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Optical multistability and Fano line-
shape control via mode coupling 
in whispering-gallery-mode 
microresonator optomechanics
Suzhen Zhang1,2, Jiahua Li1,3, Rong Yu4, Wei Wang5 & Ying Wu1

We study a three-mode (i.e., a clockwise mode, a counterclockwise mode, and a mechanical 
mode) coherent coupling regime of the optical whispering-gallery-mode (WGM) microresonator 
optomechanical system by considering a pair of counterpropagating modes in a general case. The WGM 
microresonator is coherently driven by a strong control laser field and a relatively weak probe laser field 
via a tapered fiber. The system parameters utilized to explore this process correspond to experimentally 
demonstrated values in the WGM microresonator optomechanical systems. By properly adjusting the 
coupling rate of these two counterpropagating modes in the WGM microresonator, the steady-state 
displacement behaviors of the mechanical oscillation and the normalized power transmission and 
reflection spectra of the output fields are analyzed in detail. It is found that the mode coupling plays a 
crucial role in rich line-shape structures. Some interesting phenomena of the system, including optical 
multistability and sharp asymmetric Fano-shape optomechanically induced transparency (OMIT), can 
be generated with a large degree of control and tunability. Our obtained results in this study can be used 
for designing efficient all-optical switching and high-sensitivity sensor.

Cavity optomechanical system, a rapidly developing regime of research which concerns the coherent coupling 
between optical modes and mechanical modes via the radiation pressure of photons trapped in an optical cavity 
(for recent reviews, see, e.g., refs 1–5), has made the rapid advance of technology in recent years. The marked 
achievements have been made in those optical components, such as ultrahigh-precision measurement6, 
gravitation-wave detection7, quantum information processing (QIP)8–10, higher-order sidebands11–13, optical non-
linearity14–16, mechanical parity-time PT( ) symmetry17–19 and PT -broken chaos20, quantum entanglement21–26, 
optomechanically induced transparency (OMIT)27–35, and optomechanically induced stochastic resonance 
(OMISR)36, and many others1–5.

On the other hand, there is also an increasing interest in the nonlinear optical phenomena based on quan-
tum coherence and interference in optomechanics. One of the most interesting phenomena, optical bistability 
and multistability37–40, have attracted a lot of attention due to a variety of fundamental studies and practical 
applications in optical communication and optical computing, such as all-optical switching41,42, sensitive force or 
displacement detections and memory storage43,44, etc. Another one of the curious optical phenomena is based on 
quantum coherence and interference, i.e., the so-called Fano resonance45, the pronounced feature of which is a 
sharp asymmetric line profile. It was first theoretically explained by Ugo Fano46. He discovered that the shape of 
this resonance, which is based on the interaction of a discrete excited state of an atom with a continuum of scat-
tering states, is quite different from the resonance which generally described by the Lorentzian formula. Because 
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of the asymmetry of the Fano line-shape and the enhanced interference effect, many theoretical47–53 and experi-
mental54–59 works have be done so far.

The rapid progress of the nonlinear optics and the optomechanical system is mainly due to the development 
of various optical microcavities2,60–62, which have the small mode volume, small masses, high quality Q factor, and 
high on-chip integrability. It is wroth pointing out that, different from the standing wave in a Fabry-Pérot cavity, 
optical whispering-gallery-mode (WGM) microresonator supports a pair of counterpropagating modes: clock-
wise (CW) mode and counterclockwise (CCW) mode63,64, which have a degenerate frequency and an identical 
mode field distribution. As a result, the propagating direction of the light in the coupling region determines which 
mode is coherently excited. Due to residual scattering of light at the surface or in the bulk glass, the counterprop-
agating mode can also be significantly populated. In the past, the above-mentioned OMIT effect in a WGM 
toroidal microcavity has been widely studied based on the coupling of a single stationary mode in the normal 
mode basis with a mechanical mode27 where the two modes are well resolved under the condition that κJ  
(namely, in the ultrastrong coupling regime, here J is the coupling rate between the two CW and CCW modes and 
κ is the total cavity decay rate, respectively). In this limit, only one of the two stationary modes is considered and 
the other is neglected since the neglected mode is far-off-resonant and therefore it is not populated27. 
Correspondingly, the experimental conditions also have to be chosen in order to avoid a mechanical sideband 
coinciding with the resonance frequency of the neglected mode.

