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Abstract RadA (also known as ’Sms’) is a highly conserved protein, found in almost all

eubacteria and plants, with sequence similarity to the RecA strand exchange protein and a role in

homologous recombination. We investigate here the biochemical properties of the E. coli RadA

protein and several mutant forms. RadA is a DNA-dependent ATPase, a DNA-binding protein and

can stimulate the branch migration phase of RecA-mediated strand transfer reactions. RadA cannot

mediate synaptic pairing between homologous DNA molecules but can drive branch migration to

extend the region of heteroduplex DNA, even without RecA. Unlike other branch migration factors

RecG and RuvAB, RadA stimulates branch migration within the context of the RecA filament, in the

direction of RecA-mediated strand exchange. We propose that RadA-mediated branch migration

aids recombination by allowing the 3’ invading strand to be incorporated into heteroduplex DNA

and to be extended by DNA polymerases.

DOI: 10.7554/eLife.10807.001

Introduction
All organisms have complex mechanisms to accurately replicate and repair their chromosomes to

maintain genetic integrity. In E. coli, the RecA protein promotes repair of DNA lesions directly

through its role in homologous recombination (reviewed in [Persky and Lovett, 2008]). In addition,

it promotes repair indirectly by the recruitment of repair polymerases to damaged replication forks

(Patel et al., 2010) and by activation of the SOS response, a transcriptional response to DNA dam-

age (reviewed in [Simmons et al., 2009]). Each of these processes depends on the formation of

RecA filaments on single-strand DNA (ssDNA).

In vitro RecA mediates strand exchange, a key step of recombination, in three distinct phases

(Radding et al., 1983). The first phase is the formation of the presynaptic filament on ssDNA. RecA

filaments form when dimers nucleate on DNA in a slow step (Bell et al., 2012); subsequently the fila-

ment is extended in both directions, although at a higher rate at the 3’ end of the RecA:ssDNA fila-

ment. When ssDNA is bound in the primary DNA binding site of the RecA filament, it is underwound

relative to B-form dsDNA such that the RecA-DNA filament has about 18 bases per turn

(Chen et al., 2008; Galletto et al., 2006). ATP binding, but not hydrolysis, is required for active

RecA filament formation. The second phase involves the homology search process and strand-pair-

ing in which duplex DNA is bound and sampled for pairing through a secondary DNA binding site

(Mazin and Kowalczykowski, 1996, 1998). After homologous DNA molecules are paired, the third

phase of strand exchange involves branch migration, in which the region of heteroduplex DNA

formed between the two strand exchange partners is extended. The heteroduplex is initially bound

through RecA primary site interactions, with the displaced strand(s) in the secondary site (Mazin and
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Kowalczykowski, 1998). ATP hydrolysis is required for complete heteroduplex product formation

when the homologous molecules exceed several kilobases in length (Jain et al., 1994).

Several proteins modulate the RecA filament, regulating the recombination activity of RecA and

its potentially mutagenic activity resulting from induction of the SOS response. These accessory pro-

teins include those involved in RecA nucleation onto ssDNA (PsiB), in loading and unloading of RecA

onto DNA coated with single-strand DNA binding protein (SSB) (RecFOR) and in regulating RecA fil-

ament stability (DinI and RecX) (reviewed in Cox (2007)). Other proteins such as UvrD

(Petrova et al., 2015), PcrA (Fagerburg et al., 2012; Park et al., 2010), and RuvAB

(Eggleston et al., 1997), and DinD dismantle RecA filaments (Uranga et al., 2011).

In eukaryotes, there are several paralogs of the major recombination protein Rad51 that either

modulate Rad51 activity or are specialized strand-exchange proteins themselves (Adelman and

Boulton, 2010; Bernstein et al., 2013; Gasior et al., 2001; Qing et al., 2011; Suwaki et al., 2011;

Taylor et al., 2015). In bacteria, there is at least one partially characterized RecA paralog, RadA.

RadA (also known as ’Sms’, for ’sensitivity to methyl methanesulfonate’ [Song and Sargentini, 1996]

was identified as a radiation-sensitive mutant of E. coli [Diver et al., 1982a]) and is required for

DNA recombination and repair in many diverse bacterial species (Beam et al., 2002;

Burghout et al., 2007; Carrasco et al., 2004; Castellanos and Romero, 2009; Cooper et al.,

2015; Krüger et al., 1997; Lovett, 2006; Slade et al., 2009). Thus, RadA is a possible candidate

for a RecA accessory protein. Despite its name, RadA of eubacteria is not orthologous to RadA of

archaea, the latter being a true strand-exchange protein, functionally and structurally similar to bac-

terial RecA and eukaryotic Rad51 (Seitz et al., 1998; Wu et al., 2004; Yang et al., 2001).

In E. coli, RadA affects recombination measured by certain in vivo assays, often in a manner par-

tially redundant to other functions that mediate late steps of homologous recombination. Loss of

radA, by itself, reduces recovery of genetic rearrangements at tandem-repeated sequences, which

eLife digest Damage to the DNA of a cell can cause serious harm, and so cells have several

ways in which they can repair DNA. Most of these processes rely on the fact that each of the two

strands that make up a DNA molecule can be used as a template to build the other strand.

However, this is not possible if both strands of the DNA break in the same place. This form of

damage can be repaired in a process called homologous recombination, which uses an identical

copy of the broken DNA molecule to repair the broken strands. As a result, this process can only

occur during cell division shortly after a cell has duplicated its DNA.

One important step of homologous recombination is called strand exchange. This involves one of

the broken strands swapping places with part of the equivalent strand in the intact DNA molecule.

To do so, the strands of the intact DNA molecule separate in the region that will be used for the

repair, and the broken strand can then use the other non-broken DNA strand as a template to

replace any missing sections of DNA. The region of the intact DNA molecule where the strands

need to separate often grows during this process: this is known as branch migration. In bacteria, a

protein called RecA plays a fundamental role in controlling strand exchange, but there are other,

similar proteins whose roles in homologous recombination are less well known.

Cooper and Lovett have now purified one of these proteins, called RadA, from the Escherichia

coli species of bacteriato study how it affects homologous recombination. This revealed that RadA

can bind to single-stranded DNA and stimulate branch migration to increase the rate of homologous

recombination. Further investigation revealed that RadA allows branch migration to occur even

when RecA is missing, but that RadA is unable to begin strand exchange if RecA is not present. The

process of branch migration stabilizes the DNA molecules during homologous recombination and

may also allow the repaired DNA strand to engage the machinery that copies DNA.

Cooper and Lovett also used genetic techniques to alter the structure of specific regions of RadA

and found out which parts of the protein affect the ability of RadA to stimulate branch migration.

Future challenges are to find out what effect RadA has on the structure of RecA and how RadA

promotes branch migration.

DOI: 10.7554/eLife.10807.002
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are promoted by defects in the replication fork helicase, DnaB (Lovett, 2006). In addition, loss of

RadA reduces homologous recombination when in combination with loss of RuvAB or RecG

(Beam et al., 2002), as measured by conjugation with Hfr donors. RuvAB and RecG are DNA motor

proteins that branch-migrate recombination intermediates such as Holliday junctions during the late

stages of homologous recombination (reviewed in (Persky and Lovett, 2008). For sensitivity to gen-

otoxins including azidothymidine (AZT), ciprofloxacin (CPX) and UV irradiation, mutations in radA are

especially strongly synergistic with those in recG (Beam et al., 2002; Cooper et al., 2015). This gen-

otoxin-sensitivity in radA recG strains appears to be due, in part, to the accumulation of recombina-

tion intermediates, since it can be suppressed by early blocks to recombination (by mutations in recF

or recA) or by overexpression of RuvAB (Cooper et al., 2015). These genetic observations implicate

RadA in late steps of recombination, potentially involving branch migration of recombination inter-

mediate DNA structures such as Holliday junctions.

