G [35], FXR [36], GATA5 [37], and OSR2
[38], suggesting a conserved basal IEC transcriptional network. Several IEC signature TFs have

known associations with human Inflammatory Bowel Diseases (IBD), including SMAD7 [39],

CEBPG [40], STAT3 [40–42], XBP1 [43],HNF4A [44], ELF3 [41], IRF1 [45], and NFκB compo-

nents IKBKB, IKBKG, and NFKBIZ [46]. Furthermore, the most common human disorders

associated with IEC signature genes were obesity-related traits, IBD, and Type 2 Diabetes (S1

Table). Together these data highlight the utility of mouse, zebrafish, and stickleback in model-

ing human intestinal development and disease and suggest a basal similarity in the transcrip-

tional mechanisms underlying intestinal epithelial homeostasis in vertebrates.

Conserved transcriptional regulation in intestinal epithelial cells
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Fig 1. Transcriptional profiling of intestinal epithelial cells (IECs) from multiple species show

conserved expression after 420 million years since a common ancestor. (A) (Left) A phylogenetic tree

showing time since a common ancestor for human (Homo sapiens), mouse (Mus musculus), zebrafish (Danio

rerio), and stickleback (Gasterosteus aculeatus) species. (Right) Simplified schematics showing the intestinal

tract of all 4 organisms in gray with the region of collected IEC sample colored: green (human colon IECs),

Conserved transcriptional regulation in intestinal epithelial cells
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Evidence for transcriptional conservation and regulation along the length

of the intestine

The results described above revealed conserved IEC signatures by comparing RNA levels from

intestinal IECs to other tissues. However, we speculated that signatures of intestinal identity

might be further resolved by comparing gene expression along the intestine’s anteroposterior

axis in zebrafish and mice. Using previously published datasets we identified gene orthologs

that showed similar expression patterns along the adult zebrafish intestine (divided into 7 sec-

tions of equal length) [15] and along the adult mouse intestine (divided into duodenum, jeju-

num, ileum, and colon) (Fig 2, S3 Fig, Materials and methods) [47]. Of 493 genes that showed

high expression in the anterior of the zebrafish intestine, we found over 70 genes sharing simi-

lar high expression in the anterior intestine of mouse [15], including IEC signature genes like

Rbp2,Aldob, and Ehhadh (Fig 2A and 2B, S3 Fig). Many of these genes (e.g., Fabp2, Acsl5,
Agpat2, Slc27a4, and Dgat2) are critical in lipid metabolism and uptake, which is consistent

with lipid absorption and metabolism taking place mostly in the small intestine in mouse and

anterior portion of the intestine in zebrafish [48]. However, ordering genes by mouse duode-

num expression level reveals that some of these genes have surprisingly high similarities in

cross-species expression patterns along the length of the intestine (Fig 2A and 2B, S3C Fig).

For example, adenosine deaminase (Ada), which is most highly expressed in duodenum in

mouse [49], is most highly expressed in the zebrafish sections 1–2 (Fig 2B, S3C Fig). Similarly,

Fabp2 and Enpep, which are expressed most highly in the jejunum and ileum in mouse, are

most highly expressed in sections 3–5 in zebrafish intestine (Fig 2C and S3C Fig). This suggests

an unappreciated similarity between IEC gene expression along the small intestine in mam-

mals (mouse) and teleosts (zebrafish) and the potential for further examples of subregionaliza-

tion in the zebrafish intestine that have not been previously described [13–15].

In support of this conserved regional specification, we also found a small group of genes

that are expressed highly only in the terminal portion of the zebrafish anterior intestine (sec-

tion 5 [15]), which occupies a location similar to the mammalian ileum (Fig 2C and S3D Fig).

The mammalian ileum is involved in the uptake of bile salts following their use in emulsifi-

cation of lipids in the anterior small intestine [50]. Two IEC signature genes involved in bile

handling, Fabp6 and Slc10a2, show high expression in this narrow region of zebrafish intestine

and mouse ileum (Fig 2C and S3D Fig). In addition, the proteases Lgmn, Scpep1, and 3 cathep-

sins are in this cluster and show similar high expression largely in the mouse ileum, suggesting

a regionally conserved utilization of lysosomal-cathepsin—mediated degradation (Fig 2C and

S3D Fig) [51]. These observations suggest that the cellular differentiation and physiological

programs deployed in this region of the zebrafish intestine are specialized for bile salt recovery,

orange (mouse ileum IECs), red (mouse colon IECs), blue (zebrafish whole intestine IECs), and purple

(stickleback whole intestine IECs). (B) Scatterplot of Fragments Per Kilobase of transcript per Million mapped

reads (FPKM) values for 1-to-1 orthologs from mouse ileum IEC and zebrafish IEC samples shows a positive

correlation coefficient (Pearson r2 = .273; Spearman r2 = .416). (C) Same as (B) for mouse colon IECs and

zebrafish IECs (Pearson r2 = .341; Spearman r2 = .379). (D) Complete linkage cluster analysis using FPKM

values for 1-to-1 orthologs show similarity between mRNA levels for IECs in comparison to other mouse

tissues. Scale represents values of Pearson distance. Black data sets marked by asterisks are RNA

sequencing (RNA-seq) experiments from non-IEC tissues [29]. (E) Scatterplot of principal component 1 and 2

(PC1 and PC2) using principal component analysis (PCA) of FPKM values for all IEC data sets and other

mouse tissues. (F) Top reported Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways from Database for Annotation Visualization and Integrated Discovery (DAVID) using IEC

signature genes. The enrichment of these gene groups do not clear Bonferroni correction thresholds (S2

Table). (G) Top tissues showing overlap with IEC signature genes from human and mouse Gene Atlas using

Enrichr. (H) The University of California Santa Cruz (UCSC) screenshot of RNA-seq levels at cadherin 17

(CDH17) in 4 species’ IECs (top) and other tissues (bottom) [29] shows expression largely restricted to IECs.

https://doi.org/10.1371/journal.pbio.2002054.g001
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Fig 2. Identification of genes with conserved regional transcriptional specification along the length of

the intestine in zebrafish and mouse. (A) A heat map comparing gene median-centered z-scores of 1-to-1

orthologs from previously published datasets profiling expression levels along the length of the zebrafish [15] and

mouse intestine (Materials and methods, S3 Fig) [47]. Similarly expressed genes are ordered by expression

values of mouse (A) duodenum, (B) jejunum, (C) ileum, and (D) colon. Gene names with asterisks are also

intestinal epithelial cell (IEC) signature genes as defined in Fig 1. Genes can exist in multiple subfigures.

https://doi.org/10.1371/journal.pbio.2002054.g002

Conserved transcriptional regulation in intestinal epithelial cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002054 August 29, 2017 7 / 40

https://doi.org/10.1371/journal.pbio.2002054.g002
https://doi.org/10.1371/journal.pbio.2002054


with strong homology to the mammalian ileum. We also found numerous genes expressed

more highly in the posterior end of the mouse and zebrafish intestine, suggesting similar phys-

iologic functions in zebrafish distal intestine and mouse colon (Fig 2D, S3E and S3F Fig) [15].

Collectively, these observations suggest that the teleost intestine has the capacity to articulate

complex gene differentiation patterns along the length of the intestine that are functionally

and spatially analogous to segments in the evolutionarily distant mammalian intestine.

Accessible chromatin profiling of IECs in 4 species identifies putative

IEC regulatory regions

To test the hypothesis that conserved regions of accessible chromatin underlie the transcrip-

tional similarities we found in IECs, we profiled accessible chromatin in the same cell prepara-

tions that we used to generate our RNA-seq data using Formaldehyde-Assisted Isolation of

Regulatory Elements sequencing (FAIRE-seq) from stickleback, zebrafish, and human colon

IECs. We also used recently published data from our group that profiled mouse ileum and

colon IECs using DNase I hypersensitive sites sequencing (DNase-seq) [16]. Combining IEC

accessible chromatin maps with species-transferable regulatory landmarks such as the tran-

scription start site (TSS) and conserved nonexonic elements (CNEs) allowed us to profile and

define common regulatory information utilized in all species. Accessible chromatin peaks

were frequently enriched at orthologous TSS in IECs, including at IEC signature genes such as

ELF3 (Fig 3A, S3 Table and S2 Fig). This accessible chromatin signal is consistent with typical

genome-wide distributions, though the relationship with accessibility may not be strictly

driven by regulatory regions or transcription that is specific to IECs (Fig 3B and 3C). However,

the related IEC PC1 correlation values, transcription levels, and presence of IEC signature

genes were both higher on average at the TSS with higher accessible chromatin levels, suggest-

ing that the magnitude or presence of accessible chromatin may be conserved at related regula-

tory regions in IECs in distantly related species (Fig 3B and 3C, S4A and S4B Fig).

We compared accessible TSS call overlaps at the TSS for all IEC samples and several cell

lines and tissues from mouse and human Encyclopedia of DNA Elements (ENCODE)/Road-

map [52–54] to determine if accessible chromatin status could identify IEC-specific regions.

We clustered this information to identify common patterns of accessible chromatin status in

all these samples (Fig 3D). While the majority of TSS regions appeared to be constitutively

accessible at most genes in most species and tissues represented, a group of IEC signature

genes had TSSs that were accessible frequently in IECs but less often in other tissues (Fig 3E).

Importantly, genes within this group were also almost always accessible at the TSS in several

independent datasets of intestinal tissue from mouse and human (Fig 3E). This group included

key genes involved in IEC biology such asHNF4A,HNF4G, RBP2,A1CF,CFTR, and CDH17.
Further, we found 3 genes, FABP6, SLC10A2, and TMIGD1, that showed high similarity of

mRNA levels along the length of the intestine at the mouse ileum and zebrafish section 5 (Fig

2C) and showed limited accessibility in nonintestinal tissues with accessibility in some of the

intestine-related datasets (Fig 3E).

To determine if the regions that show chromatin accessibility largely in IECs also showed

conservation at a sequence level, we used multiple metrics that measure sequence conservation

from teleost to mammals. This included zebrafish conserved nonexonic elements (zCNEs), a

stringent comparison of noncoding regions of 14 species, including human and mouse [55].

We also used UCSC liftOver and zebrafish-to-human and zebrafish-to-mouse multiple align-

ment format (MAF) blocks to identify potentially DNA-conserved regions. Though metrics at

the RNA and chromatin levels suggest substantial similarities between teleost and mammalian

intestine and these TSS regulatory regions often show sequence constraint at some level, less

Conserved transcriptional regulation in intestinal epithelial cells
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Fig 3. Accessible chromatin maps in intestinal epithelial cells (IECs) from multiple species reveals common regulatory information without

substantial sequence conservation. (A) Accessible chromatin and RNA sequencing (RNA-seq) data from representative replicates for the IEC

signature gene ELF3 for each organism. For each organism, gene models are represented with thick bars (exons) and thin bars (introns and untranslated

regions). (B) Accessible chromatin signal at the 1,000 bp surrounding the transcription start site (TSS) of 1-to-1-to-1-to-1 orthologs ordered by zebrafish

IEC Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-seq) signal at the base pair coordinate of the gene’s TSS for

zebrafish, stickleback, mouse ileum, mouse colon, and human colon (Right). Moving medians (Left) are shown for PC1 correlation value used to identify

IEC signature genes (500 gene window, 1 gene step; black), Fragments Per Kilobase of transcript per Million mapped reads (FPKM) of associated genes

(250 gene window, 1 gene step; color scheme based on data sets presented in A and throughout), and IEC signature genes are marked by black

horizontal bars. (C) Moving median of accessible chromatin signal at TSS of stickleback, mouse ileum, mouse colon, and human ordered by signal at

zebrafish TSS (250 gene window, 1 step) highlight the relationship between IEC accessible chromatin data in multiple species. Numerical values can be

found in S1 Table. (D) A heatmap of cluster analysis of overlap between accessible chromatin peak calls for IEC samples and additional published

accessible chromatin datasets with the region 1,000 bp upstream of the TSS (TSS-1,000 bp) for IEC signature genes (red bars). Overlap between TSS-