Whereas little has been discussed about and done with the three-mode (a CW mode, a CCW mode, and a 
mechanical mode) coherent coupling regime of the WGM microresonator optomechanical system by consid-
ering a pair of counterpropagating modes in a more general case. Specifically, the studied circumstances 
involves two aspects as follows. (i) The two modes cannot be resolved and hence two of them are populated 
when J ≤  κ (in the weak coupling regime); (ii) We also consider the condition of J >  κ (the strong coupling 
regime) but not the ultrastrong coupling regime κJ  (i.e., the transition coupling region κ <  J <  3κ), thus the 
two modes still can be resolved. In view of these factors, the main aim of the present work is to take into 
account the simultaneous coupling of the two modes with a mechanical oscillation for the cases of J ≤  κ and 
J >  κ, which relaxes the mode coupling rate required to reach κJ  27 and makes the proposed device suitable 
for practical applications. We present a complete analytical investigation based on a three-mode WGM 
microresonator optomechanics and on a perturbation approach to calculate the power transmission and reflec-
tion spectra of a weak probe field under the action of a strong control field. We mainly study the mode-coupling 
effect on the properties of the mechanical oscillator displacement, the light forward transmission, and back-
ward reflection. We clearly show that the mode coupling characterized by J can lead to some interesting phe-
nomena of the on-chip WGM microresonator optomechanical system, such as optical multistability and sharp 
asymmetrical Fano-shape OMIT resonances. We also discuss the influences of the other system parameters 
including the power of the control field, the outgoing coupling coefficient, and the optomechanical coupling 
strength on all-optical generation of Fano line-shapes. Our findings provide new insights into the aspects of the 
interaction between the CW or CCW light and mechanical motion. It can be used to design low-power 
all-optical switches, modulators, and high-sensitivity sensors.

Figure 1. Schematic diagram of the WGM microresonator optomechanical system consisting of a tapered 
fiber and a WGM ring microresonator which contains a mechanical breathing mode with resonance 
frequency Ωm. Two degenerate counterpropagating modes are respectively labeled as â (CCW) and b̂ (CW) 
with the same frequency ω. Because of internal defect centers or surface roughness, these two modes are 
coupled to each other at a rate J, which is known as the so-called mode coupling. The intrinsic loss of the cavity 
fields is denoted by κi and the waveguide-cavity coupling strength is κex. The CCW mode is driven by an 
external input field ain including a strong control field and a weak probe field with field strengths εc and εp as 
well as carrier frequencies ωc and ωp. The output fields are described by aout and bout, respectively. See text for 
details.
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Results
Theoretical model. As schematically shown in Fig. 1, we consider a microresonator optomechanical system, 
which consists of a WGM microresonator containing a mechanical breathing mode and a tapered fiber. As shown 
in ref. 27, the WGM microresonator can support counterclockwise (CCW) and clockwise (CW) propagating 
modes, which are described in terms of the annihilation (creation) operators â ˆ†a( ) and b̂ ˆ†

b( ) with a common 
frequency ω.

Because of residual scattering of light at the surface or in the bulk glass, the two CCW and CW propagat-
ing modes are coupled to each other at a rate J. At the same time, these two modes interact with the mechan-
ical radial breathing mode through the radiation pressure, where the optomechanical coupling strength 
between the optical modes and the mechanical mode is characterized by G. The two CCW and CW modes 
are side-coupled to a tapered fiber by the evanescent field which is determined by the propagating direction 
of the light in the coupling region. We assume that the CCW mode in the WGM microresonator (see Fig. 1) 
is coherently driven by an external input laser field consisting of a strong control field and a relatively weak 
probe field, denoted by ε ε= +ω ω− −a t e e( )in c