RadA is a 460 amino acid protein that has three well-conserved domains found in other proteins,

as well as a 5-amino acid motif highly conserved among radA orthologs. The N-terminal 30 amino

acids form a putative zinc-finger domain with a C4 motif, CXXC-Xn-CXXC. In bacteria, proteins with

this domain include the DNA repair proteins UvrA and RecR, and the ATP-dependent serine prote-

ase ClpX. The E. coli radA100 mutation, a C28Y mutation in the putative Zn finger motif, negates

radA function in vivo and is partially dominant (Cooper et al., 2015; Diver et al., 1982b). The sec-

ond RadA domain (aa 59–184) is homologous to the ATPase region of RecA and contains both

Walker A and Walker B boxes and regions homologous to its L1 and L2 loops involved in primary

site DNA binding. A RadA-K108R mutation at the Walker A sequence is a dominant-negative RadA

allele in E. coli (Cooper et al., 2015). The C-terminal 150 amino acids comprise a predicted S5

domain 2-type fold, (EMBL-EBI Interpro subgroup IPR014721, http://www.ebi.ac.uk/interpro/entry/

IPR014721), present in ribosomal proteins S5 and S9, EF-G, Lon, RNase P, MutL, and several DNA

topoisomerases. Deletion of this domain negates RadA functions in vivo (Cooper et al., 2015). In

BLAST alignments, this region is most closely related to the ATP-dependent serine protease Lon

(Chung and Goldberg, 1981). Mutation of serine 372 of RadA, comparable in alignments to the

active site serine of Lon, did not affect RadA genetic function and this serine is not conserved among

RadAs; this and the lack of other conserved residues of the Lon protease catalytic triad indicate that

RadA is unlikely to possess serine protease activity. Between the RecA and S5 domain 2 domains,

there is a conserved motif specific to RadA proteins, KNRFG, a motif also found in the phage 29

structure-specific nuclease (Giri et al., 2009). The K258A mutation in this motif negates RadA func-

tion and is partially dominant in vivo (Cooper et al., 2015).

To explore RadA function in E. coli, we purified wild type RadA as well as several site-directed

mutants altered in conserved motifs of the protein. We found that the wild-type RadA protein pref-

erentially binds single-strand DNA in the presence of ADP, exhibits ATPase activity stimulated by

DNA, and increases the rate of RecA-mediated recombination in vitro by stimulation of branch

migration. Branch migration can be mediated by RadA even in the absence of RecA and is highly

directional in nature, with preferential extension of the heteroduplex in the 5’ to 3’ direction, relative

to the initiating single-strand; this is codirectional with that of RecA-mediated strand exchange.

Mutations in the Walker A, KNRFG and zinc finger motifs abolish RadA’s branch migration activity in

RecA-coupled reactions and lead to the accumulation of strand exchange intermediate species. The

ability of RadA to catalyze branch migration in the context of the RecA filament and its codirectional-

ity with strand exchange distinguish it from other branch migration functions in E. coli, RecG and

RuvAB (Whitby et al., 1993). RadA’s ability to branch migrate recombination intermediates readily

explains radA mutant phenotypes in vivo.

Results

Protein purification
To elucidate RadA structure and function, we purified native wild-type RadA and several RadA

domain mutants and then evaluated their biochemical activities, particularly those possessed by the

RecA protein. Wild-type RadA was estimated to be more than 98% pure (Figure 1—figure supple-

ment 1).
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DNA binding
Using an electrophoretic mobility shift assay (Figure 1A), we examined the binding of purified RadA

to poly(dT)30 in the presence of various nucleotide cofactors. RadA bound this oligonucleotide only

in the presence of ADP. No binding was detected in the absence of nucleotide, with ATP or dATP

or in the presence of poorly-hydrolyzable ATP analogs, ATPgS or AMP-PNP (Figure 1A). These

observations suggest that ADP promotes the most stably DNA-bound RadA. This behavior contrasts

to that of RecA, which requires ATP for binding to form the active, extended DNA filament and

which dissociates in the presence of ADP. Poorly hydrolyzable nucleotide analogs such as ATPgS

produce the most stable RecA binding (McEntee et al., 1981).

Competition experiments (Figure 1B) with unlabeled poly(dA), poly(dC), poly(dG) and poly(dT)

showed that only poly(dT) competes for RadA binding to labeled poly(dT), indicating a binding pref-

erence for by poly(dT). RecA protein also shows a preference for poly(dT) (Bugreeva et al., 2005;

McEntee et al., 1981), which may be because poly(dT) assumes a more flexible structure

(Mills et al., 1999). The apparent KD of RadA binding to poly(dT)30 is about 110 nM, with a Hill coef-

ficient of 1.5 (Figure 1—figure supplement 2, Figure 1—figure supplement 3), indicative of coop-

erative binding. RadA was observed to bind poly(dT)30 when flanked on both 5’ and 3’ ends by 30

nucleotides of natural DNA sequence (substrate ’E2’, Figure 1—figure supplement 4); this binding

was inhibited if poly(dA)30 was allowed to anneal to the substrate, showing that RadA binds more

poorly to duplex DNA.

Figure 1. RadA Binding to DNA. (A) Nucleotide dependence of RadA binding to poly d(T)30. Reactions (10 ml)

contained 100 fmol (molecule) of radio-labeled poly d(T)30, 3.3 pmol RadA and 1 mM nucleotide. After incubation

at 37 ˚C for 20 min, binding was assessed using EMSA. (B) DNA substrate specificity of RadA Binding. Reactions

containing 1 mM ADP, 3.3 pmol RadA, 100 fmol (molecule) of radio-labeled poly d(T)30 and unlabeled competitor

DNA (circles-poly d(T)30, triangles- poly d(C)30, diamonds-poly d(G)30, squares poly d(A)33 were incubated at 37˚ for
20 min. The extent of binding was determined using scanned autoradiographs of EMSA gels processed with

Image J-64.

DOI: 10.7554/eLife.10807.003

The following figure supplements are available for figure 1:

Figure supplement 1. Purification of RadA.

DOI: 10.7554/eLife.10807.004

Figure supplement 2. RadA binding to poly(dT)30.

DOI: 10.7554/eLife.10807.005

Figure supplement 3. RadA binding curve to poly(dT)30.

DOI: 10.7554/eLife.10807.006

Figure supplement 4. Binding of RadA to substrate E2.

DOI: 10.7554/eLife.10807.007

Cooper and Lovett. eLife 2016;5:e10807. DOI: 10.7554/eLife.10807 4 of 22

Research article Genes and chromosomes Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.10807.003
http://dx.doi.org/10.7554/eLife.10807.004
http://dx.doi.org/10.7554/eLife.10807.005
http://dx.doi.org/10.7554/eLife.10807.006
http://dx.doi.org/10.7554/eLife.10807.007
http://dx.doi.org/10.7554/eLife.10807


DNA-stimulated ATPase
Using an NADH-coupled assay (Table 1), we measured the ATPase activity of RadA, in the presence

or absence of various DNA cofactors, circular ssDNA (jX174 virion) and dsDNA (jX174 RF DNA).