1,000 bp and conservation metrics are represented with blue bars. The total number of overlaps is represented in parentheses for each conservation

metric column, and overlaps are defined as having at least 1 shared base pair. Initials are used to specify IEC data sets: Z; Zebrafish, S; Stickleback, MI;

Mouse Ileum, MC; Mouse Colon, HC; Human Colon. (E) Closeup of the heatmap of clustered genes from panel 3D that frequently showed putative

conserved accessible chromatin at TSS in IEC samples (light blue and green). Color scheme is shared with 3D. (F) A heatmap highlighting common

transcription factor binding sites (TFBS) motif enrichment within the accessible chromatin peaks that fall between the region 10,000 bp upstream of the

TSS and 10,000 bp downstream of the transcription termination site (TTS) of IEC signature genes. Motif enrichment includes known transcription factors

(TFs) involved in IEC biology which are also often expressed highly in our IEC samples. E26 transformation specific (ETS) factors include motifs for

ELF5, EHF, ELF1, GABPA, ETS, Elk1, Fli1, Elk4, ETS1, ERG, SPDEF, and EWS:FLI. (G) The percentage of DNA bases that are either adenosine or

thymine (AT%) (20 bp smooth: 20 bp window, 1 bp step) surrounding TSS as ordered by IEC zebrafish FAIRE signal from (B) and IEC mouse Ileum

DNase signal (Right) shows nonrandom patterns at TSS that (H) vary on average from species to species. (I) Comparison of AT% (20 bp smooth) at

conserved nonexonic elements (CNEs) that by their nature show some similar sequence composition.

https://doi.org/10.1371/journal.pbio.2002054.g003
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than 15% of IEC signature genes had detectable conservation from zebrafish to mouse or

human in TSS regions. This hampered our ability to infer which regulatory regions and puta-

tive TFBS are actually conserved across these species (Fig 3E) [56]. Additionally, most of these

conserved regions were identified by MAF blocks and appeared to have only small regions of

highly degenerate sequence conservation from teleosts to mammals that were located immedi-

ately upstream of transcribed regions and suggestive of minimal functional conservation. We

speculated that common regulatory information could still be shared in these TSS regions

because short, modular TFBS could escape sequence conservation metrics [56–58]. We looked

for enrichment of TFBS using a library of 303 position weight matrices (PWMs) (primarily

derived from human ChIP-seq datasets) within 2 sets of accessible chromatin peaks: (1) those

between 10 kb upstream of the TSS to 10 kb downstream of the transcription termination site

(TTS) [59] (Fig 3F) and (2) those at the TSS of IEC signature genes (S4C and S4D Fig). Com-

mon enrichment of PWMs in accessible chromatin regions at IEC signature genes of different

species identified several TF motifs known to regulate IEC expression in mammals including

HNF1, HNF4A, GATA4, KLF5, and the often similar ETS factors, including ELF3 and SPDEF

(Fig 3F, S4C and S4D Fig) [60–63], that may represent a TF network that control core con-

served aspects of IECs in animals.

Conservation metrics rely on relatively long stretches of DNA sequence, so we tried to iden-

tify sequence properties that varied between species and might interrupt the maintenance of

easily detected conserved sequence. By comparing the percentage of DNA bases that are either

adenosine or thymine (AT%) at TSSs ordered by zebrafish FAIRE signal, we found that gross

sequence characteristics are substantially different at the TSS of orthologs between species (Fig

3G and 3H). AT% decreases at the TSS from approximately 51% in zebrafish to 46% in stickle-

back to 35% in mouse and human (Fig 3H). These differences are maintained on average in

the area surrounding the TSS (Fig 3G and 3H). This general phenomenon likely has a substan-

tial influence on the maintenance of sequence at these regulatory regions [64,65] and may rep-

resent a particular challenge for the identification of conserved regions and regulators.

However, the substantial difference in AT% observed at TSS is absent on average at CNEs,

which, based on the method that they are identified, are inherently similar in sequence (Fig

3I). This suggests that general sequence utilization differences seen at TSSs in different species

on average are important but may not influence all regulatory regions.

Conservation of regulators that define regional intestinal expression from

fish to mammals without apparent sequence conservation

The apparent maintenance of TFBS enrichment suggested that our accessible chromatin and

RNA-seq data were identifying functionally conserved regions, although they frequently

lacked conserved DNA sequence. To test this, we cloned regions upstream of the rbp2a and

fabp6 TSS that showed no substantial sequence conservation from fish to mammals, but

appeared accessible largely in IECs, and tested them using a functional in vivo zebrafish

reporter assay (Materials and methods). Because both RBP2 and FABP6 are IEC signature

genes that showed strong regional conservation of expression in zebrafish and mouse (Fig 2),

this allowed us to simultaneously test if the conservation of regulatory information was inter-

preted by zebrafish to specify intestinal regionality in addition to IEC expression generally.

We generated a transgenic reporter construct with the 1.3 kb region upstream of the TSS of

zebrafish retinol binding protein gene, rbp2a, cloned upstream of the mouse cFosminimal pro-

moter and green fluorescent protein (GFP) [Tg(rbp2a:GFP)] (Figs 4A and 3E, S5A, S6A Figs

and S4 Table). Tg(rbp2a:GFP)was capable of driving high expression in the anterior portion of

the intestinal epithelium in larvae (Fig 4A), which was consistent with the known expression
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Fig 4. Exogenous regulatory regions identified by intestinal epithelial cell (IEC) accessible chromatin

can drive regionally conserved IEC expression in zebrafish larvae. (A) (Left) Whole-mount

stereofluorescence images of 7 dpf zebrafish stable lines expressing a green fluorescent protein (GFP)

reporter construct for rbp2a/Rbp2/RBP2 accessible regulatory regions from zebrafish, mouse, and human

show high levels of expression in IECs in the anterior portion of the intestine. Scale bar 100 μm. (Right)
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patterns of rbp2a [15,66,67], suggesting that sufficient regulatory information to drive regional

expression in IECs is contained within this fragment. This expression pattern is distinct

from a general control reporter construct in which no additional DNA was cloned upstream

of the mouse cFosminimal promoter driving GFP, and no consistent IEC expression is

found (S6B–S6I Fig) [68]. Using the same reporter assay, we then tested the region immedi-

ately upstream of Rbp2 from mouse Tg(Mmu.Rbp2:GFP) and RBP2 from human Tg(Hsa.
RBP2:GFP) and found that both were capable of driving GFP in IECs in the anterior portion

of the larval zebrafish intestine (Fig 4A and S5A Fig). We tested if we could identify common,

small TFBS that might have escaped detection by conservation metrics in these regions but

explain the conserved patterns of IEC expression. TF motif searching within the RBP2 frag-

ments for zebrafish, mouse, and human identified shared strong matches to HNF4A and

GATA factors within a few hundred bases of the TSS (Fig 4B and 4C). To test how often

HNF4A and GATA motifs occurred generally, we queried a similarly sized area 150 bp

upstream of the TSS of all genes. Only .23% (79 genes), .25% (51 genes), and .25% (47 genes)

had both HNF4A and GATA4 motifs in zebrafish, mouse, and human, respectively, and no

other 1-to-1-to-1 orthologs contained both HNF4A and GATA4 motifs at this location in all

3 species. This suggests that the presence of HNF4A and GATA sites in the RBP2 TSS is con-

served among vertebrate genomes and is unlikely to have occurred by chance. Indeed,

HNF4A and GATA4 are likely a common vertebrate regulatory cassette as studies in multiple

species have identified their importance in small intestinal IEC biology (S3G and S3H Fig)

[26,69]. Collectively, these results establish that accessible chromatin maps can help discern

conserved motif information and how in vivo reporter assays can be used to test for potential

conserved tissue-specific regulatory activity.

Fabp6 regulatory region drives conserved expression in a region of the

zebrafish intestine positionally and functionally analogous to the

mammalian ileum

We next sought to interrogate the regulatory potential of regions upstream of FABP6, an IEC

signature gene expressed primarily in the ileum in mouse and human and whose TSS was

accessible in all IECs tested except mouse and human colon (Figs 3E and 4D). The region 258

Representative cross-sections of zebrafish intestine confirming high IEC expression for each corresponding

stable line. The zebrafish cross-section was taken in the posterior of the intestinal bulb, and the mouse and

human cross-sections were taken within the middle of the intestinal bulb. Scale bar 25 μm. (B) Common

motifs detected in the RBP2(a) cloned region for each species colored by Homer motif scores. Motif score

scale is shared with Figure 4G. (C) Schematic of common transcription factor binding sites (TFBS) motifs

found immediately upstream of the transcription start site (TSS) of RBP2(a) in zebrafish, mouse, and human.

(D) (Left blue) Whole-mount stereofluorescence images of 7 dpf zebrafish stable line Tg(fabp6:GFP) show

high levels of GFP expression in IECs in the middle of the intestine. (Below blue) Average projection of

confocal stacks of whole-mount zebrafish Tg(fabp6:GFP). Scale bar 100 μm. (Right blue) Representative

cross-section of zebrafish intestine confirming high IEC expression for Tg(fabp6:GFP). Scale bar 25 μm. (Left

orange) Whole-mount stereofluorescence image of 7 dpf zebrafish stable line Tg(Mmu.Fabp6:GFP) shows

high levels of GFP expression in IECs in the middle of the intestine. Scale bar 100 μm. (Right orange)

Representative cross-section of zebrafish intestine confirming high IEC expression for Tg(Mmu.Fabp6:GFP).

Scale bar 25 μm. A smaller conserved region from mouse and 2 inclusive regions from human FABP6 did not

drive IEC GFP expression in our zebrafish reporter assay. Throughout, the white dashed line marks the

boundary of intestine and IECs. (E) Confocal whole-mount maximum projection image showing lack of

overlap between Tg(fabp6:GFP) and the segment 2 marker TgBAC(lamp2-RFP). Scale bar 100 μm. (F)

Confocal whole-mount average projection image showing lack of overlap between Tg(fabp6:GFP) and the

segment 1 marker Tg(-4.5fabp2:DsRed). Scale bar 100 μm. (G) Common motifs detected in the cloned or

corresponding region for each species colored by Homer motif score.

https://doi.org/10.1371/journal.pbio.2002054.g004
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bp upstream of the zebrafish fabp6 TSS [Tg(fabp6:GFP)] drove a very specific GFP expression

domain exclusively in IECs in the middle of the larval zebrafish intestine, consistent with the

endogenous pattern of fabp6mRNA expression (Figs 2C and 4D, S5B and S5G–S5J Fig)

[15,47,70]. Unlike rbp2a, fabp6 had a small region upstream of the fabp6 TSS that was con-

served to mouse and human. However, this appeared to only correspond to a TATA-box (Fig

4G, S5B and S5C Fig), and cloning of this small region from mouse to test in our zebrafish

reporter assay did not drive expression in IECs. However, when we included the entire accessi-

ble chromatin region from mouse Tg(Mmu.Fabp6:GFP) (a 503 bp region upstream of mouse

Fabp6 TSS), which included the minimal conserved region, we found this larger sequence suf-

ficient to drive an IEC expression pattern that was positionally identical to the corresponding

region from zebrafish (Fig 4D). This suggests the regulatory information necessary to drive

IEC expression in the putative zebrafish ileum is within the additional region defined by acces-

sible chromatin from mouse and not solely detected by conservation.

In order to define the relationship between this fabp6 domain in the context of the canoni-

cal 3 segments of the zebrafish intestine [14], we compared the larval expression pattern of Tg
(fabp6:GFP) with zebrafish segment 2 marker TgBAC(lamp2-RFP) [71] and intestinal segment

1 marker Tg(-4.5fabp2:DsRed) [72,73]. Strikingly, we found Tg(fabp6:GFP) did not overlap

with either, suggesting the intestinal region marked by Tg(fabp6:GFP) is a novel distinct seg-

ment of the zebrafish larval intestine (Fig 4E–4F). Similar regions upstream from human

FABP6 were negative for driving expression in zebrafish IECs, despite the putative presence of

shared IEC-related TFBS like CDX2, RBPJ, and RXR (Fig 4G, S5B Fig and S4 Table). The com-

bined evidence of conserved positional expression of Fabp6 and other ileal genes (Fig 2C and

S3D Fig) together with the maintenance of region-specific cis-regulatory information at zebra-

fish and mouse Fabp6 orthologs (Fig 4D–4G) indicate that an intestinal segment functionally

and regionally homologous to mammalian ileum is maintained in zebrafish larvae and likely

specified by similar regulators.