i t
p

i tc p  with the field strengths (carrier frequencies) εc and εp (ωc 
and ωp). The field strengths εc and εp are normalized to a photon flux at the input of the microresonator and 
are defined as ε ω= P /c c c  and ε ω= P /p p p , where Pc and Pp are the powers of the control field and the 
probe field, respectively. Without loss of generality, we assume that εp and εc are real. Experimentally, εp is 
usually chosen to be much smaller than εc. More information on the device and experimental details can be 
found in ref. 27 and supporting online material accompanying ref. 27. The Hamiltonian of the whole system 
is given by
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where x̂ and p̂ are the position and momentum operators of the mechanical oscillator with the effective mass 
m and resonance frequency Ωm, satisfying the relationship =ˆ ˆx p i[ , ] . The optomechanical coupling constant 
G between the mechanical and cavity modes can be defined as G =  − ∂ ω/∂ x, which is determined by the shift 
of the cavity resonance frequency per the displacement of the mechanical resonator2. The total decay rate of the 
WGM microresonator mode (the microresonator linewidth) is denoted by κ =  κi +  κex, where κi is the intrinsic 
decay rate, related to the intrinsic quality factors Qi by κi =  ω/Qi and κex is the external decay rate (the outgoing 
coupling coefficient) from the optical resonator into the tapered fiber, related to the coupling quality factor Qe 
by κe =  ω/Qe. The total decay rate κ is related to the total quality factor Q by κ =  ω/Q. Obviously, 
1/Q =  1/Qi +  1/Qe. Various techniques have been reported for changing Q dynamically65–67. The outgoing cou-
pling coefficient ηc =  κex/κ can be used to measure the cavity loading degree. (i) If ηc <  0.5, the WGM microres-
onator is in the under-coupling regime. (ii) If ηc =  0.5, the WGM microresonator is in the critical-coupling 
regime. (iii) If ηc >  0.5, the WGM microresonator is in the over-coupling regime. The outgoing coupling coef-
ficient ηc can be continuously tuned by changing the air gap between the WGM microresonator and tapered 
fiber27. Finally, it should be pointed out that the coupling between the CW and CCW modes is usually caused 
by residual scattering of light at the surface or in the bulk glass as well as the case when there are interruptions 
(such as nanoparticles). Thus the surface roughness or internal defect center in the WGM microresonator is the 
critical point to make the coupling between the CCW and CW modes. These factors above may be used to 
control and tune the coupling rate J. Note that both J and κ can be controlled independently in actual 
systems.

In the above Hamiltonian (1), the first and second terms represent the energies of the mechanical oscillator. 
The third term is the energy of the WGM microresonator. The fourth term describes the coherent coupling of the 
CCW mode â with the CW mode b̂, i.e., the so-called mode coupling term. The fifth term presents the optome-
chanical coupling due to the radiation pressure with the coupling strength G. The last two terms in Eq. (1) 
describe the interactions between the cavity field and the two input fields, respectively.

Controlled optical bistability and multistability in WGM microresonator optomechanical system.  
In this section, as the first insight, we will show how optical bistability and multistability for the displacement 
of the mechanical resonator can be modified and controlled by the mode coupling rate J under the action of the 
strong control field in our proposed scheme.

When the coupled system is strongly driven, it can be characterized by the semiclassical steady-state solutions 
with large amplitudes for both optical and mechanical modes. In view of this, by calculating Eqs (8–10) of the 
Methods under steady-state conditions, we have the result for x
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It can be clearly see from Eq. (2) that the steady-state value x for the displacement of the mechanical resonator is 
a fifth-order polynomial equation, thus, there are at most five real roots, significantly different from the previous 
studies (a cubic equation that can have up to three real roots)11,39–41. The reason for this is that the two CW and 
CCW modes simultaneously coupled with the mechanical oscillator.

We plot the stationary value for the displacement of the mechanical resonator x as a function of the power of 
the control field Pc for the six different values of the coupling rate J between the two CW and CCW modes as 
shown in Fig. 2(a–f). First of all, from Fig. 2(a) corresponding to the case of J =  0, it is easy to see that an S-shaped 
behavior of the displacement of the mechanical resonator can be formed efficiently, that is to say, the coupled 
system exhibits the bistable behavior where the largest and smallest roots of x are stable, and the middle one is 
unstable. Note that, such an optical bistability has been investigated in the previous optomechanical sys-
tems11,39–41. In this situation, the system only has a single bistable window. This is because only one CCW mode of 
the GWM microresonator is coupled with the mechanical resonator while the other CW mode coupled with the 