Like RecA, RadA’s ATPase activity is strongly stimulated by ssDNA. However, RadA’s ATPase is also

substantially stimulated by dsDNA whereas dsDNA stimulates RecA’s ATPase only after a lag period

(Kowalczykowski et al., 1987). RadA’s ATPase activity in the presence of ssDNA was measured to

have a kcat of 29.4 min-1, comparable to that of RecA (Weinstock et al., 1981). Addition of single-

strand DNA-binding (SSB) protein after incubation of RadA or RecA with ssDNA was observed to

repress the ATPase activity of RadA, whereas it slightly stimulated the ATPase of RecA (Figure 2).

This latter observation suggests that, although RecA exhibits stable binding to ssDNA when chal-

lenged by SSB, less stable binding by RadA allows for SSB competition and inhibition of its ATPase

activity. RadA ATPase activity measured with a variety of different DNA structures formed by oligo-

nucleotides, including forks, splays, and other branched structures, showed no significant difference

from that with ssDNA (Figure 2—figure supplement 1). Although these DNA molecules are only

very weakly bound by RadA in gel shift experiments (data not shown), they are sufficient to stimulate

RadA’s ATPase activity, indicating some transient or unstable association.

We purified several forms of RadA, mutated in its characteristic motifs: C28Y (Zn finger), K108R

(Walker A box), K258A (KNRFG RadA motif) and S372A (putative Lon protease active site)

(Figure 3A, Figure 3—figure supplement 1). These were analyzed for poly(dT)30 binding in the

presence of ADP and ssDNA-dependent ATPase activity (using the more sensitive PEI TLC method)

(Figure 3B,C). As expected, the K108R mutant in the Walker A box abolished ATPase activity; a

defect in ATPase was exhibited by the K258A mutant as well. Both of these mutants were defective

for DNA binding in the presence of ADP. RadA mutant C28Y retained the ATPase activity but was

defective in DNA binding. RadA mutant S372A retained ATPase and DNA-binding activities.

Strand exchange reactions
We examined standard RecA-mediated strand-exchange reactions between 5386 nucleotide circular

jX174 ssDNA and linear duplex DNA in the presence of ATP and an ATP-regeneration system

(Figure 4A). Presynaptic filaments are formed by the incubation of RecA with ssDNA, linear dsDNA

is then added and the reaction is initiated by the addition of ATP and SSB. Reactions are monitored

by agarose gel electrophoresis. In this regimen, RecA catalyzes the formation of branched DNA mol-

ecules within 5 min, which are converted to the relaxed circular dsDNA final product by 18 min.

Addition of RadA, at a 1:17 stoichiometry relative to RecA, accelerated final product formation, such

that the reaction was complete by 5 min, with no detectable accumulation of branched intermedi-

ates (Figure 4B). Although RadA did not change the efficiency of the RecA strand-exchange reac-

tion, RadA enhanced the branch migration phase of the reaction to yield the final product more

quickly. This branch migration was directional in nature and drove the reaction forward to the nicked

circular product rather than back to the linear substrate.

The strand exchange reaction was also performed by initiating the reaction with RecA alone and

adding RadA to the ongoing reaction after 5 min, when all the duplex linear DNA had been con-

verted to branched intermediates (Figure 4B). In these reactions, final product is visible as early as

Table 1. DNA dependence of RadA ATP hydrolysis.

DNA substrate Apparent kcat (ATP/RadA/min)

None 2.9 +/- 0.2

Circular single-strand 29.4 +/- 0.4

Supercoiled double-strand 9.1 +/- 0.4

Linear double-strand 4.2 +/- 0.2

Nicked double-strand 15.2 +/- 0.5

Reactions contained 1 mM ATP and 20.3 mM (nucleotide) ’X174 DNA. The values shown are the average of two

experiments, except for the circular single-strand value. It is the average of five experiments. Standard deviations

are reported.

DOI: 10.7554/eLife.10807.008
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2.5 min after RadA addition, with the reaction complete after an additional 5 min. Therefore, RadA

need not be present in the reaction during RecA presynaptic filament formation and can stimulate

branch migration from RecA-promoted strand-exchange intermediates. Order-of-addition experi-

ments (Figure 4—figure supplement 1) measuring RecA-mediated strand exchange, with and with-

out RadA, showed that RadA strongly stimulated branch migration when added before SSB, but not

when added after. In addition, RadA did not detectably stimulate RecA-strand exchange in the

absence of SSB. RadA stimulated RecA-mediated strand exchange reactions when RecA concentra-

tions were reduced to suboptimal levels but did not when RecA became limiting (Figure 4—figure

supplement 2). When RecA was held at saturating concentration (6.7 mM) and RadA was titrated,

the stimulation of branch migration was detectable at RadA:RecA stoichiometries of as little as 1:223

and reached the maximal detectable stimulation at 1:13 (Figure 4—figure supplement 3). In the

RadA-stimulated reactions, the time of appearance of final product varied with RadA concentration.

In the absence of an ATP-regeneration system, the addition of ADP to the 3-strand reaction inhib-

its strand exchange, primarily by destabilizing the RecA presynaptic filament (Kahn and Radding,

1984; Lee and Cox, 1990a; 1990b; Piechura et al., 2015; Wu et al., 1982). As an indication of how

RadA might affect the RecA filament, we assayed ADP-inhibition of the standard RecA 3-strand

Figure 2. ATP hydrolysis in reactions including RecA, SSB and RadA. ATP hydrolysis was measured in reactions

containing DNA and protein concentrations similar to those in recombination reactions and included 21 mM

(nucleotide) single-strand circular DNA and 6.7 mM RecA, 1.9 mM SSB, and 630 nM RadA. RecA and/or RadA were

pre-incubated with the single-strand DNA for 8 min at 37 ˚C before the reactions were initiated with ATP +/- SSB.

Rate measurement started 5 min after the addition of ATP. Reactions included: SSB (closed purple circles), RadA

(open red squares), RadA +SSB (closed dark red squares), RecA alone (blue inverted triangles), RecA+SSB (closed

dark blue inverted triangles), RadA + RecA (open green diamonds), RadA+RecA+SSB (closed dark green

diamonds). Error bars represent the 95% confidence interval of the linear fit of the data calculated using Prism

Graph Pad.

DOI: 10.7554/eLife.10807.009

The following figure supplement is available for figure 2:

Figure supplement 1. ATPase activity on model oligonucleotide substrates.

DOI: 10.7554/eLife.10807.010
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reaction (lacking an ATP-regenerating system), at various concentrations relative to a fixed amount

of ATP, 5 mM (Figure 4C). In 60 min reactions with RecA alone, ADP completely inhibited strand-

exchange at 4 mM. In reactions containing both RecA and RadA, ADP inhibition of strand exchange

was almost complete at 1 mM and complete at 2 mM. Furthermore, even without ADP addition,

RadA inhibited RecA 3-strand transfer reactions that lack an ATP-regeneration system. We note that

under these reaction conditions, which include SSB, RadA’s ATPase is inhibited (Figure 2), so this

result is not simply due to a higher rate of ATP depletion by the mere addition of RadA. Under the

conditions used for RecA presynaptic filament formation, addition of RadA at 1:17 RadA:RecA

caused a slight reduction in the measured ATPase (Figure 2), which appears to be primarily due to

RecA. This may indicate some removal and replacement of RecA with RadA on ssDNA, or alterna-

tively, that RadA, at substoichiometric amounts, can inhibit RecA’s ATPase while bound to ssDNA.

RadA did not promote RecA strand transfer or joint molecule formation when SSB was omitted from

Figure 3. Properties of RadA Domain Mutants. (A) Schematic of RadA Domains and Locations of Domain Mutants.