Transcriptional domains identified in larval zebrafish intestine are

maintained in adults

To determine if the transcriptional patterns and domains we detect in the larval zebrafish

intestine also occur in adult stages, we assayed expression patterns in the adult (3+ months)

zebrafish intestine using the same stable transgenic lines we queried in larvae. Tg(rbp2a:GFP)
showed a similar expression pattern restricted to the anterior intestine as larval zebrafish; how-

ever, consistent with adult expression data (Fig 2B), high GFP expression did not extend to the

most anterior IECs (Fig 5A–5B). This suggests that additional transcriptional domains or func-

tional differences exist in the most anterior zebrafish intestine. We also found that Tg(fabp6:
GFP) had a very similar pattern between larval and adult stages with a relatively small and dis-

creet region of IEC GFP expression immediately after the second bend and between the seg-

ment 2 marker TgBAC(lamp2-RFP) (Fig 5F–5G) and the segment 1 marker Tg(-4.5fabp2:
DsRed) expression domains (Fig 5H–5I). Collectively, this suggests that regional transcrip-

tional programs in the zebrafish intestine are maintained between larval and adult stages. Fur-

ther, the extent of functional homology between the zebrafish and mammalian intestine may

be greater than previously appreciated (Fig 5J–5K). We propose a working model with at least

5 transcriptional/functional domains in zebrafish, although additional studies are needed to

comprehensively resolve these domains, their interplay, boundaries, regulators, as well as the

full nature and limitations of the homology between teleost and mammalian regional IEC pro-

grams (Fig 5K).
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Fig 5. Transcriptional domains identified in larval zebrafish intestine are maintained in adults. (A) Stereomicroscopy image of

2 dissected adult Tg(rbp2a:GFP) intestines (top) and 2 wild-type (WT) intestines without green fluorescent protein (GFP) (bottom)

shows high GFP expression between the first and second bend of the adult intestine in Tg(rbp2a:GFP). Autofluorescence can be

seen in several intestines following the second bend, presumably due to bile or feces (see brightfield microscopy in B). Scale bar

1,000 μm. Confocal cross-section of adult Tg(rbp2a:GFP) intestinal folds with DAPI in blue shows GFP expression in intestinal

epithelial cells (IECs) in the inset panel. Scale bar 50 μm. (B) Brightfield microscopy of 2 dissected adult Tg(rbp2a:GFP) intestines

(top) and 2 wild-type intestines (bottom). Dissection pins can be seen as long black lines anchoring the intestine in the intestinal bulb.

(C) Stereomicroscopy image of brightfield and GFP overlay for the dissected intestine of adult Tg(fabp6:GFP), showing GFP

expression in a discreet domain immediately following the second bend. The anus was excluded in this preparation. Scale bar

1,000 μm. (D) Stereomicroscopy image of GFP (top) and brightfield (bottom) for the dissected adult intestine of Tg(fabp6:GFP)

opened lengthwise to show internal detail of the discreet domain of GFP expression. Scale bar 1,000 μm. (E) Confocal cross-section

of adult Tg(fabp6:GFP) intestinal folds with DAPI in blue shows high GFP expression in IECs. Scale bar 50 μm. (F) Stereomicroscopy

close-up of red fluorescent protein (RFP) and brightfield for adult WT and TgBAC(lamp2-RFP) zebrafish lines (top) showing entire

intestines with the segment 2 relative position marked with a red horizontal line (middle). Scale bar 2,000 μm. Fluorescence-only

image showing the distribution of the lamp2-RFP signal, highest in segment 2 (bottom). The relative orientation of the WT (top) and

TgBAC(lamp2-RFP) (bottom) lines is maintained throughout. (G) Confocal cross-section of adult TgBAC(lamp2-RFP) intestinal folds

from segment 2 with DAPI in blue shows high lamp2-RFP expression in IECs. Scale bar 50 μm. (H) (Top) Stereomicroscopy image

for a dissected intestine of adult Tg(-4.5fabp2:DsRed) showing DsRed expression most highly between the first and second bend

with additional expression in the intestinal bulb. The white dotted line references the dissected intestine. A similar Tg(fabp2:RFP)

result has previously been reported [15]. Scale bar 1,000 μm. Overlay between DsRed and brightfield is shown in the inset in the

upper right. (I) Confocal cross-section of adult Tg(-4.5fabp2:DsRed) intestinal folds with DAPI in blue shows high DsRed expression

in IECs. Scale bar 50 μm. (J) Schematic of dissected adult intestine showing major anatomical features overlaid with proposed

transcriptional/functional domains shown in K. (K) Linear schematic representation of proposed transcriptional and functional

domains of zebrafish intestine with potential regional gene markers and previously defined regional annotation. Boundaries should

not necessarily be considered discrete, and domains may vary or overlap for different genes. Markers refer to proposed region-
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Accessible conserved zCNEs in IECs are rarely IEC-specific and are

likely open in most species and tissues

In addition to TSS regions, we also specifically queried a published dataset of 54,533 zCNEs, of

which 11,792 are also conserved to mouse and human, for accessibility in IECs [55]. Ordering

zCNEs by the FAIRE-seq signal from zebrafish identified that the neighboring genes of the

most accessible CNEs were also highly expressed in other-species IEC samples (Fig 6A). There

was also a surprising overlap in the magnitude of accessibility at these conserved sites between

species (Fig 6A, 6B and 6F). However, 48 of the 77 CNEs that were accessible in all zebrafish,

mouse ileum and colon, and human colon IEC datasets were also accessible in at least 82%

(14/17) of additional nonintestinal ENCODE and Human Roadmap datasets (Fig 6B–6D)

[52–54]. This suggests that these regions are not specifically responsible for IEC expression.

However, these frequently accessible conserved sites could represent a particular pan-verte-

brate primitive transcriptional networks as zCNEs are commonly found at TSSs and near

developmental and TF genes (Fig 6B–6E) [55].

Some of these conserved regions that are accessible in most tissues were near genes known

to have roles in IEC biology, like Egr1 [74], Nr1d1 [75], and Jun [75], and we did not want to

exclude that these regions could still be important in IEC expression. Cloning constitutively

accessible regions from nr1d1 and jun were negative for IEC expression. When we cloned the

egr1-neighboring CNE regions from zebrafish (zCNE_11264), mouse (mzCNE_11264), and

human (hzCNE_11264) and tested them separately using our reporter assay, unsurprisingly,

multiple tissues showed GFP expression. However, we observed a distinct differential pattern

across the intestine, with GFP expressing most highly in IECs in the mid intestine in zebrafish

reporter lines representing all 3 species (Fig 6G–6J). TF motif searching identified multiple

ETS and CA/T-rich-G (CArG)/MCM1, AGAMOUS, DEFICIENS, and SRF(MADS) box sites

in all 3 species in CNE_11264, which are often immediately adjacent (Fig 6K), consistent with

a serum response element that has been characterized at human EGR1 [76–78].

We noticed the size of the conserved region and spacing and number of CArG and ETS

binding sites of zCNE_11264 (458 bp) and mzCNE_11264 (352 bp) were greater than

hzCNE_11264 (120 bp) (Fig 6G–6L). Searching for local CArG and ETS binding sites identi-

fied a neighboring cluster of additional CArG and ETS binding sites, approximately 200 bp

outside of the conserved hzCNE_11264 region (Fig 6K). hzCNE_11264 was capable of driving

similar IEC expression without these additional putative redundant conserved binding sites

(Fig 6G, 6J and 6K). However, this highlights the imperfect nature of defining conserved

regions across distantly related species and suggests that accessible chromatin maps combined

with searching for common neighboring motif language seeds may identify additional

sequence conservation information (S7J–S7L Fig). This same combination of ETS and CArG

TFBS was found immediately upstream of Egr1 in the stickleback genome, although zCNEs

are not specifically annotated in stickleback (Fig 6K). Identifying these discrete nonoverlap-

ping ETS and CArG binding sites at CNE_11264 in multiple species suggests that multiple

ETS and CArG sites have functional relevance for this regulatory region (Fig 6K). However,

this also demonstrates the complexity of identifying conservation that often relies on flexible,

redundant regulatory logic (Fig 6K and 6L). Similarly, the diversity of detected CArG boxes

also show how degenerate TF sequences can deviate while potentially maintaining a similar

functional output (Fig 6M) [79].

defining transcriptional markers determined using transgenic lines from this study (*) or from Wang et al. (^)[15]. Additional markers

can be inferred from Fig 2 and S3 Fig, including markers for the most posterior region of the zebrafish intestine.

https://doi.org/10.1371/journal.pbio.2002054.g005
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Fig 6. Intestinal epithelial cell (IEC)-specific accessible chromatin at conserved noncoding elements identifies

IEC regulatory elements. (A) Conserved nonexonic elements (CNEs) ordered by zebrafish IEC Formaldehyde-Assisted

Isolation of Regulatory Elements sequencing (FAIRE-seq) signal at zebrafish conserved nonexonic elements (zCNE)

center. (Left) Moving median of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) levels of CNEs

nearest gene feature (250 gene window, 1 step; color scheme based on data sets presented in Fig 1A and throughout),

showing the relationship between accessible chromatin level and transcription at these conserved regions. (Right) Heat

maps of accessible chromatin signals at the 1,000 bp, surrounding the CNE center, highlighting the similarity of signal in

IECs at CNEs in all 4 species. Gray represents no mappable signal or failure to liftover to the stickleback genome, as the

stickleback genome was not included in the CNE set [55]. (B) Peak overlap of IEC accessible chromatin datasets and

human and mouse ENCODE/Roadmap data sets with CNEs in each respective species. Overlap is defined as having at

least 1 shared base pair. (C) Cluster analysis of CNEs with at least 1 IEC accessible peak overlap from any of the IEC

datasets. (D) Subset of CNEs containing peak overlap from each of the zebrafish, mouse ileum, mouse colon, and human

colon IEC datasets, as well as substantial overlap with additional mouse and human data from mostly unrelated tissues.

(E) The entire group of CNEs that have overlap with zebrafish intestine, mouse ileum, mouse colon, and human colon but

few other data sets, identify potentially highly conserved IEC-specific regulatory elements. (F) Scatterplot of accessible

chromatin signal at the center of CNEs for zebrafish IECs and mouse ileum IECs, which shows a positive conserved

relationship between accessible chromatin signal at these sites. (G) Accessible chromatin data from the EGR1 locus

highlighting the commonly accessible CNE_11264 in multiple species. (H) Whole-mount stereofluorescence of stable

transgenic line harboring egr1 Tg(zCNE_11264:GFP) showing highest green fluorescent protein (GFP) expression in IECs

in the mid intestine. (Bottom) Close-up view of zebrafish egr1 Tg(zCNE_11264:GFP) intestine. Scale bar 100 μm. (Right)

Whole-mount confocal images confirming egr1 Tg(zCNE_11264:GFP) GFP expression in IECs. Scale bar 25 μm. (I) The

same as H for stable line Egr1 Tg(mzCNE_11264:GFP). (J) The same as H for stable line EGR1 Tg(hzCNE_11264:GFP).