Figure 2. The displacement of the mechanical resonator x as a function of the power of the control field Pc 
for the six different values of the mode coupling rate J. For the numerical simulations, we use the following 
experimental parameters from ref. 27: m =  20 ng, G/2π =  − 12 GHz/nm, Γ m/2π =  41 kHz, κ/2π =  15 MHz, 
Ωm/2π =  51.8 MHz, ηc =  0.5, and Δ  =  − Ωm, respectively. The wavelength of the control field is chosen to be 
λc =  532 nm.
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mechanical resonator is usually neglected27. When considering J =  0.05 Ωm in Fig. 2(b), it is expected that optical 
bistable behavior is not changed almost, due to a significantly small increased value of the mode coupling rate J. 
Second, as we continue to increase the coupling rate J between these two CW and CCW modes, e.g., J =  0.1 Ωm 
and 0.2 Ωm, optical multistable behavior begins to appear, as can be seen in Fig. 2(c) and (d). For the case that 
J =  0.3 Ωm in Fig. 2(e), the coupled system obviously displays optical multistabile behavior. Lastly, with further 
increasing J (for example, J =  0.45 Ωm), the system also exhibits the multistability consisting of the two separated 
bistable windows as depicted in Fig. 2(f). It is shown from Fig. 2(a–f) that the steady-state response of the 
mechanical resonator may be bistable and tristable, depending strongly on the value of the mode coupling rate J. 
Here it is worth pointing out that in the region with three solutions, two of them are stable by a standard linear 
stability analysis68. While in the region with five solutions, three of them are stable. As a consequence, these 
results for x represent bistable [see Fig. 2(a,b)] and tristable [see Fig. 2(d–f)] regimes, respectively. Finally, for the 
threshold values of J between the bistable and triplestable regimes, they are too cumbersome to be given here.

According to what has been discussed above, we can arrive at the conclusion that the generated bistability 
and tristability in Fig. 2 are closely related to the mode coupling rate J. The WGM microresonator optomechan-
ics we consider here enables more controllability in the bistable and tristable behaviors of the displacement of 
the mechanical resonator by appropriately adjusting the coupling rate J between the two modes of the GWM 
microresonator. From an experimental point of view, the controlled triple-state switching is possible practically 
by adding a pulse sequence onto the input field69. Such an optical tristability can be used for building all-optical 
switches, logic-gate devices, and memory devices for optical computing and quantum information processing.

Controlled sharp asymmetric Fano resonance OMIT line-shapes in WGM microresonator 
optomechanical system. The Fano resonance, which has a pronounced sharp asymmetric line-shape pro-
file, is remarkably different from the above-mentioned symmetric OMIT spectral profile11,27. Due to its sharp 
asymmetric line-shape, any small changes in the considered Fano system are able to cause the huge change of both 
the amplitude and phase. Consequently, the possibility of controlling and tuning the Fano resonance is a func-
tionality of key relevance. In this section, we look at the effect of various system parameters on the asymmetric 
Fano resonance line-shapes of the normalized power forward transmission TF and backward reflection TB at the 
output of the device. The detailed results are given in Figs 3, 4, 5 and 6.

First of all, we start by exploring how the line-shapes of the Fano resonance can be modified by varying the 
coupling rate J between the two CW and CCW counterpropagating modes. Figure 3 shows the normalized power 
forward transmission TF and backward reflection TB as a function of the detuning Ω (Ω ≡  ωp −  ωc, in units of 
Ωm) under the four different values of the mode coupling rates J based on the obtained analytical expressions 
(27) and (28) of the Methods. We use the following parameter values εp/εc =  0.05, Pc =  10 mW, ηc =  0.5, and the 

Figure 3. The normalized power forward transmission TF (the blue line) and backward reflection TB 
(the red dot line) as a function of the detuning Ω for the four different values of the mode coupling 
rate J. (a) J =  0, (b) J =  0.2 Ωm, (c) J =  0.4 Ωm, and (d) J =  0.6 Ωm. In all the figures, we employ Pc =  10 mW, 
m =  20 ng, G/2π =  − 12 GHz/nm, Γ m/2π =  41 kHz, κ/2π =  15 MHz, Ωm/2π =  51.8 MHz, ηc =  0.5, and Δ  =  − Ωm, 
respectively.
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other system parameters are exactly the same as those in Fig. 2. Figure 3(a) shows the normalized power forward 
transmission TF and backward reflection TB versus the detuning Ω for the case of J =  0, which means that the 
two counterpropagating modes are not coupled to each other. It can be seen from Fig. 3(a) that the normalized 
power forward transmission TF (see the blue line) has a single transparent peak in the center of Ω =  Ωm and two 
dips on both sides, which exhibits a symmetric dip-peak-dip spectral structure in the forward transmission. This 
phenomenon shows an obvious OMIT effect, which has been intensively studied in the previous works27–35. In the 

Figure 4. The normalized power forward transmission TF (the blue line) and backward reflection TB (the 
red dot line) as a function of the detuning Ω for the four different values of the power of the control field 
Pc. (a) Pc =  10 μW, (b) Pc =  100 μW, (c) Pc =  1 mW, and (d) Pc =  10 mW. In all the figures, we employ J =  0.6 Ωm, 
m =  20 ng, G/2π =  − 12 GHz/nm, Γ m/2π =  41 kHz, κ/2π =  15 MHz, Ωm/2π =  51.8 MHz, ηc =  0.5, and Δ  =  − Ωm, 
respectively.