(B) Binding of RadA Mutants to poly d(T)30. Reactions contained 100 fmol (molecule) of poly d(T)30, 3.3 pmol

(mutant) RadA and 1 mM ADP. After incubation at 37 ˚C for 20 min, binding was assessed using EMSA. Binding

relative to wild-type RadA is shown for two independent experiments. (C) ATP hydrolysis by RadA domain

mutants. ATP hydrolysis was assessed using PEI TLC to visualize release of inorganic phosphate (Pi) as described

in the procedures. Reactions contained either no or 10.5 mM (nucleotide) single-strand circular M13 DNA and 250

nM RadA or RadA mutant protein. Graph shows the mean ATP hydrolysis activity of RadA mutants from three

independent experiments relative to the activity of wild-type RadA. Error bars represent the standard deviation of

the mean.

DOI: 10.7554/eLife.10807.011

The following figure supplement is available for figure 3:

Figure supplement 1. SDS-PAGE of RadA mutants.

DOI: 10.7554/eLife.10807.012
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Figure 4. Three-strand Recombination Reactions in the Presence of RadA. (A) Diagram of thethree-strand

recombination reaction. Single-strand circular jX-174 DNA (SCS) was mixed with double-strand jX174 DNA

linearized with PstI (DLS) in the presence of RecA, SSB, ATP and an ATP regenerating system. When RadA was

included in the reactions, it was added to achieve a RadA:RecA ratio of 1:17. Initially, branched Intermediates (INT)

form between the singe-strand circular DNA and its complementary sequence. After continued incubation, nicked

circular product (NP) and single-strand linear product (SLP) are formed. Note: The SLP is not usually visible. The

standard order of addition for this reaction is: 1) Incubation at 37 ˚C for 8 min with buffer, ATP regenerating

system, jX174 single-strand DNA, and RecA (and RadA when included). 2) Addition of double-strand linear jX174

and continued incubation for 5 min at 37˚. 3) Addition of pre-mixed ATP and SSB to initiate the reaction.

Incubation then continued for the times indicated. 4) Deproteinization of the reaction and separation of the

products from substrates on a 0.8% agarose gel run in TAE. (B) Effect of RadA on Three-strand Recombination

Reactions. Three-strand recombination reactions were performed as described above with either RecA and RadA

or RecA alone in the first incubation step. In the third set of reactions, RadA was added to reactions containing

RecA (split from the RecA alone reaction) five minutes after addition of SSB and ATP. (C) Effect of excess ADP on

Three-strand Recombination Reactions. Recombination reactions were performed as described except for the

following modifications. No regenerating system was included, but the ATP concentration was increased to 5 mM.

ADP was added at the concentrations indicated. Finally, incubation at 37 ˚C was extended to 60 min.

DOI: 10.7554/eLife.10807.013

The following figure supplements are available for figure 4:

Figure supplement 1. Effect of order of addition of reaction components on 3-strand recombination reactions in

the presence or absence of RadA.

DOI: 10.7554/eLife.10807.014

Figure supplement 2. Titration of RecA in 3-strand recombination reactions in the presence or absence of RadA.

DOI: 10.7554/eLife.10807.015

Figure 4 continued on next page
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the reaction (Figure 4—figure supplement 1) indicating that RadA does not assist nucleation or fila-

ment extension under these conditions. Under no conditions examined did we find that RadA by

itself could promote strand-pairing and exchange (for example, see Figure 4—figure supplement

4).

To determine which properties of RecA are required for RadA-stimulation of strand exchange, we

next examined strand-exchange catalyzed by RecA K72R, a mutant that can bind but not hydrolyze

ATP (Rehrauer and Kowalczykowski, 1993; Shan et al., 1996). These reactions substitute dATP for

ATP, which promotes higher affinity of RecA for ssDNA, and lower Mg2+ concentrations. As

reported previously, the RecA mutant readily catalyzes strand-pairing to form branched intermedi-

ates but is inefficient at branch migration to form the final relaxed circular dsDNA product. RadA did

indeed accelerate branch migration in RecA K72R-mediated reactions, with final nicked circular

product (’NP’) visible at 30 min (Figure 5A). Therefore, RadA-acceleration of branch migration in

RecA-promoted reactions does not require the ATPase of RecA.

In the standard RecA 3-strand reaction, we examined the ability of RadA mutant proteins to

accelerate branch migration, compared to reactions in parallel with wild-type RadA or lacking RadA

altogether (Figure 5B). Interestingly, the RadA K258A mutant appeared to arrest branch migration,

with the accumulation of slowly-migrating intermediate species. Final product formation was

Figure 4 continued

Figure supplement 3. 3-strand recombination reactions with saturating RecA concentrations and RadA

concentrations as indicated.

DOI: 10.7554/eLife.10807.016

Figure supplement 4. Effect of RadA alone on 3-strand recombination reactions.

DOI: 10.7554/eLife.10807.017

Figure 5. Mutational Analysis of 3-strand Recombination Reactions. (A) Three-strand recombination reactions with

RecA K72R and RadA. Recombination reactions with the mutant RecA K72R were performed as described except

dATP replaced ATP and the Mg(OAc)2 concentration was decreased to 3 mM. (B) Three-strand recombination

reactions with RadA domain mutants. The reactions were performed as described except with the indicated RadA

mutant protein replacing wild-type RadA.

DOI: 10.7554/eLife.10807.018
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reduced, more so than reactions that lack RadA. RadA mutants C28Y and K108R also slowed the

reactions and reduced the efficiency of strand exchange. In contrast, RadA S372A appeared fully

wild-type in its ability to accelerate strand-exchange. These experiments show that RadA’s ATPase

activity, negated in the K108R mutant, is required to stimulate branch migration. RadA K258A, a

dominant-negative mutant in the ’RadA motif’, not only did not accelerate branch migration but also

interfered with RecA’s ability to branch migrate, suggesting it binds either to intermediate structures

and/or RecA to block the reaction. RadA’s putative zinc finger, affected by the C28Y mutant, is also

required to stimulate branch migration.

To test whether RadA could promote branch migration in the absence of RecA, we performed

standard RecA strand-exchange reactions for 12 min and purified the DNA from such reactions after

proteinase K/SDS treatment to remove RecA. This DNA, enriched in branched strand-exchange

intermediates, was then incubated with RadA alone in the presence of ATP. RadA caused loss of

branched DNA and enhanced formation of relaxed circular dsDNA product, relative to the same

substrate incubated without RadA (Figure 6A, quantitated in Figure 6B). Interestingly, branch

migration catalyzed by RadA under these conditions was directional in nature, with accumulation pri-

marily of full strand exchange products (nicked circular dsDNA product, ’NP’) rather than linear

dsDNA (’DLS’) (Figure 6A,B,D). In the presence of SSB, however, the directionality of RadA-medi-

ated branch migration was lost, with accumulation of both linear and circular products (Figure 6A,C,

D). The ability of RadA to catalyze branch migration in this assay required ATP (Figure 6E) and was

not seen in reactions containing no nucleotide, ADP or ATPgS.