(K) The distribution of CA/T-rich-G (CArG)/MCM1, AGAMOUS, DEFICIENS, and SRF (MADS box) and E26

transformation specific (ETS) motifs in human, mouse, zebrafish, and stickleback CNE_11264 show distinct motif

distributions despite sequence conservation. Bronze bar represents conserved region. Dashed bar for human

hzCNE_11264 represents the apparently conserved region that is adjacent to the hzCNE_11264 boundary marked with
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Accessible chromatin can identify conserved tissue-specific regulatory

elements at broadly expressed genes

In an attempt to find zCNEs and upstream regulators that act primarily in IECs, we identified

a group of 15 zCNEs that were not accessible in at least 9 out of 17 non-IEC tissues but were

always accessible in IECs in zebrafish, mouse, and human (Fig 6E). Motif analysis of these

IEC-accessible CNEs revealed common putative IEC-related TFBS in zebrafish, mouse, and

humans such as GATA, HNF4A, HOX, CDX2, HNF6, HNF1, and TEAD (S7A–S7I and S8

Figs).

One of these zCNEs neighbors, the gene hairy and enhancer of split-1/hairy-related 6

(HES1/her6) (zCNE_44665), showed remarkable accessible chromatin specificity within intes-

tinal datasets (Fig 6E; S9A and S9B Fig). Hes1 is a transcriptional repressor known to play

diverse roles in many tissues including embryogenesis and neural and T-cell development

[80–82]. Importantly, it also plays critical roles in the differentiation of IEC subtypes from

intestinal stem cell progenitors and in mouse is expressed exclusively in the intestinal crypt

[17,83]. While crypts are not present in the zebrafish intestine, and IEC progenitor or stem

cells in fish have only been recently characterized [11], hes1/her6 has been found to be

expressed in a distinct subset of IECs in an analogous compartment at the base of zebrafish

intestinal folds [84]. It is not fully known what genomic regions regulateHes1 IEC expression

and if these regions control aspects ofHes1’s transcriptional response to microbes [85] or in

intestinal cancer [86].

We were curious if our IEC chromatin data did discriminate important conserved regula-

tory regions that drove expression in IECs (Fig 7A). In our reporter assay zCNE_44665, a

region approximately 3,600 bp upstream of the hes1/ her6 TSS in zebrafish, revealed strong

IEC expression and expression in other tissues including liver (Fig 7B–7D, S10 Fig). Whole-

mount and cross-sections of 7 dpf fish identified that high GFP expression was within a subset

of IECs, often at the base of slight invaginations of this cell layer (Fig 7B–7E, S10A Fig). These

invaginations are ultimately analogous to the base of epithelial folds (rugae) seen in older fish

and the intestinal crypt in mammals, although, at 7 dpf, substantial folds are not articulated

(Fig 7D and 7E) [12]. This Tg(zCNE_44665:GFP)population did not overlap with cells that

were positive with the enterocyte marker Tg(-4.5fabp2:DsRed) (Fig 7F and S10G Fig) [73], the

enteroendocrine marker Tg(neurod1:TagRFP) (Fig 7G and S10H Fig) [87], or cells with charac-

teristic goblet cell morphology. This suggests the hes1-neighboring conserved region

zCNE_44665 drives GFP in an undercharacterized population of IECs that is distinct from

these known differentiated IEC subtypes in zebrafish.

We scanned the sequence of the orthologous CNEs from zebrafish, mouse, and human and

found TFBS for hepatocyte nuclear factor 1 (HNF1), hypoxia inducible factor 2 alpha

(HIF2A), and recombination signal binding protein for immunoglobulin kappa J region

(RBPJ) in all 3 CNEs (Fig 7L; S9A–S9C Fig). RBPJ is known to regulate HES1 expression in

the presence of Notch signaling [88], resulting in the alteration of the proportion of secretory

and absorptive IEC lineages [17]. Therefore, we tested if this Tg(zCNE_44665:GFP)population

was positive for Notch signaling. Crosses of Tg(zCNE_44665:GFP)with Tg(EPV.Tp1-Ocu.

Hbb2:hmgb1-mCherry), which uses a viral-derived promoter with Notch-responsive RBPJ

binding sites [89], revealed substantial overlap between mCherry+ and GFP+ cells (Fig 7H and

7I, S10 Fig, S1 Movie). The mCherry+ IECs were always GFP+, and only 64.6% of GFP+ cells

solid bronze bar. (L) Heatmap showing motif number (left) and highest motif score (right) for common motifs detected in

CNE_11264. (M) Similarity relationship of CArG boxes detected in CNE_11264 shows the diversity of transcription factor

binding sites (TFBS) despite overall sequence conservation. Numbering of CArG box sites is arbitrary.

https://doi.org/10.1371/journal.pbio.2002054.g006
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Fig 7. Hes1 conserved nonexonic element (CNE)-driven expression overlaps with Notch signaling

and marks a specific population of intestinal epithelial cells (IECs). (A) Accessible chromatin at HES1

loci. (B) Whole-mount stereofluorescence of stable transgenic line 7 dpf zebrafish harboring hes1 Tg

(zCNE_44665:GFP) showing green fluorescent protein (GFP) expression in IECs. Scale bar 100 μm. (C)

Same as B, a closeup showing high GFP+ IECs in a population of cells. (D) Same as B, a confocal whole-

mount z-stack maximum projection of zebrafish intestine showing high GFP+ in a population of IECs. (E) A

confocal image of intestinal cross-section of 7 dpf hes1 Tg(zCNE_44665:GFP) showing GFP expression in

IECs that appear at the base of slight invaginations (white arrows). Scale bar 25 μm. (F) A confocal intestinal

cross-section of 7 dpf zebrafish shows lack of overlap between hes1 Tg(zCNE_44665:GFP) and enterocyte

marker Tg(-4.5fabp2:DsRed). GFP+ IECs lacking Discosoma sp. red fluorescent protein (DsRed) are marked

with a white arrow. Scale bar 25 μm. (G) Lack of overlap between hes1 Tg(zCNE_44665:GFP) and the

enteroendocrine marker Tg(neurod1:TagRFP) [87]. A reduction in background GFP can be seen at red

fluorescent protein (RFP)+ cells (white arrow). Scale bar 25 μm. H) A confocal cross-section image shows
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were mCherry+, which could be due in part to the relatively slow maturation of mCherry pro-

tein. This overlap suggests Notch signaling is important in regulating this element upstream of

HES1/her6 (Fig 7H and 7I, S10 Fig). A cross-section of dissected intestine from 8-week-old

fish revealed a more sophisticated expression pattern in relationship to the now articulated

intestinal folds (Fig 7I). GFP+ cells included cells at the base and typically in the bottom half of

the intestinal folds and included cells positive for Notch signaling. Interestingly, these cells fre-

quently had more apical nuclei than most IECs, whose nuclei typically are located basally

within the epithelium (Fig 7I and S10E Fig).

To determine if a similar regulatory capacity was conserved to mammals, we then tested the

hzCNE_44665 from human (approximately 10 kb from the TSS ofHES1). This human region

also drove intestinal expression that was similarly limited to a subset of IECs that often over-

lapped with Notch-positive cells (30.5% GFP+/mCherry+, 33.6% GFP+ only, 35.7% mCherry

+ only) (Fig 7J and 7K). To determine if common putative TFBSs found in CNE_44665 were

regulating expression in IECs, we generated a zebrafish line with the HNF1 binding site abol-

ished through mutation in the zCNE_44665 GFP reporter construct Tg(zCNE_44665ΔHNF1:
GFP) (Fig 7L and 7M). We still identified GFP expression in a subset of cells that was coinci-

dent with Notch signaling in IECs from stable fish lines containing this construct (Fig 7N).

However, when we abolished the RBPJ binding site, we found that high GFP expression was

completely lost in IECs, including the subset of cells that overlapped with Notch-positive cells

(Fig 7O). This suggests a conserved RBPJ binding site is necessary for expression in IECs and

may contribute to commonHES1 regulation in fish and mammals in progenitor IEC popula-

tions (Fig 7O). Collectively, our chromatin data analysis is capable of distinguishing IEC regu-

latory regions and putative causative TFBS from complex regulatory landscapes that may

regulate a broadly expressed gene’s transcription in IECs.

Discussion

Transcriptional similarities are detectable in IECs separated by 420

million years of evolution

Conserved regulatory elements that are stable over millions of years are likely to have analo-

gous functions in their respective genomes and could coordinate conserved tissue-specific

transcriptional patterns. However, identifying and functionally annotating these regions at

individual loci or across a single genome is problematic, tedious, and does not accurately pre-

dict or robustly identify conserved function. As demonstrated above, our strategy of combin-

ing tissue-specific transcription and accessible chromatin datasets with conservation and

TFBS prediction inferred from DNA sequences from multiple species identified putative

overlap between hes1 Tg(zCNE_44665:GFP) and Tg(EPV.Tp1-Ocu.Hbb2:hmgb1-mCherry) in 7 dpf

zebrafish. Individual channels are shown in inset with DAPI in blue. Scale bar 25 μm. I) A confocal image of

cross-section of 8-week-old zebrafish intestinal folds in hes1 Tg(zCNE_44665:GFP) and Tg(EPV.Tp1-Ocu.

Hbb2:hmgb1-mCherry). (J) A stereoscopic image showing the overlap of whole-mount human HES1 Tg

(hzCNE_44665:GFP) and Tg(EPV.Tp1-Ocu.Hbb2:hmgb1-mCherry) in a subset of IECs in 7 dpf zebrafish.

Scale bar 100 μm. (K) A confocal cross-section of 7 dpf zebrafish showing the overlap of human HES1 Tg

(hzCNE_44665:GFP) and Tg(EPV.Tp1-Ocu.Hbb2:hmgb1-mCherry). Scale bar 25 μm. (L) Heatmap of

common TFBS motifs in CNE_44665 in zebrafish, mouse, and human. (M) A schematic of site-directed

mutagenesis on Hepatocyte nuclear factor 1 (HNF1) (top) and Recombination signal binding protein for

immunoglobulin kappa J region (RBPJ) (bottom) putative binding sites from zCNE_44665. (N) A confocal

whole-mount image showing the overlap between hes1 Tg(zCNE_44665 ΔHNF1 sdm:GFP) and Tg(EPV.

Tp1-Ocu.Hbb2:hmgb1-mCherry). Scale bar 25 μm. O) A confocal whole-mount image showing the overlap

between hes1 Tg(zCNE_44665 ΔRBPJ sdm:GFP) and Tg(EPV.Tp1-Ocu.Hbb2:hmgb1-mCherry). Scale bar

25 μm.

https://doi.org/10.1371/journal.pbio.2002054.g007

Conserved transcriptional regulation in intestinal epithelial cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002054 August 29, 2017 19 / 40

https://doi.org/10.1371/journal.pbio.2002054.g007
https://doi.org/10.1371/journal.pbio.2002054


conserved regulatory and functional information in IECs that could not have been identified

by any one data set alone.

Tissues and cell types like IECs are defined by complex patterns of gene expression. Despite

specializations in each animal species, IECs serve core inherent functions such as absorption

and metabolism of dietary nutrients and xenobiotics and as a barrier to microbes residing

within the intestinal lumen. As evidence for this common conserved function, we identified

470 orthologous genes expressed highly in IECs with relative tissue-specificity across 420 mil-

lion years of vertebrate evolution. Functional conservation was maintained across a broad

range of IEC biology, including genes involved in IEC subtypes, lipid transport and metabo-

lism, and a response to microbes and inflammation. We highlight commonly expressed TFs

because they may underlie the expression of conserved networks that are associated with IEC

function, identity, and regionalization. YBX1,HNF4A, ELF3, XBP1, ID3,HMGB2, IRF1,
STAT3, GATA5, and OSR2, amongst other TFs, appear to be more highly expressed in IECs

than other tissues. Importantly, many of these highly expressed TFs also show enrichment for

their cognate TFBS in accessible chromatin surrounding IEC signature genes in multiple spe-

cies including the ETS factors ELF3 and ELF4,HNF4A,GATA5, and STAT3.