Figure 5. The normalized power (a) forward transmission TF and (b) backward reflection TB as a function of 
the detuning Ω for the three different values of the outgoing coupling coefficient ηc: (i) ηc =  0.1 (under coupling), 
(ii) ηc =  0.5 (critical coupling), and (iii) ηc =  0.8 (over coupling). The insets in (a) and (b) show a magnified  
view of Fano line-shapes near Ω =  Ωm in a smaller region. We use Pc =  900 μW, J =  0.6 Ωm, m =  20 ng,  
G/2π =  − 12 GHz/nm, Γ m/2π =  41 kHz, κ/2π =  15 MHz, Ωm/2π =  51.8 MHz, and Δ  =  − Ωm, respectively.
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meantime, the normalized power backward reflection TB (see the red dot line) is zero, as predicted. This is because 
the CW mode b (see Fig. 1) is not introduced at all when J =  0. It also corresponds to the same situation as that in 
Fig. 2(a) where the optomechanical system possesses only one single bistability.

Figure 3(b–d) display the normalized power forward transmission TF and backward reflection TB vary with 
the detuning Ω when the mode coupling rate J is not equal to zero. Specifically, in Fig. 3(b) the mode coupling rate 
J is not big enough, i.e., J =  0.2 Ωm, so the Fano resonance has not yet emerged in this case. While when J =  0.4 Ωm 
in Fig. 3(c) and J =  0.6 Ωm in Fig. 3(d), the system displays rich line-shape structures. A typical asymmetric Fano 
line-shapes can be generated efficiently near Ω =  Ωm. Physically, the underlying mechanism for generating such 
Fano resonances is the destructive interference between the forth and back reflections of the optical field through 
different pathways due to the fact that the WGM microresonator introduces the backward propagating lights via 
the mode coupling term, i.e.,  +ˆ ˆ ˆ ˆ† †

J a b ab( ) in Eq. (1). By comparing Fig. 3(c) and (d) where the mode coupling 
rates J respectively are 0.4 Ωm and 0.6 Ωm, it is found that the Fano line-shapes change distinctly with the increase 
of the mode coupling rate J. In particular, when we increase the mode coupling rate J to a large value of 0.6 Ωm, the 
dip of the Fano resonance in the normalized power forward transmission TF is decreased considerably. We can 
observe an enhanced Fano line-shape with a resonance maximum (peak) at Ω =  Ωm and a resonance minimum 
(dip) at Ω =  1.013 Ωm. The spectral width between the peak and the dip of the Fano is Δ Ω =  0.013 Ωm. In our Fano 
optomechanical system, the forward transmission contrast of the Fano response is as high as approximately 54% 
[see Fig. 3(d)], which is sufficient for any telecom system70. Correspondingly, the peak of the Fano resonance in 
the normalized power backward reflection TB is increased due to the energy conservation. At the same time, the 
spectra of the normalized power forward transmission TF and backward reflection TB expand outwards the reso-
nance peak. Hence, we are able to effectively control and tune the Fano line-shapes by appropriately adjusting the 
coupling rate J between the two counterpropagating modes. As shown in ref. 71, the effective mode coupling in 
the WGM microresonator optomechanical system is usually introduced by internal defect centers or surface 
roughness. Thus these factors (i.e., manipulating the internal defect centers or surface roughness experimentally) 
may be used to control and tune the coupling rate J between the two counterpropagating modes. In view of rapid 
advances in micro-nano manufacture technology, we believe that quantitative control of J will be accessible in 
experiments in the near future.