The prior strand-exchange reactions involve three DNA strands, with one substrate and one prod-

uct entirely single-stranded. RecA can also catalyze strand-exchange between two duplex molecules,

provided that strand exchange is initiated at a short ssDNA gap in the substrate. These reactions

produce full 4-strand Holliday junction intermediates, as opposed to the 3-strand junctions in the 3-

strand reactions above (Figure 7A). To determine if RadA could accelerate branch migration

between 4 DNA strands involving true Holliday junctions, we performed RecA strand exchange reac-

tions between linear dsDNA molecules and circular dsDNA with a 1346 nt ssDNA gap. All other con-

ditions were identical to the 3-strand reactions above and the 3-strand reactions were performed in

parallel to the 4-strand reactions (Figure 7B). Although RecA by itself efficiently promoted joint mol-

ecule formation in the 4-strand reaction, formation of the final branch-migrated product (nicked

dsDNA circle, ’NP’) was inefficient relative to the 3-strand reaction after 30 min, and most DNA was

found in various branched intermediate forms. In the RecA RadA-coupled reaction, the final product

was visible at the first time point, 10 min, and accumulation of intermediates was not observed.

Therefore, RadA can stimulate branch migration of 4-strand Holliday junctions, as well as 3-strand

junctions.

Discussion
RadA is a ubiquitous RecA-paralog protein found in eubacteria and plants. Genetic studies have

implicated RadA in homologous recombination, particularly in the late steps of recombination inter-

mediate processing. This work presented here provides a biochemical rationale for this role, showing

that purified RadA protein can mediate branch migration of recombination intermediates, in the con-

text of a RecA filament and in a direction 5’ to 3’ with respect to the initiating single-strand.

In theory, branch migration can promote homologous recombination in several ways (Figure 8A).

If strand exchange is initiated at a site removed from a 3’ end, branch migration can serve to engage

the 3’ strand into the heteroduplex region, providing a paired 3’ end that can be extended by DNA

polymerases. RadA’s directionality is consistent with this role. Furthermore, RadA’s inhibition by SSB

may prevent the reverse reaction, the dissolution of this heteroduplex. Branch migration also can

extend the heteroduplex region formed between donor and recipient DNA strands, which may aid

its stability. Therefore, we might expect RadA to aid the process known as ’break-induced replica-

tion’ (Anand et al., 2013), during which a resected linear DNA fragment invades a homologous

duplex region, and establishes a replication fork. Indeed, RadA is strongly required for exchange

events believed to be associated with breakage of the replication fork in vivo (Lovett, 2006).

Branch migration also can dissociate recombination intermediates and is integral to a recombina-

tion reaction known as ’synthesis-dependent strand-annealing’ (SDSA), a process that can heal dou-

ble-strand breaks (DSBs) without crossing-over (Figure 7B). This mechanism underlies a number of
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Figure 6. Recombination Intermediate Branch Migration. (A) Branch Migration of intermediates Mediated by

RadA. Three-strand recombination reactions were stopped after 12 min and deproteinized and purified as

described in the procedures. Branch migration assays contained DNA intermediates (100 ng), 1 mM RadA, 3 mM

ATP, and 2.4 mM SSB when indicated. After incubation for the times incubated, reactions were stopped and

products were resolved on an 0.8% TAE agarose gel. The No protein sample includes DNA intermediate fractions

and ATP and was incubated for 30 min at 37 ˚C without RadA or SSB. (B) Quantification of DNA Species in the

Branch Migration Assay Formed by RadA. Amounts of each DNA species was determined from scanned digital

photographs using ImageJ64 (Nicked Product (NP)-squares, Duplex Linear Substrate (DLS)-triangles, Single-strand

Circular Substrates (SCS)-inverted triangles, and Intermediate Substrates (INT)-circles). (C) Quantification of DNA

Figure 6 continued on next page
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Figure 6 continued

Species in the Branch Migration Assay Formed by RadA and SSB.* Amounts of each DNA species was determined

from scanned digital photographs using ImageJ64. (Nicked Product (NP)-squares, Duplex Linear Substrate (DLS)-

triangles, Single-strand Circular Substrates (SCS)-inverted triangles, and Intermediate Substrates (INT)-circles). (D)

Quantification of the Nicked Product (NP) and Duplex Linear Substrate (DLS) Formed in Branch Migration Assays.

Graph shows the mean and standard deviation of the relative amounts of NP and DLS formed in three

independent branch migration experiments. Two different RadA preparations and three different DNA

Intermediate preparations were used in these experiments. (E) Nucleotide Dependence of the Branch Migration

Assay. Reactions were performed as above except 1mM of the nucleotide indicated replaced 3mM ATP.

Incubation was for 30 min at 37 ˚C. (F) Model Depicting RadA Directionality. In the absence of SSB, RadA

(illustrated by wedge shape) preferentially migrates DNA, displacing a 5’ ssDNA flap. In the presence of SSB, the

directional bias of RadA branch migration is largely eliminated. * No correction for the difference in binding

affinity of ethidium bromide for single-strand and double-strand DNA was made. Thus, the absolute amount of

the DNA species containing single-strand DNA may be underestimated.

DOI: 10.7554/eLife.10807.019

Figure 7. Four-strand Recombination Reactions in the Presence of RadA. (A) Diagram of the Four-strand

Recombination Reaction. Gapped circular substrate (GS) prepared as described in the procedures was mixed with

double-strand jX174 DNA linearized with PstI (DLS) in the presence of RecA, SSB, RadA, ATP and an ATP

regenerating system. Complex, largely duplex DNA intermediates are formed first. The final products are nicked

circular double-DNA (NP) and Duplex Linear DNA with Single-strand Tails (DLP). Note: The tailed linear product

species is not well-resolved from the duplex linear substrate (DLS). (B) Comparison of 3-strand and 4-strand

Recombination Mediated by RecA in the Presence and Absence of RadA. Recombination reactions between either

single-strand circular jX174 DNA (SCS) and double-strand jX174 DNA linearized with PstI (DLS)-3-strand reactions

or double-strand circular jX174 with a 1.3 kB single-strand gap (GS) and double-strand jX174 DNA linearized with

PstI (DLS)-4-strand reactions were performed as described. At the times indicated, reactions were stopped and

de-proteinated. Products were resolved using an 1.0% agarose gel in TAE buffer.

DOI: 10.7554/eLife.10807.020
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repair events associated with DSBs, including transposon-mediated breaks in Drosophila

(Nassif et al., 1994), mating-type switching in yeast (Haber et al., 2004) and radiation damage-

repair in the bacterium Deinococcus radiodurans (Zahradka et al., 2006). Initial homologous strand-

exchange allows DNA synthesis across the region of the break; subsequent branch migration

Figure 8. How branch migration assists homologous recombination. (A) Heteroduplex extension. In reactions

between linear resected DNA and an intact chromosome, initial strand pairing and invasion may occur at a

distance from the 3’ end. Branch migration of the D-loop (in direction of the arrow) allows the heteroduplex region

to extend fully to the 3’ end, allowing it to be engaged by DNA polymerases. Branch migration also allows the D-

loop to be extended, lengthening and stabilizing the region of heteroduplex and forming a 4-strand Holliday

juntion. (B) Synthesis-dependent strand annealing (SDSA). After resection of a broken chromosome and strand

invasion into a sister molecule, branch migration is required to dissolve the intermediate, allowing broken strands

to anneal to one another and the break to be healed. Reactions contained 1 mM ATP and 20.3 mM (nucleotide)

jX174 DNA. The values shown are the average of two experiments, except for the circular single-strand value. It is

the average of five experiments. Standard deviations are reported.

DOI: 10.7554/eLife.10807.021
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dissolves the intermediate to allow the broken strand to anneal to itself and to be joined. In Deino-

coccus radiodurans, radA is required for the SDSA reactions that aid extreme radiation resistance in

this organism (Slade et al., 2009). In this case, RadA protein appears to promote the initial joints

that prime DNA synthesis but could, in theory, also participate in the subsequent branch migration

that resolves such joints to allow annealing. Alternatively, this dissolution might be catalyzed by

RecG, whose polarity seems suited for this role (Whitby et al., 1993). Catalysis of branch migration

can also allow bypass of barriers such as DNA lesions or regions of non-homology that are sufficient

to block spontaneous thermal branch migration.