Complex regulatory mechanisms that specify regional function are

conserved along the length of the zebrafish and mouse intestine

Our understanding of intestinal evolution has been hindered by a lack of information about the

degree to which anteroposterior segments in extant vertebrate species are ancestral or derived

traits. We found patterns of conserved expression along the length of the zebrafish and mouse

intestine, suggesting that conserved discrete transcriptional regulatory programs may specify

homologous duodenal, jejunal, ileal, and colonic segments along the zebrafish intestine [15]. We

found striking evidence for transcriptional regulation underlying this conserved similarity, as

the genomic region immediately upstream of the highly expressed IEC signature gene FABP6, in

both zebrafish and mouse, was capable of driving GFP expression coincident between the zebra-

fish intestinal segment 1 and segment 2 domains [12–15]. We infer that this discrete segment

specified by the expression of FABP6 and other markers functions as the conserved homologous

zebrafish ileum and that the zebrafish intestine is more completely defined as at least 5 distinct

segments with further evidence that transcriptional domains similar to the duodenum, jejunum,

and colon exist (Figs 2 and 5). Collectively, these results indicate that the transcriptional under-

pinnings of the well-characterized segmental program present in the mammalian intestine are

ancestral to the last common ancestor with bony fishes and that the utility of the zebrafish as a

model for human intestinal biology is even greater than previously appreciated.

Accessible chromatin maps annotate regulatory regions in IECs in the

absence of sequence conservation

Our initial analysis to utilize the presumed regulatory information at the TSS of IEC signature

genes identified a number of regions with largely IEC-specific accessible chromatin status.

However, we were unable to identify a substantial number of highly sequence-conserved

regions at these TSSs. To circumvent the apparent lack of conserved regulatory information

despite clear transcriptional similarities, we applied strategies through which regulatory infor-

mation could be inferred without directly using traditional sequence conservation metrics.

Searching for significantly enriched TF motifs found in accessible chromatin regions sur-

rounding genes expressed in IECs in multiple species allowed us to identify common pre-

sumptive TF motifs that are used in the regulation of these genes, including HNF1,HNF4A,

GATA, and ETS factors [60,62,63]. In addition, we looked for common predicted TFBS in TSS
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regions that appeared to have accessible chromatin in IECs but no strong sequence conserva-

tion. Accordingly, despite the lack of sequence conservation, the RBP2(a) promoter regions

from zebrafish, mouse, and human are capable of driving highly similar expression in the IECs

of zebrafish. This conserved expression is presumably largely due to common HNF4A and

GATA motifs in zebrafish, mouse, and human that escape detection by commonly used

sequence conservation metrics. Recently, a microbially responsive element in the zebrafish

angptl4 gene was shown to contain an element with HNF4A and GATA motifs that were

involved in driving expression that is essentially identical to the expression pattern from our

rbp2a fragment [68]. Fabp2 also shows the same regional expression as rbp2a and angptl4 in the

intestine and has binding sites for HNF4A and GATA that are shared to mammals [72]. Fur-

thermore, the TFs HNF4A and GATA, and FXR, that have putative binding sites in the regula-

tory regions from Rbp2 and Fabp6, respectively, show intestinal expression patterns that appear

to explain much of the regional IEC expression of these genes (S3G and S3H Fig). This suggests

these common combinations [18] are conserved in regulating genes in the IECS of anterior

intestines from teleosts to mammals. Intriguingly, HNF4A and FXR were also recently shown

to mediate IEC responses to microbiota [26,90], indicating complex relationships between tis-

sue-specific and microbially-responsive transcriptional programs in the intestinal epithelium.

IEC-specific CNE at hes1/her6 drives expression in Notch-positive cells

We were able to identify a small number of highly conserved noncoding elements with appar-

ent conserved IEC-specific chromatin accessibility, representing excellent candidates to under-

stand conserved regulatory mechanisms that drive IEC expression (Fig 6 and S7 Fig). Our

strategy highlights the utility of these data in identifying tissue-discriminating regulatory

regions at genes that lack clear tissue-specific transcription and may be selectively regulated by

discrete regulatory regions in different tissues. Similar strategies using available mammalian

accessible chromatin datasets could annotate the remaining CNEs with putative functions.

We focused on a CNE upstream ofHES1 because of its exceptional accessible chromatin speci-

ficity in the intestine (Fig 6E, S9A and S9B Fig) and the known importance of HES1 in IEC

biology [91]. We identified a necessary RBPJ binding site within the hes1 CNE that drove

expression in IECs coincident with Notch signaling. Notch signaling likely plays a complex

function at the hes1 locus, as amongst the 6 hes1/her6 neighboring zCNEs, 4 contain conserved

RBPJ binding sites in their zebrafish, mouse, and human CNE counterpart (zCNE_44665,

44657, 44661, 44663), 1 CNE (zCNE_44658) contains an RBPJ site in zebrafish and human,

and only 1 additional CNE (zCNE_44660) contains no RBPJ sites [92,93]. The onlyHES1/
her6-neighboring zCNE containing a predicted binding site for HNF1 was zCNE 44665; how-

ever, loss of the HNF1 binding site was not sufficient to ablate expression in Notch-positive

IECs, suggesting that other mechanisms confer the specific accessibility and expression in

IECs. Due to the existence of other RBPJ sites at this locus, it seems unlikely that Notch signal-

ing strictly underlies the IEC specificity, although tissue-specific expression of Notch ligands

may also contribute to IEC expression [94].

Hes1 is expressed exclusively in the crypt of the mammalian intestine, including in stem

cells and transit-amplifying progenitors coincident with Notch signaling [83,94,95]. Similarly,

we see the zebrafish and humanHES1CNE_44665 is capable of driving expression in IECs at

the base of and bottom half of intestinal folds using our zebrafish GFP reporter assay, also coin-

cident with Notch signaling [84]. It will be interesting to determine if Hes1 and the

CNE_44665-marked cells play an analogous progenitor role in fish as well as mammals. Though

we focused on the sequenced conserved region that also showed accessible chromatin specific-

ity, a larger region outside of this conserved region showed intestinal accessible chromatin
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specificity in human and mouse (S9A and S9B Fig). Interestingly, a GFI1B binding site detected

in the zebrafish zCNE, but absent in the mouse and human zCNE, was detected within the adja-

cent region that was accessible specifically in mouse and human intestinal datasets. GFI1B is a

repressor TF that helps specify the IEC-subtype tuft cell [96]. This larger regulatory region may

facilitate conserved regulation ofHES1 expression and restrict Hes1 expression in tuft cells,

even though this GFI1B binding site is not found in a region that is conserved in sequence from

zebrafish to human (S9A–S9C Fig) [96]. These results provide an important context for further

exploring how conserved DNA regulatory regions and multiple TFs function cooperatively to

regulate expression of theHES1 gene in IECs and other distinct tissues.

Towards a complete understanding of IEC specificity

While we framed this study around the idea that particular regulatory regions and transcripts

could have specific functionality in IEC cell types, an interesting premise is that important reg-

ulatory regions and transcripts may be exclusive to multiple distinct organs or cell types, and

these circuits could be conserved across species. Of course, even IECs are heterogeneous, so a

complete understanding of IEC-specific programs will require higher resolution maps of IECs

and multiple additional tissues [33]. Our examples of Fabp6 and Rbp2 do indeed seem to show

high GFP expression that is largely limited to IECs (Fig 2). However, HNF4A and GATA also

function in the liver [97] where rbp2a is expressed [66]; therefore, the definition of specificity

and understanding of insulation of transcriptional regulation in different cell types requires

further study. Though we believe our approach successfully identified genes and regulatory

regions that are important in IECs, we did notice that the TSS at many IEC signature genes

also showed accessibility in kidney and liver tissue (Fig 3E), suggesting an important overlap-

ping utilization of the regulatory regions and gene functions in these other tissues. We do not

want to minimize the importance of the concept that many regulatory regions are used in mul-

tiple cell types and should perhaps holistically be thought to function, be selected upon, and be

conserved in an interorgan/cell-type regulatory network.

The strategies and methods we used here were able to detect diverse types of conserved

transcriptional and regulatory information in fish and mammalian IECs; however, important

limitations apply. Specifically, with our strategy, some pathways utilized broadly in many tis-

sues, genes expressed in a small number of cells, or lowly expressed genes may be difficult to

characterize for their conservation across species in the intestine and other tissues. For exam-

ple, though the Wnt pathway functions in a broad range of tissues [98], it has been established

as functioning in a similar manner in zebrafish and mammalian intestine. The Wnt coactivator

TCF4 is tied to microbially regulated epithelial cell proliferation in zebrafish [99]. Remarkably,

deletion of the Wnt pathway inhibitor, Apc, results in intestinal tumors in both zebrafish [100]

and mammals [101]. However, only a small number of Wnt-related genes, including FZD5,
were identified here as IEC signature genes, although individual ligands or pathway compo-

nents may signal the use of broader pathways in IECs. As a result, the lack of highlighting a

conserved gene or pathway cannot be considered as the lack of conservation, generally. Fur-

thermore, the ability to find conserved function in a particular cell type, gene family, or path-

way may depend highly on the proposed definition of conservation and be complicated by

each genome’s unique history.

The influence of orthology and teleost genome duplication on

understanding conserved gene function and regulation

Teleosts underwent a genome duplication approximately 340 million years ago [102]. Approx-

imately 20% of these duplicated gene pairs are maintained in the extant zebrafish and other
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teleost species, although the same duplicated genes are not always maintained in each genome

[102–104]. Retained duplicated genes can undergo, amongst other fates, neo- and subfunctio-

nalization specific to a lineage, spurring adaptation and potentially driving speciation [105].

This duplication can complicate comparative genomics and the parsing of function across ver-

tebrate species with limited transcriptional profiling, but it also provides a rich platform for

understanding gene evolution, function, and regulatory regions [106]. To create a focused

strategy using genes that likely had maintained function and therefore detectable transcription

and regulatory signal across species, our RNA analysis was largely limited to 1-to-1 orthologs

across the 4 species we assayed, although our CNE analysis was essentially independent of

orthology. We suspect that the diversity of types of regulatory information aren’t unique to

genes with specific types of orthology across species, although novel regulation of gene func-

tion may more frequently arise during sub- and neofunctionalization of duplicated paralogs

[105]. In addition, certain gene groups such as TFs are less likely to be lost following duplica-

tion in the zebrafish genome [102], suggesting that additional analysis may be required to

uncover and integrate the functions and regulatory information that are contained within

groups of genes that do not show 1-to-1 orthology.

Traditional conservation metrics are not sufficient to identify all

conserved regulatory information

We found instances at Rbp2, Fabp6, Egr1, andHes1 in which traditional sequence conservation

metrics were not sufficient to fully identify common putative regulatory information from fish

to mammals even when it is located approximately the same distance relative to the gene body

in all species [57,107]. In all instances, accessible chromatin data provided additional context

to identify conserved regulatory information. Importantly, because TFBS can be modular, con-

served transcriptional regulation can occur with almost no sequence conservation signal being

detectable across species. This property is largely due to the inherent nature of TFs because

plasticity in the number, arrangement, and affinity of TFBS can result in nearly identical tran-

scriptional responsiveness and output even in the absence of long stretches of sequence conser-

vation. To more accurately identify conserved regulatory information, metrics are needed that

incorporate short degenerate TF motifs or identify highly conserved short motifs between

closely related species that are then identified as a conserved block in distantly related groups

of similar species in syntenic regions. This information could be further anchored by accessible

chromatin [108,109]. This may only partially circumvent the somewhat inherent statistical

problem of short sequences arising by chance.

The interrogation of regulatory DNA sequences using assays such as GFP reporters can

determine how complex orthologous regulatory sequences are interpreted in vivo. However,

these assays are not necessarily sufficient to determine functional conservation across species.

For example, orthologous TFs may show an altered TF binding motif preference in each spe-

cies, although the regulation by this common factor is itself otherwise conserved. Alternatively,

functional TFBS from one species may be invalidated by other neighboring sequences in

cross-species assays, although the same TF is successfully regulating the same gene in each spe-

cies. This issue is highlighted by the difference in AT% usage at the TSS of the 4 species used in

this study that presumably is partially distinct from traditional TF binding content (Fig 3G).