Next, we demonstrate that the line-shapes of the Fano resonance can also be manipulated by varying the power 
of the control field Pc. Figure 4 shows the normalized power forward transmission TF and backward reflection TB 
as a function of the detuning Ω for the four different values of the power of the control field Pc. In order to illustrate 
the dependence of the Fano line-shapes on the power of the control field Pc, we keep these parameters J =  0.6 Ωm, 
εp/εc =  0.05, and ηc =  0.5 fixed, and the other system parameters are exactly the same as those in Fig. 2. In Fig. 4(a), 
we plot the spectra of the normalized power forward transmission TF and backward reflection TB for the case that a 
control filed of Pc =  10 μW is applied. It can be seen from Fig. 4(a) that one can observe an asymmetric Fano-shape 
OMIT resonance after zooming the figure but the Fano phenomenon is very weak because the power of the control 
field is quite small. For the case of Pc =  100 μW in Fig. 4(b), on closer inspection, one can see that a very weak Fano 
resonance around Ω =  Ωm starts to appear in the generated transmission and reflection spectra. Interestingly, when 
the power of the control field is further increased to the values of Pc =  1 mW and 10 mW, we find a pronounced sharp 
asymmetrical dip (peak) in the transmission (reflection) spectrum, which we identify as the Fano resonance. The 
Fano resonance becomes more and more stronger, as can be verified from Fig. 4(c,d). From these figures, it is evident 
that the sharp asymmetric line-shape of the Fano resonance can be formed under the stronger powers of the control 

Figure 6. The normalized power (a) forward transmission TF and (b) backward reflection TB as a function of 
the detuning Ω for the three different values of the optomechanical coupling strength G. Here the blue double 
dots line is G =  − 6 GHz/nm, the green line is G =  − 12 GHz/nm, and the red dot dash line is G =  − 18 GHz/nm, 
respectively. The insets in (a) and (b) show a zoom-in plot of Fano line-shapes near Ω =  Ωm in a smaller region. 
We use Pc =  900 μW, J =  0.6 Ωm, m =  20 ng, Γ m/2π =  41 kHz, κ/2π =  15 MHz, Ωm/2π =  51.8 MHz, ηc =  0.5, and 
Δ  =  − Ωm, respectively.
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field. Alternatively, in Fig. 4 it is also shown that the spectral profiles of the normalized power forward transmission 
TF and backward reflection TB cannot expand outwards the resonance peak, only the heights from the peak-to-dip 
of the Fano resonance increase gradually, as compared to the results in Fig. 3.

Finally, we turn to discuss how the line-shapes of the Fano resonance can be controlled by the outgoing cou-
pling coefficient ηc and the optomechanical coupling strength G in the presence of the mode coupling. In Fig. 5, 
we first show that the Fano line-shape can be tuned by properly changing the outgoing coupling coefficient ηc 
under three cavity loading conditions [under (κex <  κi or ηc <  0.5), critical (κex =  κi or ηc =  0.5), and over (κex >  κi 
or ηc >  0.5) coupling conditions]. Figure 5(a) plots the normalized power forward transmission spectrum TF as 
a function of the detuning Ω for the three different values of the outgoing coupling coefficient ηc. Specifically, for 
the case of the outgoing coupling coefficient ηc =  0.1 in Fig. 5(a), the normalized power forward transmission 
spectrum of TF is a symmetric W-type of double Lorentzian-like line-shape. As the outgoing coupling coefficient 
ηc is increased, for example, ηc =  0.5 and 0.8, the asymmetric Fano resonance becomes increasingly obvious. For 
the sake of clarity, the inset in Fig. 5(a) shows a magnified view of Fano line-shapes near Ω =  Ωm in a smaller 
region. Likewise, Fig. 5(b) presents the normalized power backward reflection spectrum TB varies with the detun-
ing Ω for the three different values of the outgoing coupling coefficient ηc. Compared with Fig. 5(a), we can find 
that the pattern of the Fano resonance is inverted and the sharp peaks appear on the right side of the resonance 
dip. This is due to different phase shifts between the two resonance modes in the WGM microresonator. Such a 
situation also occurs in Figs 3 and 4. Lastly, Fig. 6 shows the tunable line-shapes of the Fano resonance by varying 
the optomechanical coupling strength G. In Fig. 6(a) and(b), we can observe the variation of the peak-to-dip 
spectral spacing by adjusting the optomechanical coupling strength G. When the absolute value of coupling coef-
ficient G increases, the peak-to-dip spectral spacing increases gradually.