E. coli possesses three branch migration systems that participate in recombination, RadA, RecG

and RuvAB. Genetic analysis indicates that these systems are both somewhat specialized and some-

what redundant (see discussion [Cooper et al., 2015]). How does branch migration catalyzed by

RadA differ from that promoted by RecG and RuvAB? One difference is that RadA can function in

the context of the RecA synaptic filament, with branches migrated in the direction of RecA-pro-

moted strand transfer. In contrast, when purified RuvAB or RecG are added to ongoing RecA-strand

transfer reactions, they decrease the recovery of full strand-exchange products, by accelerating the

reverse reaction back to substrate forms (Whitby et al., 1993). On RecA-free intermediates, RecG

and RuvAB migrate branches preferentially to substrate and product forms, respectively.

There are two mechanisms by which proteins mediate ATP-driven branch migration, the first

exemplified by the E. coli RuvAB complex. RuvA forms a tetramer, which specifically binds Holliday

junctions; RuvB acts as two hexameric complexes, flanking RuvA and encircling duplex DNA

(Parsons et al., 1995; Yamada et al., 2002). RuvB acts as the motor, pumping DNA through the

complex and thereby moving the position of the junction. RuvAB has classical helicase activity

(Tsaneva et al., 1993), unwinding DNA strands, and, through the RuvA complex, special affinity for

branched structures (Parsons and West, 1993). The magnitude of RuvAB ATPase activity depends

on the DNA structures to which it is bound (Abd Wahab et al., 2013). The RuvAB complex interacts

with a nuclease component, RuvC, coupling branch migration to junction cleavage (West, 1997). In

E. coli branch migration might be limited to providing the preferred sequence (A/T TT G/C) for

RuvC cleavage (Shah et al., 1994; Shida et al., 1995). RecG, the other branch-migration protein in

E. coli, is a DNA translocase with special affinity for branched structures; it is also believed to branch

migrate DNA via a motor mechanism (Whitby and Lloyd, 1998; Whitby et al., 1993).

On the other hand, RecA protein catalyzes branch migration by a distinctly different mechanism

involving strand-exchange between DNA in the primary and secondary DNA-binding-sites on the

RecA filament. Site II-bound DNA has been modeled with the RecA filament as a helix with same

average pitch as Site-I-bound DNA (the latter visible in the crystal structure, [Chen et al., 2008]); this

modeled Site II-bound DNA, however, has a larger radius and an even more highly extended DNA

structure than Site I-bound DNA (reviewed in [Prentiss et al., 2015]). ATP hydrolysis is required for

RecA strand transfer over extended distances (Jain et al., 1994); how ATP hydrolysis promotes

branch migration via the RecA mechanism is not well understood. Unlike RuvAB, RecA has no special

affinity for branched DNA structures nor can it act as a DNA helicase/translocase. The mechanism by

which RadA branch migrates DNA is not known, although its RecA-like sequence character, lack of

structure-specific binding or helicase activity might suggest a RecA-like mechanism. Further analysis

should be revealing.

Although we have no direct evidence for this, the RecA-like structure of RadA suggests that it

might be recruited to a RecA filamens, interacting at its natural interface. Moreover, our ADP inhibi-

tion experiments raise the possibility that RadA may destabilize the RecA filament. In vivo, RecA foci

become more numerous and persistent in radA mutants of E. coli (Massoni et al., 2012), consistent

with a role for RadA in RecA postsynaptic filament destabilization. This property may serve to pro-

vide a handoff of recombination intermediates from RecA to RadA, facilitating the completion of

recombination.

Strand-exchange paralog proteins are universally found in archaea, eubacteria and eukaryotes.

Humans have five such Rad51 proteins, in addition to true strand exchange proteins Rad51 and

Dmc1 (reviewed in [Gasior et al., 2001]). These proteins are required for homologous recombina-

tion, albeit to a lesser extent, than their true strand exchange-protein counterparts. The few that

have been studied biochemically appear to affect the presynaptic phase of strand exchange by

enhancing formation or stability of the Rad51 filament. Rad55/Rad57 of yeast interact with Rad51

(Johnson and Symington, 1995) and act as Rad51-mediator proteins to allow Rad51 to overcome
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inhibition by single-strand DNA-binding protein, RPA, in formation of the Rad51 presynaptic filament

(Sung, 1997). In the archaea, Sulfolobus tokodaii StRad55 protein appears to play a similar role

(Sheng et al., 2008). In addition, yeast Rad55/Rad57 have an additional role in stabilizing the Rad51

filament against dissociation by the Srs2 helicase (Liu et al., 2011).

The effect of bacterial RadA on late stages of recombination, evident both in vivo and in vitro,

presents a new paradigm for strand-exchange paralog proteins that may be shared in other organ-

isms. RFS-1, the sole Rad51 paralog of C. elegans has properties consistent with a late recombina-

tion role and a RFS-1 peptide can disrupt Rad51 filaments in vitro (Adelman and Boulton, 2010),

although recent evidence supports a presynaptic role in remodeling the Rad51 filament to a more

flexible form (Taylor et al., 2015). The human Rad51C-XRCC3 paralog complex may also have a late

recombination role: depletion of Rad51C from cell extracts reduces branch migration capacity and

copurifies with HJ cleavage activity (Liu et al., 2004; 2006).

Although RecA can promote the homology search process, pair DNA and promote branch migra-

tion, RadA may be a specialized form, selected for its ability to catalyze faster branch migration and

incompetent for homology-search and pairing. Because of its role in synapsis, RecA binding needs

to be highly specific for ssDNA, lest it bind indiscriminately to the undamaged chromosome. RadA

cannot pair DNA and has weak ability to bind ssDNA, in comparison to RecA. Its capacity to bind

DNA in the presence of ADP is an intriguing property. In a study of a RecA mutant (P67G E68A,

near the Walker A motif), strand-exchange between lengthy homologies (but not homologies <2 kb)

was highly stimulated by ADP and completely inhibited by ATP or an ATP-regenerating system. This

finding suggests that the ADP-form of the RecA filament is required, in some way, for the branch

migration phase of strand-exchange, as revealed by this particular mutant. RadA binding behavior

may naturally reflect this propensity and the stable binding of RadA in the presence of ADP may

explain its superior ability to promote branch migration, relative to that by RecA. RadA has stronger

dsDNA-stimulated ATPase activity relative to RecA, which may also assist branch migration. Because

the role of ATP hydrolysis in RecA strand-exchange is still unclear, further study of RadA-mediated

branch migration may provide valuable insights into this mechanism.

Our study shows that RadA’s ATPase, ’RadA motif’ (KNRFG) and Zn-finger motif are essential to

the biochemical function of the protein, consistent with our prior genetic results (Cooper et al.,

2015). We hypothesize, based on the position of KNFRG element in the RadA sequence, that this

motif is required to assemble the ATPase site (comparable to K248 K250 region of RecA

[Chen et al., 2008]) at an interface. The Zn-finger appears to assist ssDNA binding but it may also

facilitate some protein (SSB, RecA?) or DNA interaction (branched molecules?), since it is required

for RadA’s stimulation of branch migration in RecA-coupled reactions.