This property may partially be driven by more general sequence characteristics that require

even less stringency in conserving specific long blocks of DNA like CpG methylation [64],

nucleosome positioning, and overall dynamics of nucleosome accessibility [110], binding com-

petition dynamics [111], or TSS selection [65] that may vary from organism to organism.

Detecting sequences and principles that account for these confounding factors will need to be
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accomplished and compensated for before a complete understanding of the similarity and dif-

ferences between analogous organs and transcriptional programs can be realized. Tissue-spe-

cific transspecies high-throughput enhancer activity assays [112] may be required to

sufficiently sample and test transcription rules and conservation for specificity across species.

These will need to be further combined with a similar deep understanding of posttranscrip-

tional control and epigenetic mechanisms to develop a more complete picture of signals

encoded in DNA and if they are commonly or divergently utilized.

Prospectus

Our experimental strategy utilized IECs from healthy adult animals representing 4 vertebrate

lineages to reveal conserved mechanisms underlying tissue- and region-specific IEC transcrip-

tional regulation. These results provide an important frame of reference for future efforts to

uncover similar mechanisms in IEC subtypes or in the context of other developmental stages,

disease states, or environmental exposures. Many of the genes and upstream TFs broadly

implicated here as conserved features of vertebrate IECs have already been implicated in

human diseases (S1 Table) and in the intestinal response to microbiota [26,90], prompting fur-

ther studies into the mechanistic relationships between transcriptional regulatory networks

governing IEC identity, environmental sensitivity, and disease pathogenesis. We believe that

using the strategy of simultaneously leveraging genome-wide data sets from multiple species

can identify key ancient aspects of biology more quickly than studying any species alone.

Materials and methods

Ethics statement

Zebrafish studies were approved by the Institutional Animal Care and Use Committees of

Duke University (protocol A165-13-06) and University of North Carolina at Chapel Hill (pro-

tocol 12–058.0). Stickleback studies were approved by the Institutional Animal Care and Use

Committee of Stanford University (protocol 13834). Stickleback were collected under Califor-

nia Scientific Collecting Permit #3260. Studies involving human tissues were performed under

University of North Carolina at Chapel Hill IRB approval numbers 10–0355 and 14–2445.

Intestinal epithelial preparation and genomic assays for each vertebrate

Human FAIRE-seq and RNA-seq on adult human colon IECs. Total RNA was isolated

from flash-frozen tissue samples (mucosal not whole tissue) from surgical colon resections dis-

tant from sites of disease and macroscopically normal as previously described [113] using the

Qiagen RNeasy kit following the manufacturer’s protocol. DNA for FAIRE was isolated from

the same samples as previously described [114]. Seven separate human colon IEC RNA-seq

data sets were generated representing 7 individuals. Three separate, unrelated human colon

IEC preparations were used to generate FAIRE-seq data sets from 3 individuals.

RNA isolation and RNA-seq analysis pipeline. Library preparation and mRNA sequenc-

ing were performed using protocols described previously [115]. Paired-end 50 bp mRNA

reads were generated at UNC Chapel Hill (UNC-CH) High Throughput Sequencing Facility

(HTSF) using the Illumina HiSeq 2000 platform. Each sample was aligned to a sex-specific

hg19 genome using GSNAP [116], with a k-mer size of 15, 2 allowed mismatches per read, and

RefSeq splice site annotations. In order to ensure high-quality alignments at regions contain-

ing genetic variability, we created a full-genome panel of SNPs with minor allele frequency

greater than 0.05, obtained from the full phase 1, release 3 VCF annotation from 1,000

Genomes. We used this SNP panel in conjunction with the GSNAP -v option, which allows for
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SNP-tolerant alignments and improves mapping at variable sites. A post-alignment blacklist

step was used to filter reads that were aligned to problematic, highly artifactual regions identi-

fied by ENCODE. Quantification of RPKM values was conducted using an in-house script

with RefSeq gene annotations.

FAIRE and FAIRE-seq analysis pipeline. FAIRE was performed as described previously

[114]. Using the Illumina HiSeq 2000 platform, 50 bp single-end sequences were generated at

UNC-CH HTSF. Reads were filtered requiring a quality score of 20 or greater in at least 90 per-

cent of nucleotides, and adapter contaminated reads were removed with TagDust [117]. Addi-

tionally, no more than 5 reads with identical sequence were retained. Nonfiltered reads were

aligned with the GSNAP software [116] to sex-specific hg19 genomes using k-mer size of 15

and allowing 1 mismatch per read. In order to ensure high-quality alignments at regions con-

taining genetic variability, we used the GSNAP -v option with SNP annotation derived from

1,000 Genomes, as described in RNA alignment section above.

Mouse

Mouse tissue dissection and IEC extraction protocols and all initially processed data were pre-

viously described (GSE57919) [16].

Zebrafish

FAIRE-seq and RNA-seq on adult zebrafish IECs. Accessible chromatin and transcrip-

tome data from zIECs was generated from wild type TL strains reared in the Zebrafish Aqua-

culture Core Facility at UNC-CH. A total of 3 replicates for RNA-seq and 4 replicates for

FAIRE-seq were generated, each replicate from 3 pooled intestines of isolated adult IECs. Con-

ventionally raised adult fish were fed twice daily with Great Salt Lake strain brine shrimp

(Artemia, Aquafauna Bio-Marine, ABM-GSL-TIN-90) supplemented with flake food (5 parts

Tetramin Flakes Aquatic Ecosystems, 16623; 1.5 parts Zeigler Aquatox Flakes, Aquatic Ecosys-

tems, AX5; 1.5 parts Spirulina Flakes Aquatic Ecosystems, ZSF5; 1 part Cyclop-eeze Argent

Chemical Laboratories, F-CYCL-FD30-CS; 1 part San Francisco Bay freeze-dried brine shrimp

Aquatic Ecosystems, SB113).

To isolate zebrafish IECs, intestines were dissected, splayed, and washed extensively with

ice-cold 1x PBS with care taken to remove as much intestine-associated fascia, adipocytes, and

blood vessels as possible. For each of the 3 RNA-seq replicates, 3 washed intestines were trans-

ferred into dissociation reagent 1 (DR1; 30 mM EDTA, 1.5 mM DTT, 0.5x Complete protease

inhibitors [Roche], in 1x PBS) for 15 minutes on ice. Segments were transferred to Dissocia-

tion Reagent 2 (DR2; 30 mM EDTA, 0.5x Complete protease inhibitors [Roche], in PBS) and

moderately shaken by hand for 5 minutes until most epithelial cells were isolated in the sus-

pension. Intestinal lamina propria was removed, and 8 ml of cold 1x PBS was added to the

cells on ice. Cells were pelleted at 500 x G at 4˚C, washed once with 13 ml of cold 1X PBS, and

resuspended in 0.5 ml cold 1x PBS. A 0.4 ml fraction was used for FAIRE, and a 0.1 ml fraction

was reserved for RNA extraction.

FAIRE-seq was performed as described [114] with minor modifications. Briefly, freshly iso-

lated IECs were directly fixed for 5–10 minutes in 10 ml of 1%–3% w/v formaldehyde solution

(in 1x PBS) at room temperature and gentle rocking. Glycine (2.5 M) was added to a final con-

centration of 125 mM to quench the formaldehyde. Cells were pelleted at 600 x G and washed

3 times in cold 1x PBS without dissociating the pellet. Fixed and washed cell pellets were flash

frozen and stored at −80˚C. Cells were lysed in 2 ml Lysis Buffer A (10 mMTris-HCl [pH8.0],

2% [vol/vol] Triton X-100, 1% SDS, 100 mM NaCl and 1 mM EDTA) and sonicated using a

Branson Sonifier 450D equipped with a microtip for 6–13 cycles (1 second burst, 0.5 second
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pause, for 30 seconds/cycle at 70% intensity) allowing samples to cool on ice for 1 minute

between cycles.

FAIRE-seq libraries were prepared using the TruSeq kit (15025064, Illumina) according to

manufacturer’s specifications with the following exceptions. One hundred nanograms of input

FAIRE DNA was used for all zIEC samples. Adaptors were diluted 1/10 prior to ligation.

Libraries were verified using an Agilent Bioanalyzer by the UNC-CH Bioinformatics and

Genomics Core facility and sequenced (2 libraries multiplexed per lane) using Illumina HiSeq

2000 at the UNC-CH HTSF. FAIRE-seq sequencing results were processed and mapped to the

zebrafish genome (danRer7/Zv9) using Bowtie.

Total RNA was extracted from adult zebrafish IECs using TRIzol Reagent (Invitrogen).

Two micrograms (in 50 μl RNase-free water) were used for TruSeq library preparation (per-

formed by the UNC-CH HTSF) for mRNA Illumina sequencing using 2 x 50 bp paired-end

reads. Four samples were multiplexed per lane. Reads were mapped to danRer7/Zv9 using

TopHat v1.4.0. Normalized Fragments Per Kilobase of transcript per Million mapped reads

(FPKM) expression values were generated using cufflinks v2.0.2 with default parameters and

gene annotations from Ensembl Zv9 release 71.

Stickleback

FAIRE-seq and RNA-seq on adult stickleback IECs. Wild-caught adult stickleback fish

(2 female, 1 male) from Friant River, California (Approximate GPS coordinates:

N36:58:47-W119:43:51) were used in this study (CA Scientific Collecting Permit #3260). A

total of 3 replicates for RNA-seq and 1 replicate for FAIRE-seq were generated from isolated

adult IECs. IECs were isolated from the anterior intestinal tract starting just posterior to the

pyloric sphincter below the stomach, with the rectum removed (distal-most portion, approxi-

mately 5 mm) [118]. RNA was isolated, and FAIRE performed exactly as described for the zeb-

rafish IEC samples. FAIRE-seq reads generated on an Illumina HiSeq 2000 by Duke

Sequencing and Genomic Technologies Shared Resource were aligned to the stickleback refer-

ence genome (gasAcu1) using Bowtie. Two micrograms of total RNA were used for TruSeq

library preparation for sequencing 50 bp paired-end reads. Reads from Stickleback Adult IECs

were mapped to gasAcu1 using TopHat2 (v2.0.9) with default parameters. Normalized FPKM

expression values were generated using cufflinks (v2.1.1) [119] with gene annotations from

Ensembl BROAD S1/gasAcu1 release 76.

RNA levels and downstream analysis

Orthology definitions. Orthology definitions were extracted from Ensembl Biomart

(December 2014; Ensembl Genes 78) by identifying orthologs using a compiled list of “ortho-

log_onetoone” homology types for each species with orthology to zebrafish as a common com-

parison. Ensembl biomart, unique identifiers, and orthology definitions were used to compare

genes across species when necessary. Ensembl orthology calls were used without manual cura-

tion, which may have resulted in the inclusion of rare false positives or false negatives. For

example, zebrafish rbp2a was included as a 1-to-1 ortholog by Ensembl despite the existence of

a rapidly evolving paralog rbp2b [120].

IEC signature genes. To identify intestinal epithelial signature genes, we combined our

RNA-seq data with RNA-seq data from multiple mouse tissues using 4,248 1-to-1-to-1-to-1

orthologs with detectable mRNA signal across tissues [29]. We calculated a pairwise distance

matrix using Pearson correlation based on all expressed genes to estimate the similarity of all

samples. We performed PCA and found that PC1 separated intestine samples from all other

tissues, and we extracted the genes correlating with PC1 using a PC loading correlation
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threshold of>0.7. We removed ribosomal proteins from downstream analyses. R studio

(https://www.rstudio.com/) was used to run custom R scripts to perform PCA (FactoMineR

package), hierarchical clustering (stats package), and to construct heatmaps, scatter plots, and

dendrograms. Complete linkage clustering was performed with hclust using correlation dis-

tance metrics through dist. Packages ggplot2 and gplots were used to generate data plots.

DAVID analysis. GO term and KEGG Pathway analysis were performed using DAVID

v6.7 with Human Ensembl Gene IDs as input (http://david.abcc.ncifcrf.gov) [121].