Overall, in view of these detailed discussions above, we can reach the conclusion that the coherent coupling of 
the two counterpropagating modes, which is neglected in the previous studies11,27, plays a key role in the genera-
tion of asymmetric Fano resonance line-shape. Here the on-chip WGM microresonator optomechanical system 
provides an easy and robust way to tune and control Fano resonance spectrum by simply changing the experi-
mentally achievable parameters, such as the mode coupling rate J, the power of the control field Pc, the outgoing 
coupling coefficient ηc, and the optomechanical coupling strength G. All of these system parameters are simple 
and flexible to implement our proposed arrangement. This Fano resonance control will be useful for enhancing 
the sensitivity of the sensors and designing low-power all-optical switches54.

Discussion
We have proposed a fully on-chip scheme for generating and controlling optical multistability and sharp asym-
metric Fano resonance OMIT line-shapes in a three-mode microresonator optomechanical system. The WGM 
microresonator is driven by an external two-tone laser field consisting of a strong control field and a relatively 
weak probe field via a tapered fiber. In our model, we consider the two stationary modes cannot be resolved and 
hence both of them are populated when J ≤  κ or we assume the condition of J >  κ but not κJ  (i.e., the transi-
tion coupling region κ <  J <  3κ), which are quite different from the previous approach in ref. 27. There are two 
main results in our study. First, by solving the coupled Heisenberg-Langevin equations and analyzing the station-
ary state solution, we find that the coupling rate of the two counterpropagating modes, that is parameterized by J, 
plays a key role in manipulating optical multistable properties for the displacement of the mechanical motion. 
When J is very small, there has only one bistable region. Importantly, the bistability can turn into the multistabil-
ity in the beginning and then becomes the two separated bistable regions with increasing J. Second, by using the 
standard input-output relation and the perturbation method, we analyze in detail the normalized power trans-
mission and reflection spectra of the weak probe laser field. With readily accessible system parameters, we observe 
the sharp asymmetric Fano resonance line-shapes, which originates from the interference between the forth and 
back reflections of the optical filed in different pathways. In addition, the sharp asymmetric Fano spectral profile 
can be controlled and tuned by appropriately changing the mode coupling rate between the two counterpropagat-
ing modes, the distance between the cavity and the tapered fiber, the power of the control field, and the optome-
chanical coupling strength between the counterpropagating modes and mechanical mode, respectively. The 
scheme could be realized with current physical technology27 and all of these system parameters can be adjusted 
readily under realistic experimental conditions. This investigation may provide new insights into the aspects of 
the interaction between the WGM microresonator and the mechanical motion. Also, our results will be helpful in 
practical applications, such as all-optical switches, modulators, and high-sensitivity sensors, etc.

Methods
Derivation the normalized power forward transmission TF and backward reflection TB of the 
probe field. Transforming the above Hamiltonian [Eq. (1)] into the rotating frame at the frequency ωc of the 

control field by means of ω= +ˆ ˆ ˆ ˆ† †
H a a b b( )c0  , = = ω− − +ˆ ˆ ˆ ˆ† †

U t e e( ) iH t i t a a b b/ ( )c0  , and Hrot =  U†(t) (H −  H0) U(t), 
we can obtain an effective Hamiltonian as
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where Δ  =  ωc −  ω and Ω =  ωp −  ωc are the detunings of the control field with frequency ωc from the cavity field 
with the frequency ω and the probe field with the frequency ωp, respectively.

According to the effective Hamiltonian [Eq. (3)], reducing the operators to their mean values and drop-
ping the quantum and thermal noise terms (all the noise operators have zero mean values), we can get the 
Heisenberg-Langevin equations of motion as follows:

κ η κε η κε= ∆ − − − + + − Ωda
dt

i iGx a iJb e( /2) , (4)c c c p
i t

κ= ∆ − − −
db
dt

i iGx b iJa( /2) , (5)

=
dx
dt

p m/ , (6)

= − Ω − + − Γ⁎ ⁎dp
dt

m x G a a b b p( ) , (7)m m
2

where the decay rates of the cavity field (κ) and mechanical oscillator (Γ m) have been introduced classically.
For the case that the control field is much stronger than the probe field, the perturbation method can be used 

ref. 27. The control field provides a steady-state solution (a, b, and x) of the system, while the weak probe field is 
tread as the noise. In this case, the intracavity field and the mechanical displacement can be written as δ= +a a a, 