Our study does not address the ability of RadA to form a filament or other oligomeric structure

with itself or with RecA, an area for further investigation. Threading of RadA onto the RecA presyn-

aptic crystal structure (our unpublished results) suggests that RadA possesses subunit interfaces simi-

lar to that of RecA that assemble the ATPase site. In a bacterial one-hybrid assay, RadA was shown

to interact with itself (Marino-Ramirez et al., 2004), indicating that it forms a multimeric complex.

Our early experiments with His6-tagged RadA protein, a less active protein than the more native

protein characterized here, exhibited multiple bound species in gel-shift experiments with poly(dT)

(data not shown), consistent with oligomer formation. RadA’s ability to reduce ATPase activity of

RecA in the presence of ssDNA and SSB, its enhancement of ADP-inhibition of RecA-mediated

strand exchange and the ability of RadA K258A (and to a lesser extent C28Y and K108R) to inhibit

RecA-mediated branch migration are consistent with the notion that RadA joins and destabilizes the

RecA filament. Biochemical confirmation of this hypothesis is ongoing.

Materials and methods

Materials
Biochemicals were purchased from USB or Sigma unless noted. Wild-type RecA was a kind gift from

Shelley Lusetti (New Mexico State University) or purchased from Epicentre

Biotechnologies (Madison, WI). D72R Mutant RecA was generously provided by Michael Cox (Uni-

versity of Wisconsin-Madison). Single-strand DNA-binding Protein (SSB) was from

Promega (Madison, WI) and T4 polynucleotide kinase and restriction enzymes were from New
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England Biolabs (Ipswich, MA). Regenerating system enzymes were from Sigma-

Aldrich (St. Louis, MO). jX-174 and M13 RF and virion DNAs were purchased from NEB, pBS SK-

was from Agilent Technologies (Santa Clara, CA) and pPAL7 was from Bio-Rad

Laboratories (Hercules, CA). Oligonucleotides were purchased from Sigma-Aldrich.

Cloning of radA and site-directed mutagenesis
The wild-type RadA gene was amplified by PCR and cloned into the high copy vector pBS SK-.

Site-directed mutants were made from this construct by PCR as described (Cooper et al., 2015).

Subsequently for protein purification, wild type and mutant RadA DNA was amplified from the

pBS SK- constructs using the eXact primers (Table 2) and then cloned into the vector pPAL7. All

constructs were confirmed by sequencing.

RadA protein purification
Wild-type or mutant eXact-tag constructs were transformed into BL21 Codon-Plus or BL21 AI (Agilent

Technologies) deleted for endA::Km. Typically, the transformation mix was grown for 1 hr at 37 ˚C in

SOC media (2% tryptone, 0.5% yeast extract, 20 mM glucose, 10 mM NaCl, 10 mM MgCl2, 2.5 mM

KCl), diluted into 20 ml SOC supplemented with ampicillin (’Ap’, 100 mg/ml) and then grown standing

overnight. This culture was used as the inoculum for a 1 l LB (2% tryptone, 1% yeast extract, 0.5%

NaCl) culture with Ap. Cultures were grown until the A590 reached approximately 0.8 at which time

IPTG (Gold Biotechnology, St. Louis, MO) was added to 1 mM and arabinose was added to 0.2% (for

BL21 AI strains). Growth was continued for 3–4 hr at 30 ˚C. For production of RadAC28Y and

RadAK108A mutant protein, growth conditions were altered so that a 500 ml culture was grown from

the initial 20 ml inoculum in LB supplemented with 0.2% glucose and 100 mg/ml ampicillin until the cul-

ture reached an A590 of 1.0. Cells were then diluted into LB with 0.4% arabinose, 1 mM IPTG and fresh

ampicillin. Growth was continued 2 hr at 30 ˚C. After growth of all strains, cells were collected by cen-

trifugation, and the resulting pellet was frozen and stored at -20 ˚C. RadA was purified with slight mod-

ifications from the Biorad eXact protocol. Cleavage of the N-terminal eXact tag produces a RadA

protein with the addition of a 2 N-terminal amino acids, threonine serine, (necessary to facilitate effi-

cient cleavage). Typically, pellets from 200 ml of wild type RadA culture were resuspended in 20 ml

eXact buffer (100 mM sodium phosphate, pH 7.2, 10% glycerol, 10 mM beta-mercaptoethanol, 300

mM sodium acetate. (The final pH was adjusted to 7.2 if necessary). Cells were lysed by adding lyso-

zyme (in eXact buffer) to 200 mg/ml and incubating for 45 min on ice. Lysis was completed by incuba-

tion at 37 ˚C for 2 min followed by homogenization using a Dounce Homogenizer on ice (5 passes with

B, followed by 5 passes with A). The crude lysate was clarified by centrifugation at 17000 x g for 30 min

at 4 ˚C. One third of the cleared lysate was applied to a 1 ml eXact pre-packed column equilibrated in

eXact buffer at room temperature. The column was then washed with 15–20 ml eXact buffer. To cleave

the eXact Tag from RadA, 2 ml cleavage buffer (eXact buffer + 100 mM NaF) was applied to the col-

umn, and the column was capped and incubated at room temperature for 45–60 min. RadA was then

Table 2. Oligonucleotides used in this study.

Oligonucleotide
name Sequence

radAeXactF GGAAGCTTTGACTTCTGTGGCAAAAGCTCCAAAACG

radAeXactR TTTGCGGCCGCTTATAAGTCGTCGAACACGC

polyd(N)33 TTAGCGGCCGCATAGTCAAGATGACAATGTTCT

Substrate E2 CGGTCAACGTGGGCATACAACGTGGCACTG
(T)30ATGTCCTAGCAAAGCGTATGTGATCACTGG

Jxn1 CCGCTACCAGTGATCACCAATGGATTGCTAGGACATCTTTGCCCACCTGCAGGTTCACCC

Jxn2 TGGGTGAACCTGCAGGTGGGCAAAGATGTCCTAGCAATCCATTGTCTATGACGTCAAGCT

Jxn3 AGCTTGACGTCATA

Jxn4 GATCACTGGTAGCGG

Jxn5 TGCCGATATTGACAAGACGGCAAAGATGTCCTAGCAATCCATTGGTGATCACTGGTAGCGG

DOI: 10.7554/eLife.10807.022
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eluted from the column with eXact buffer + 100 mM NaF. Fractions containing RadA were pooled,

diluted in small batches in Q buffer (20 mM Tris-HCl, pH 8.0, 0.5 mM EDTA, 15% (v/v) ethylene glycol,

10 mM beta-mercaptoethanol) without salt to give a conductivity of approximately 125 mS-1 and

applied to a 1 ml Q HP column (GE Healthcare) equilibrated with125 mMNaCl Q buffer. After washing

with 15 ml 125 mM NaCl Q Buffer, RadA was eluted with a linear gradient from 125 mM NaCl in Q

buffer to 750 mM NaCl in Q buffer with 20% glycerol replacing the ethylene glycol. RadA eluted at a

conductivity approximately 275 mS-1. To retain activity, fractions containing RadA were immediately

flash-frozen in small aliquots and stored at -80 ˚C. Thawed aliquots were used within 24 hr. Purification

from 200 ml of cells yielded approximately 0.75–1 mg of highly purified RadA Protein (Figure 1—fig-

ure supplement 1). For some experiments, purified RadA was concentrated using Q HP Sepharose

beads (GE Healthcare, Chicago, IL). RadA protein concentration was spectrophotometrically deter-

mined using an extinction coefficient of 22,460 M-1 cm-1 (Gasteiger et al., 2005) or by the Bradford

method (Bradford, 1976), which gave equivalent results.