EnrichR. Mouse and Human Gene Atlas tissue enrichment overlap was performed using

Enrichr with Human Official Gene Symbols as input (http://amp.pharm.mssm.edu/Enrichr/)

[122].

Processing of intestinal regionalization data. Normalized single-channel intensities

were z-scored separately for each dataset corresponding to whole duodenum, jejunum,

ileum, and proximal colon from WT adult conventionally-raised mice (GSM434935) [47]

and 7 sections of equal length of WT adult conventionally raised whole zebrafish intestine

(GSE20884) [15]. Zebrafish 1-to-1 orthologs (zebrafish to mouse) with at least 1 intestine

section’s z-score value greater than 0 were clustered using a complete clustering method with

an uncentered similarity metric in Cluster 3.0 [123] to identify genes that show differential

expression levels across the zebrafish intestine. Consistent with previously published data, a

cluster corresponding to genes with relative mRNA levels highest in the first 5 sections and

an additional cluster in the last 2 sections were apparent [15]. In addition, an uncharacter-

ized cluster of genes with high mRNA levels only in section 5 were found. For genes within

these 3 clusters, linear correlation coefficients were generated between values for the 7 zebra-

fish regional segments and 7 mouse regional segment data sets (3 of which were generated by

linear interpolation between the 4 [duodenum, jejunum, ileum, and colon] adjacent mouse

segments, effectively generating expression values for 7 total mice segments). The data set

was then filtered to exclude 1-to-1 orthologs with a linear correlation coefficient below .6

when comparing zebrafish and mouse relative expression values. This identified mouse

genes that had similar expression patterns along the length of the intestine as their orthologs

in zebrafish. For visualization, z-scored section values were median centered for each gene

and then sorted by each mouse intestinal segment to identify the genes that showed the high-

est relative level of mRNA for each particular segment in mouse, which frequently corre-

sponded to similarly regional intestinal expression in zebrafish. Genes were then separated

by their original zebrafish cluster to effectively show which genes had similar patterns rela-

tive to their mammalian counterparts and anatomy. The genes in the cluster showing high

relative expression in the anterior sections of the zebrafish intestine were sorted both by

mouse duodenum and jejunum values (Fig 2, S3 Fig).

Accessible chromatin and downstream analysis

Peak calls. Peak calls on accessible chromatin data were generated using MACS2 [124]

with default conditions except with broad region calling off and using the reported q-value

cutoff for each species (S3 Table). Peaks were merged for each replicate, collapsing overlapping

peaks to create a final list of peaks used for analysis. Peak calls for ENCODE and Human Road-

map samples were downloaded directly using previously published data (https://www.

encodeproject.org/) (S3 Table). In all cases, overlaps were called if 1 base pair was shared

between different features. Additional routine genomics data processing and visualizations

were performed using a locally installed Galaxy instance (13771:7a4d321c0e38) including the

Java-genomics-toolkit (https://github.com/timpalpant/java-genomics-toolkit) and the main

Galaxy server (https://usegalaxy.org).
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TSS definition. TSS and TTS gene coordinates were downloaded using the UCSC table

browser. For hg19 and mm9, Refseq definitions were used because they provide predomi-

nant gene isoform coordinates, allowing for the use of the most characterized and utilized

TSS. Due to lack of Refseq annotation of many predicted genes in danRer7 and gasAcu1, TSS

and TTS coordinates were extracted using the UCSC table browser from the Ensembl data-

base. When multiple gene isoforms were present, a representative was chosen at random.

Ensembl biomart and orthology definitions were used to compare genes across species when

necessary.

Gene regulatory domain definition. Maximum and minimum gene TSS and TTS coordi-

nates from Refseq and Ensembl genes, extracted as explained in TSS definition above, were

utilized for each gene to include all DNA within the largest possible transcriptional region. To

generate local regulatory domains, 10 kb were added to both the beginning and end of this

region to increase the region associated with each gene by a total of 20 kb.

TFBS motif enrichment and annotation. Motif searching was performed on genomic

sequence using the “homer2 find” (http://homer.salk.edu/homer/index.html;v4.7.2) [59] com-

mand with the motif library provided with repetitive, yeast, and plants motifs excluded. Results

for common short degenerate motifs that were consistently found in the majority of motif-

annotated sequences that did not rely on statistical enrichment were excluded from presenta-

tion. Motif enrichment was performed on repeat-masked genomic sequence using the findmo-

tifs.pl script from homer2 and the full homer2 motif library (http://homer.ucsd.edu/homer/

motif/HomerMotifDB/homerResults.html). When appropriate, background sequences were

used as noted or using the corresponding sequences associated with the bottom 1,000 genes

with the lowest PC1 correlations.

Conservation metrics

zCNE definitions. zCNE coordinates (danRer7) [55] and corresponding coordinates

from mouse zCNEs (mm9; mzCNEs) and human zCNEs (hg19; hzCNEs) were provided by

the lab of Dr. Gill Berjerano (http://bejerano.stanford.edu/zebrafish/public/html/). Liftover of

zCNEs from zebrafish (danRer7) to stickleback (gasAcu1) was performed using the LiftOver

utility from UCSC (https://genome.ucsc.edu/cgi-bin/hgLiftOver).

LiftOver. The UCSC LiftOver tool was used to liftover regions (e.g. TSS-1,000 bp exclud-

ing any coding regions) from the zebrafish (danRer7) genome to mouse (mm9) and human

genomes (hg19). Liftover to either mammalian genome was considered as conservation for a

particular gene.

MAF blocks. MAF blocks were extracted from 100-way multiZ new (hg19) to hg19 and

mm10 using zebrafish TSS-1,000 bp regions, excluding any coding regions for IEC signature

genes. Genes that had MAF blocks of at least 10 bp from zebrafish to mouse or human were

considered as conservation for a particular gene.

Cloning and generation of reporter constructs

Putative regulatory elements were amplified from genomic DNA with primers containing FseI

and AscI restriction site overhangs and then cloned, maintaining orientation relative to their

native TSS, into the p5E-FSE-ASC entry plasmid (381) (http://tol2kit.genetics.utah.edu/;

Tol2kit v1.2) [125]. Putative clones were confirmed by PCR and sequencing to ensure an exact

match to genomic sequence from the corresponding species. Four-way LR reactions were per-

formed using the LR Clonase II Plus Kit (12538120, Invitrogen) combining p5E-FSE-ASC

modified with a putative regulatory element, pME cFos (S4 Table), p3E EGFP (366), and

pDestTol2pA2 (394) using the provided protocol. This generated a single plasmid recombined
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with a putative regulatory region upstream of a minimal mouse cFos promoter-driving eGFP

and flanked by Tol2 transposon insertion sites, which was confirmed to contain the putative

regulatory region by PCR. Site-directed mutagenesis constructs were generated by randomly

changing key bases over 10 bp in TFBS, detected by Homer within the zebrafish hes1/her6-
neighboring zCNE_44665. Homer could no longer detect the targeted TFBS using the mutated

genomic sequence in the context of the otherwise original zCNE_44665 sequence. For each

site-directed mutation, complementary primers containing the 10 bp mutated region flanked

by wildtype 20 bp sequences on either side were used in circular PCR with the original

zCNE_44665 containing 381 plasmid as template followed by DpnI treatment to digest meth-

ylated plasmid. Site-directed mutagenesis was confirmed by sequencing.

In vivo reporter assay. In vivo reporter assays were conducted at Duke University with

zebrafish reared using established methods [126,127]. The following existing lines were used

in this study: EK, TgBAC(lamp2:RFP)pd1044 [71], Tg(-4.5fabp2:DsRed)pd1000 [73], Tg(neurod1:
TagRFP)w69 [87], and Tg(EPV.Tp1-Ocu.Hbb2:hmgb1-mCherry)jh11 [89]. Note that TgBAC
(lamp2:RFP)pd1044 is distinct from TgBAC(lamp2:RFP)pd1117 [71] but was generated using

identical methods. New transgenic alleles and lines generated in this study are listed in S5

Table. Constructs were injected using a Picospritzer into EK zebrafish embryos at the 1 cell

stage using an injection cocktail including 150 ng of the Tol2 enhancer plasmid, 10% (V/V)

of Phenol red solution (Sigma; 0.5% in DBPS), 200 μM HEPES Buffer pH 7.0 (CellGro), and

250 ng transposase mRNA and water to a total of 5 μl using approximately 2 nl or approxi-

mately 70 pg per embryo as described [58]. Typically, mosaic GFP IEC expression could be

scored at the F0 generation following injection. F1 lines were further screened for GFP

expression at 1 dpf to identify transgenics and for IEC expression through 7 dpf. For each

construct, at least 2 independently generated F1 lines were identified as having consistent

expression patterns in IECs, and, typically, 1 of these lines was used as a representative for

imaging and analysis. A construct was considered negative for driving IEC expression if no

mosaic IEC expression was detected at the F0 generation, and the F1 population generated

multiple GFP positive offspring from distinct crosses that subsequently failed to show clear

IEC expression at 7 dpf. For constructs with negative results for IEC expression in larvae,

adult tissue was not assayed.

Imaging. Whole-mount images profiling GFP expression in the zebrafish were taken on a

Leica M205 FA stereofluorescence microscope except for images with maximum or average

projections, which were taken on a Leica SP8 confocal microscope. For consistency, Figs 4A,

5I, 5J and 6B whole-mount images were reflected on the vertical axis to commonly orient fish

across all figures. Two-hundred-micrometer thick cross-section images were generated with a

Vibratome (Leica) and visualized on a Leica SP8 confocal microscope using mounting media

with DAPI (Vectashield H-1200).

Supporting information

S1 Fig. Relationship between relative mRNA levels for IEC data sets from 4 different spe-

cies. A) Pairwise scatter plots showing FPKM values for IEC datasets from four species for IEC

signature genes (red) and non-IEC signature genes (black). B) Heatmap of linear correlation

coefficients for pairwise comparison between IEC datasets and mouse non-IEC datasets [29]

for IEC signature genes, non-IEC signature genes, and transcription factors. C) Scatter plots of

IEC FPKM values for IEC signature (green) and non-IEC signature (black) transcription fac-

tors. D) Heatmap of FPKM values or IEC and other tissues for representative genes that are

specific to IEC subtypes. Despite the lack of Paneth cells in zebrafish, XBP1, a Paneth cell asso-

ciated transcript, is highly expressed in zebrafish IECs. E) Heat map of expression levels for
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IECs and other non-IEC tissues [29] ordered by PC1 correlations from Fig 1E. Black vertical

bar marks IEC signature genes.

(PDF)

S2 Fig. Comparison of replicates for RNA-seq and accessible chromatin data sets. A) Heat-

map of clustergram using complete linkage with a correlation uncentered similarity metric for

arrays using log10 FPKM values from IEC datasets for all species for 1to1to1to1 orthologs.

Genes are ordered by average log10 FPKM values across all replicates. B) Heatmap of cluster-

gram using complete linkage with a correlation uncentered similarity metric for arrays and

genes using log10 FPKM values for all genes from stickleback IECs. C) Same as B for zebrafish

IECs D) Same as B for human IECs. E) Heatmap of clustergram using complete linkage with a

correlation uncentered similarity metric for arrays and genes using the sum of accessible chro-

matin signal (sequencing counts) at the TSS+/-50 bp (the 100 bp window centered on the TSS)

for 1-1-1-1 orthologs. Arrays are median centered and normalized using Cluster 3.0. F) The

same as E for zebrafish IECs. Stickleback data is also provided and ordered by the zebrafish

clustering. G) The same as E for human IECs.