δ= +b b b, and δ= +x x x. Ignoring the perturbation terms, the steady-state solutions of Eqs (4–7) can be 
achieved as

κ η κε

κ
=
− ∆ −

∆ − +
a

i

i J

( /2)

( /2)
,

(8)
c c

2 2

η κε

κ
=

−

∆ − +
b

iJ

i J( /2)
,

(9)
c c

2 2


=
− | | + | |

Ω
x G a b

m
( ) ,

(10)m

2 2

2

where ∆ = ∆ − Gx. By considering the perturbation for the weak probe field and substituting δ= +a a a, 
δ= +b b b, and δ= +x x x into Eqs (4–7), we have the results

δ δ δ δ δ η κε= Θ − + − + − Ωd
dt

a a iG x a a iJ b e( ) , (11)c p
i t

δ δ δ δ δ= Θ − + −
d
dt

b b iG x b b iJ a( ) , (12)

δ δ δ δ δ δ δ δ δΨ =
−

+ + + + +⁎ ⁎ ⁎ ⁎ ⁎ ⁎x G
m

a a a a a a b b b b b b( ), (13)

where κΘ = ∆ −i /2 and Ψ = + Ω + Γd
dt m m

d
dt

22

2 , respectively.
In order to further solve this set of the coupled equations (11–13), following the method of ref. 27, we introduce 

the following ansatz for the fluctuation parts of the intracavity field and the displacement of the mechanical mode:

δ = +− − Ω + Ωa A e A e , (14)i t i t
1 1

δ = +− − Ω + Ωb B e B e , (15)i t i t
1 1

δ = + .− Ω Ω⁎x X e X e (16)i t i t
1 1

Upon substituting Eqs (14–16) into Eqs (11–13) and sorting them by the rotation term e±iΩt, this yields the fol-
lowing five algebra equations:

η κε= + −− −D A iGaX iJB , (17)c p1 1 1 1

= ++ +⁎D A iGaX iJB , (18)2 1 1 1



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:39781 | DOI: 10.1038/srep39781

= +− −D B iGbX iJA , (19)1 1 1 1

= ++ +⁎D B iGbX iJA , (20)2 1 1 1


χ Ω

= − + + ++ − + −⁎ ⁎ ⁎ ⁎X G a A a A b B b B
( )

[ ( ) ( ) ],
(21)

1
1 1 1 1

where D1 =  Θ  +  iΩ, D2 =  Θ  −  iΩ, and χ Ω =
Ω −Ω − Γ Ω

( )
m i

1
( )m m

2 2
, respectively. It is worth noticing here that the 

steady-state values a and b are governed by Eqs (8–10).
From the above Eqs (17–21), after tedious but straightforward calculations, the solutions for X1, −A1 , and −B1  

can be derived explicitly as
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By applying the standard input-output theory72,73, η κ= −a a a t( )out in c  and η κ= −b b t( )out c , we can arrive 
at the forward and backward direction output fields as follows:

η κ= + −ω ω ω ω− − + − −a c e c e A e , (25)out cF
i t

pF
i t

c
i t

1
(2 )c p c p

η κ= + −ω ω ω ω− − + − −b c e c e B e , (26)out cB
i t

pB
i t

c
i t

1
(2 )c p c p

where the three complex coefficients ε η κ= −c acF c c , ε η κ= − −c ApF p c 1 , and η κ− +Ac 1  η κ= −c b( ,cB c
η κ η κ= − −− +c B B, and )pB c c1 1  describe the optical responses at the control-field frequency ωc, the 

probe-field frequency ωp, and the new frequency 2ωc −  ωp for the forward (backward) direction output field, 
respectively. That is to say, from the physical point of view, the expressions (25) and (26) reveal that the forward 
and backward direction output fields contains two input frequency components (the control field with ωc and the 
probe field with ωp) and one additional frequency component (also called Stokes field11) with 2ωc −  ωp. In the 
following, we only focus on the output component at the frequency of the weak probe field like in ref. 27. One also 
can study the features of the output fields at the frequencies of the control and Stokes fields in an analog way, while 
the corresponding results are not shown here due to the space limitation.

Hence, the normalized power forward transmission TF and backward reflection TB of the probe field can be 
expressed as

η κ= −
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where we have defined TF =  |cpF/εp|2 and TB =  |cpB/εp|2 for convenience, respectively. Equations (27) and (28) are 
the central results of this paper.
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