ATPase assays
ATP hydrolysis activity of RadA mutants was tested either by measuring release of inorganic 32P

from ATP (PerkinElmer, Waltham, MA) using thin layer chromatography (TLC) with polyethylenimine

plates (PEI, Macherey-Nagel, Düren, Germany) as the solid phase and 0.5 M LiCl/ 4.3% formic acid

as the mobile phase (Kornberg et al., 1978). Reactions were incubated at 37 ˚C for the times indi-

cated and contained 10 mM Bis-Tris-Propane-HCl, pH 7.0, 10 mM MgCl2, 2 mM DTT, 1mM ATP.

ATP hydrolysis by wild-type RadA protein was measured in reactions that included an ATP regener-

ating system and were coupled with NADH oxidation. Oxidation of NADH was monitored spectro-

scopically at 380 nm (Extinction coefficient = 12100 M-1cm-1) using a Synergy H1 Microplate Reader

and Gen5 Data Collection and Analysis Software (Biotek, Winooski, VT). Reactions included 1 mg of

jX174 single-strand circular DNA, 10 mM Bis-Tris-Propane-HCl, pH 7.0, 10 mM MgCl2, 2 mM DTT,

1mM ATP, 2 mM DTT, 3.5 mM phosphoenol pyruvate, 10 u/ml pyruvate kinase, 2 mM NADH, and

10 u/ml lactate dehydrogenase. For all reactions, ATP concentrations were determined at 260 nm

using an extinction coefficient of 15400 M-1cm-1

DNA-binding experiments
Oligonucleotides (Table 2) were 5’ end-labeled with 32P-ATP using T4 polynucleotide kinase and

manufacturer’s conditions (New England Biolabs). Excess 32P-ATP was removed from the reaction

using Sephadex G-50 columns (Roche, Basel, Switzerland). Double-strand substrates were made by

heating two complementary oligonucleotides to 95 ˚C and then cooling to room temperature slowly.

Standard DNA-binding reactions contained RadA as indicated, 100 fmol DNA, 50 mM Tris-HCl

buffer, pH 7.5, 10 mM MgCl2, 0.1 mM EDTA, 75 mM NaCl, 5 mM dithiothreitol, 100 mg/ml bovine

serum albumin and 1 mM nucleotide. Reactions were incubated at 37 ˚C for 30 min and then

resolved on a 6% Tris-borate EDTA polyacrylamide gel (pre-run for 1 hr) at 100 V for 45 min at room

temperature. Gels were then dried and binding was analyzed using ImageJ-64 software with

scanned autoradiographs (HiBlot CL film-Denville Scientific, Holliston, MA).

Model-branched substrate formation
To form branched substrates, equimolar concentrations of oligonucleotides (Table 2) were mixed

and heated to 100˚ for 5 min followed by slow cooling to room temperature in 10 mM Tris Acetate,

pH 7.4, 10 mM Mg Acetate, and 50 mM K Acetate. The extent of branched molecules formation was

assessed either by electrophoresis using 3% agarose gels in TAE followed by staining with ethidium

bromide or by using oligo 2 radio-labeled with polynucleotide kinase and 32P-ATP to form branched

molecules (in parallel reactions) followed by electrophoresis on 6% acrylamide gels in TBE and auto-

radiography. Contaminating structures were present at less than 5% of the total, except for the 3-

strand fork when contaminating structures were between 5 and 10%. Annealed substrates were

used without further purification. Fork 1 was made by annealing Jxn1 and Jxn 2 oligonucleotides.

Fork 2 was made from Jxn1, Jxn 2, and Jxn3 oligonucleotides. Fork 3 was made by annealing Jxn1,

Jxn2, and Jxn4 oligonucleotides. Fork 4 was the annealed product of Jxn1, Jxn2, Jxn 3, and Jxn 4

oligonucleotides. The 3-stranded fork was constructed from Jxn1, Jxn2, and Jxn 5. oligonucleotides.

Figure 2—figure supplement 1 shows a diagram of each branched substrate structure.
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Strand exchange reactions
Three-strand reactions
Recombination between single-strand circular jX174 virion DNA and double-strand RF jX174 linear-

ized with PstI (New England Biolabs) were performed as followed with exceptions noted in the figure

legends. Reactions contained 20 mM Tris-acetate pH 7.4, 12.5 mM phosphocreatine, 10 u/ml crea-

tine kinase, 3 mM ammonium glutamate, 1 mM dithiothreitol, 2% glycerol, 11 mM magnesium ace-

tate. Under standard conditions, 6.7 mM RecA and RadA as indicated (most typically 400 nM) was

incubated with 20.1 mM (in nucleotide) viral jX174 DNA for 8 min at 37 ˚C. Then, 20.1 mM linear

double-strand jX174 DNA was added and incubation was continued for 5 min. The reactions were

initiated by the addition of ATP to 3 mM and SSB to 2.1 mM. After incubation for the times indi-

cated, reactions were quenched by addition of EDTA to 15 mM and SDS to 1.25%. Recombination

products were separated on an 0.8% Tris-acetate EDTA (TAE) agarose gel run at 5.5 V/cm and then

visualized by staining with ethidium bromide.

Four-strand reactions
Reactions between a circular duplex jX174 DNA with a 1346 base single strand gap and duplex lin-

ear DNA were performed as for 3-strand reactions except products were analyzed on a 1% agarose

(Biorad) gel in TAE. The PstI linear fragment shares homology with 836 bases on one end and 516

bases on the other end with the single-strand region of the gapped molecule. Product formation

was quantified using ImageJ-64 software.

Gapped DNA molecule formation
jX174 double strand circular DNA was cleaved with BsaAI and the 4.1 kb fragment was purified

from 0.7% low-melt agarose (USB, Cleveland, OH) using Gene Jet gel purification columns (Thermo-

Fisher Scientific, Waltham, MA). Gapped molecules were made using a large-scale recombination

reaction using conditions above (without RadA) with the BsaAI fragment replacing the full length lin-

ear fragment and incubation extended to 1.5–2.0 hr. The reaction mix was then extracted with phe-

nol two times. After back-extracting the organic phase with 1 volume of 10 mM Tris-EDTA, all

aqueous phases were combined and extracted with chloroform:isoamyl alcohol (24:1). Sodium ace-

tate, pH 5.2 was added to 0.3 M and DNA was precipitated using 2.5 volumes of ethanol. DNA pel-

lets were then washed with 70% ethanol and resuspended in 10 mM Tris-EDTA. Finally, gapped

DNA was gel-purified as described above.

Recombination intermediate isolation and branch migration assays
Large-scale standard recombination reactions were stopped with after 12 min by addition of EDTA

to 35 mM, SDS to 0.65%, and Proteinase K to 800 mg/ml and applied to a 3.5 ml Sepharose 4B-CL

equilibrated in 20 mM Tris-acetate pH 7.4, 3 mM ammonium glutamate, 1 mM DTT, 2% glycerol,

and 11 mM magnesium acetate. Fractions (150–200 ml) containing DNA were identified by staining

with Picogreen.

Branch migration assay
DNA fractions containing recombination intermediates were incubated at 37 ˚C in 20 mM Tris-ace-

tate pH 7.4, 3 mM ammonium glutamate, 1 mM DTT, 2% glycerol, 11 mM magnesium acetate, and

approximately 30 mM NaCl from the RadA protein with RadA (460 nM), 3 mM ATP, and, when

included, SSB (2.1 mM). Reactions were stopped and analyzed as outlined above.
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