(PDF)

S3 Fig. Conserved regional transcriptional similarities along the intestine in zebrafish and

mouse. A) Consistent with a previously published result [15], a heatmap of a cluster analysis of

previously published single channel intensity z-scored mircroarray mRNA levels from adult

zebrafish whole intestine dissected into 7 equal length segments. Cluster analysis includes zeb-

rafish 1to1 orthologs (zebrafish to mouse) with at least one intestine section’s z-score value

greater than 0 clustered using a complete clustering method with an uncentered similarity

metric in Cluster 3.0. B) Same as A for adult mouse whole intestine sections from using previ-

ously published mouse data [47]. C) Heatmap of 1to1 orthologs from the zebrafish cluster in

(A) marked by a blue bar for genes with a linear correlation over 0.6 between the 7 zebrafish

sections and 7 values generated by linear interpolation between the z-scores for the 4 mouse

segments sorted by z-score in mouse jejunum. Evidence for conserved transcriptional regula-

tion for genes most highly expressed in zebrafish sections 4–5 and mouse jejunum suggest

nuanced expression patterns are conserved. D) Same as C for the orange cluster highlighting

an apparent ileum signature. Additional zebrafish genes of potential interest due to their

expression patterns, but without 1to1 orthology, are added by hand. E-F) Same as (C) for the

green cluster broken into two groups of genes that are lowly (E) or highly (F) relatively

expressed preferentially in zebrafish sections 6–7 sorted by values from the mouse colon. Sin-

gle channel z-score values across intestinal segments in (G) zebrafish and (H) mouse for tran-

scription factors that have binding sites in the promoters of Rbp2 and Fabp6 show expression

patterns that may help specify regional intestinal expression patterns in IECs across species.

Colored dots on y-axes correspond to scales for colored data sets. Numerical values can be

found in S1 Table.

(PDF)

S4 Fig. Consistent cross-species relationship between expression and accessible chromatin

suggests information in promoter regions may help regulate expression specificity in IECs.

A) Accessible chromatin signal at 1000 bp surrounding the TSS of 1to1to1to1 orthologs

ordered by PC1 correlation used to identify IEC signature genes for zebrafish, stickleback,

mouse ileum, mouse colon and human colon accessible chromatin data (Right). Moving

median (Left) for FPKM of associated genes (250 gene window, 1 step; color scheme used

throughout and shown in B) IEC signature genes are marked by a black vertical bar. B) Mov-

ing median (250 gene window, 1 step) for accessible chromatin signal at TSS from IECs based
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on ordering in A). Numerical values can be found in S1 Table. C) Heatmap of common motif

enrichment within the TSS-1000 bp region for IEC signature genes. D) Heatmap of common

motif enrichment within IEC accessible chromatin peaks within the region TSS-1000 bp for

IEC signature genes.

(PDF)

S5 Fig. Adult zebrafish express transcriptional domains that are positionally similar to

those seen in larvae. A) Accessible chromatin signal for RBP2(a) human, mouse, zebrafish

and stickleback loci. Accessible chromatin peaks colored based on color scheme used through-

out for IEC samples, conservation from zebrafish to human or mouse; bronze, and cloned

region; black). B) Accessible chromatin signal for FABP6 loci from human, mouse, zebrafish

and stickleback. Accessible chromatin peaks colored based on color scheme used throughout

for IEC samples, conservation from zebrafish to human or mouse; bronze, and cloned regions;

black). C) UCSC screenshot for Phylop conservation score and Multiz hg19 alignment (top)

and Phylop conservation score for Multiz mm9 alignment (bottom) for representative species

at the region immediately upstream of FABP6/Fabp6 transcription start site and highlighted in

bronze in B. Highlighted are predicted TATA-box motifs that overlap the conserved region in

both mouse and human. While a conserved signal is detected from human and mouse to zeb-

rafish only the TATA-box appears to be conserved.

(PDF)

S6 Fig. Cloning strategy, cFos injection control, and autofluoresence background. A) Sim-

plified schematic of 4-way LR recombination cloning. Briefly, fragments amplified from a

genomic template with primers containing FseI and AscI overhangs are cloned into a 5’

entry vector. A 4-way LR reaction combines the 5’ entry containing the putative regulatory

element with a middle entry vector containing the minimal cFos promoter (S4 Table) and 3’

entry vector with eGFP into a destination vector containing Tol2 insertion sites [125]. B) A

cFos control vector was generated to test for potential insertion background expression and

the expression capacity of the cFos minimal promoter in IECs as this construct presumably

can act as an enhancer trap when inserted into the genome without additional regulatory

information. Comprehensive testing of potential insertion influence with this control vector

is difficult, however typically no or little expression in IECs was found and none of the cFos

control expression fish drove expression patterns that were consistent with the elements

tested in the main body of the paper (C-F). While wholemount stereoscopic microscopy of

fish containing this control construct did not readily detect IEC GFP expression that we

found when testing putative IEC regulatory elements (Figs 4–6). We also performed confocal

microscopy on a subset of fish as this is typically more sensitive at identifying localized GFP

signal. We note below where limited IEC expression existed in the control lines we profiled,

however any IEC expression was not usual and not consistent between control lines. C)

Developmental pattern of GFP expression of cFos control line 3m. D) Developmental pat-

tern of GFP expression of cFos control F1 line 7m D’) Cross-section of cFos control line 7m

shows light expression in a goblet cell. E) Developmental pattern of GFP expression of cFos

control F1 line 9m. E’) Cross-section of cFos control line 9m shows no detectable GFP

expression in IECs. F) Developmental pattern of GFP expression of cFos control F1 line 9m.

F’) Cross-section of cFos control line 9m shows light GFP expression in IECs. Figures (C-F)

are presented on a black background for clarity. Different fish from each line can be repre-

sented on different days. Lines 3m shows yolk autofluorescence near the intestine consistent

with developmental differences that can disappear variably in developing fish due to envi-

ronment or genetic background. G-I) Stereomicroscopy images of 7dpf wild-type EK fish

without any GFP insertions show the typical autofluoresence signal that can be detected
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within the intestinal lumen. For each image the number of milliseconds of exposure for the

GFP signal is listed. Scale bar 100 μm.

(PDF)

S7 Fig. Motif content for CNEs with IEC chromatin accessibility. A) CNEs showing accessi-

ble chromatin largely in IECs corresponding to Fig 6C and 6E. Common results of Homer

transcription factor binding site motif search in all three species for CNEs B) PITX2

CNE_12472, C) MIPOL1 CNE_18098, D) TENM2 CNE_11789, E) C4ORF22 CNE_41249, F)

A1CF CNE_6073, G) HMGA2 CNE_38779, H) HOX3_AS3 CNE_23732, and I) RP11-

279F6.3/KIF23 CNE_21883. Not pictured are CNEs that had no motifs in common in all three

species. Corresponding CNE size [55] between J) zebrafish and mouse, K) zebrafish and

human, and L) mouse and humans reveals that linked CNE size is often smaller when compar-

ing from the zebrafish anchor genome to alignment genomes suggesting conserved regulatory

information may be lost using conservation strategies. Dashed black line represents a slope of

1. In a few cases CNEs from zebrafish can map to non-continuous regions of the alignment

genomes. In this case, the cumulative size of these regions is summed to generate a single size

for each corresponding CNE in each genome.

(PDF)

S8 Fig. Cluster-based strategy to identify potential CNEs that are largely accessible in

IECs. A) Heatmap of cluster analysis of overlaps between CNE regions and accessible chroma-

tin peak calls for IECs and other tissues. Clusters showing CNEs with relatively specific accessi-

ble chromatin in IECs are marked as A1 (red), A2 (orange), and A3 (yellow). CNEs that

appear largely constitutively accessible in IEC and other tissues in all species are labeled Con-

stitutive (green). B) Blow up of A1 cluster showing CNE names [55] and nearest genes. CNEs

marked with asterisks are used in motif analysis in E. C) Same as B for A2 cluster. D) Same as

B for A3 cluster. E) Common motifs found in CNEs identified in A-D for a subset of CNEs

near genes of interest based on known IEC biology or due to the specificity of accessible chro-

matin to IECs in multiple species. F) Motif enrichment to identify motifs that are more often

found in CNEs that show chromatin accessibility in IECs reveals multiple TFBSs important in

IEC biology like HNF1, CDX2, and HNF4A. Various groups of non-IEC specific CNEs are

used as backgrounds for motif enrichment as labeled. G) Inverse analysis to F to identify motif

enrichment of motifs that are not found in CNEs that show accessibility in IECs, suggesting

these transcription factors and motifs are less likely to play a specific role in conserved IEC

biology.

(PDF)

S9 Fig. Remarkable IEC-specific accessible chromatin of a conserved enhancer region

upstream of HES1 in multiple species. A) WashU Epigenome browser screen shot of HES1

locus for a large number of accessible chromatin datasets from diverse tissues for the Human

roadmap study and human colon IECs from this study shows exclusive accessibility for

hzCNE_44665 in intestinal datasets. B) WashU Epigenome browser screen shot of Hes1 locus

for a large number of accessible chromatin datasets from diverse tissues for the mouse

ENCODE study and mouse ileum and colon IECs used for this study shows exclusive accessi-

bility for mzCNE_44665 in intestinal datasets. C) Schematic for common motifs found in

CNE_44665 shows a common placement and order of HNF1, RBPJ, and HIF2B TFBS across

zebrafish, mouse and human overlayed on the CNE region (bronze) and the neighboring

region (light gray). Solid lines between predicted TFBS are drawn to represent the presumed

conservation of these sites. Interestingly, a putative GFI1B binding site detected in

zCNE_44665 is absent in mzCNE_44665 and hzCNE_44665, but a GFI1B site can be found in
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the neighboring region that still shows IEC accessible chromatin specificity in human and

mouse (see A and B). This relationship is marked with a dashed line.

(PDF)

S10 Fig. Additional characterization of regulatory capacity of hes1 zCNE_44665 in trans-

genic zebrafish. A) 7 dpf cross-section of individual transgenic zebrafish lines for hes1 Tg

(zCNE_44665:GFP) show consistent GFP expression in a subset of IECs often at the base of

nascent folds. B) Minimal gross overlap can be seen between Notch positive cells in the pan-

creas and the Tg(zCNE_44665:GFP) signal in 7 dpf zebrafish C) The corpusles of Stannius

show high Notch positive signaling and little to no GFP expression from Tg(zCNE_44665:

GFP). D) Overlap can be seen between Notch positive cells and Tg(zCNE_44665:GFP) signal

in the liver. E) and F) Examples of more apical nuclei in 8 week old cross-section in Tg

(zCNE_44665:GFP) and Notch positive cells. G) Whole-mount stereoscopic images of 7 dpf

Tg(zCNE_44665:GFP)/Tg(-4.5fabp2:DsRed) shows a large proportion of IECs are DsRed

+ enterocytes, however a subset of the IECs not expressing DsRed are GFP+ and are marked

by white arrows. H) Whole-mount stereoscopic images of 7 dpf Tg(zCNE_44665:GFP)/Tg

(neurod1:TagRFP) show lack of overlap between the hes1 Tg(zCNE_44665:GFP) and enter-

oendocrine cells. Representative GFP+ cells are marked by a yellow arrow and RFP+ cells are

marked by a red arrow. Pancreatic islet marked by i.

(PDF)

S1 Table. Table of 1-to-1-to-1-to-1 orthologs included in identification of IEC signature

genes. Table of 1-to-1-to-1-to-1 orthologs included in identification of IEC signature genes

including PC1 correlation used as a cutoff for IEC signature gene inclusion. Included are

FPKM values for other tissues [29] and for 3 replicates of IECs. Also included are disease

terms associated with IEC signature genes from DIOPT (http://www.flyrnai.org/diopt).

(XLSX)

S2 Table. Summary table of DAVID and Enrichr analysis using IEC signature genes as

input and remaining 1-to-1-to-1-to-1 orthologs used in identifying IEC signatures from S1

Table as background.

(XLSX)

S3 Table. Summary table of peaks identified and data sets used in this study.

(XLSX)

S4 Table. Primer sequences and coordinates in this study.

(XLSX)

S5 Table. Zebrafish transgenic lines generated for this study.

(XLSX)

S1 Movie. Confocal cross-section z-stack movie shows overlap between hes1 Tg

(zCNE_44665:GFP) and Notch signaling Tg(EPV.Tp1-Ocu.Hbb2:hmgb1-mCherry).

(AVI)
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