
MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid
of Patients with Young-Onset Alzheimer’s Disease

Paul M. McKeever1,2 & Raphael Schneider1,2 & Foad Taghdiri1,3 & Anna Weichert1 & Namita Multani1,4 &

Robert A. Brown5
& Adam L. Boxer6 & Anna Karydas6 & Bruce Miller6 & Janice Robertson1,2

& Maria Carmela Tartaglia1,3,4

Received: 11 September 2017 /Accepted: 12 February 2018 /Published online: 30 March 2018
# The Author(s) 2018

Abstract
Clinical diagnosis of Alzheimer’s disease (AD) prior to the age of 65 years is classified as young-onset (YOAD), whereas
diagnosis after the age of 65 years is considered late-onset (LOAD). Although rare autosomal mutations more commonly
associate with YOAD, most YOAD and LOAD cases are sporadic. YOAD and LOAD share amyloid and tau pathology, but
many YOAD patients show increased disease severity and rate of progression. The current study examined the microRNA
(miRNA) expression profile from exosomes isolated from the cerebrospinal fluid (CSF) of YOAD patients with biomarker-
confirmed AD. Results uncovered miR-16-5p, miR-125b-5p, miR-451a, and miR-605-5p as differentially expressed in the CSF-
derived exosomes of YOAD patients when compared with healthy controls (HC). In a cohort of LOAD patients, miR-125b-5p,
miR-451a, and miR-605-5p were similarly altered in expression, but miR-16-5p showed similar expression to control. Analysis
of the mRNA targets of these miRNAs revealed transcripts enriched in biological processes relevant to the post-mortem posterior
cingulate cortex transcriptome in YOAD from a previously published microarray study, including those related to neuron
projections, synaptic signaling, metabolism, apoptosis, and the immune system. Hence, these miRNAs represent novel targets
for uncovering disease mechanisms and for biomarker development in both YOAD and LOAD.
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Introduction

Young-onset Alzheimer’s disease (YOAD) occurs before the
age of 65 years and represents up to 10% of all AD cases.
Fewer than 1% of AD are caused by autosomal dominant
mutations [1–3]; hence, the majority of AD cases are sporadic
regardless of age at disease onset [4, 5]. Although an age of
65 years for delineating YOAD versus late-onset AD (LOAD)
was selected based on social factors such as the traditional
retirement age [6], key imaging, neuropathological, and neu-
rochemical differences based on an age cutoff of 65 years have
been reported in the literature. YOAD patients present with
more severe gray matter atrophy [7], more abundant senile
plaques, neurofibrillary tangles, and synaptic loss [8], as well
as greater deficits in acetylcholine [9] than LOAD patients.
YOAD patients appear more likely to present with impaired
language, attention, and visuospatial function, compared with
LOAD patients who experience more memory deficits [10].

In terms of rate of progression, some reports have shown a
faster rate of cognitive decline in younger patients [8, 10–12];
others found no association between the age of onset and rate
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of decline [13–15]. Currently, biomarker protein levels of am-
yloidβ-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-
tau) in the cerebrospinal fluid (CSF) of YOAD and LOAD
patients are routinely used to confirm a diagnosis consistent
with AD [16–19]. Some studies have reported a higher level
of CSF t-tau and p-tau in YOAD compared with LOAD, sug-
gesting a more severe disease and more rapid decline [20, 21].
However, this difference in CSF tau levels is inconsistently
found [22]. Other novel biomarkers that relate to disease
mechanism are of great interest in YOAD as current bio-
markers of amyloid and tau do not provide differentiating
features between YOAD and LOAD.

MiRNAs are stable, small, non-coding RNAs (21–23 nu-
cleotides) involved in the degradation and/or translational re-
pression of target messenger RNAs (mRNAs) (reviewed in
[23]). Up to 2588 mature human miRNAs (miRNAs) have
been identified (miRbase.org). Individual miRNAs can
target and silence up to thousands of mRNAs, and multiple
miRNAs can target single genes (reviewed in [24]). Cell-to-
cell communication is considered a key role for miRNAs since
they are released into the extracellular milieu by several mech-
anisms, including being complexed with Argonaute [25, 26]
and lipoprotein particles [27] and packed into small extracel-
lular vesicles called exosomes for exchange of genetic mate-
rial between cells [26, 28]. Exosomes in particular represent a
stable and enriched source of miRNAs in biofluids such as the
blood [29, 30] and CSF [31]. Importantly, exosomes have
been implicated in cell-to-cell communication within the cen-
tral nervous system. Exosomes secreted from neurons can
regulate the brain vasculature [32], and exosomes secreted
from astrocytes can modulate synaptic plasticity [33, 34]. In
AD, neuronal exosomes may be involved in Aβ42 release as a
result of early endosomal maturation [35] but may also be
involved in intracerebral uptake of Aβ42 [36]. Exosomes de-
rived from AD and Down syndrome blood contain lower
Aβ42 and increased p-tau [37] reflecting the changes seen in
CSF of AD [16]. Hence, we reasoned that specifically explor-
ing miRNA expression profiles in exosomes would inform on
AD-relevant disease mechanisms.

Generally, studies elucidating the miRNA expression pro-
file in the CSF of AD patients are currently surging in the
literature [38]. In the majority of these studies, LOAD was
compared with healthy controls [39–43]; others compared
LOAD with healthy controls and other neurological diseases
[44–46], while LOAD was also examined against other forms
of dementia [47, 48].Whole CSFwas examined inmost cases,
whereas two of these studies profiled for miRNA changes in
CSF-derived exosomes from LOAD patients. The first study
used TaqMan miRNA arrays (746 human miRNAs) to profile
for changes in the CSF from Parkinson’s disease (PD) and
LOAD patients relative to controls [46]. While several candi-
date miRNAs were uncovered for both PD and LOAD, vali-
dation by independent real-time PCR was only conducted on

the PD cohort. In the second study [41], LOADwas compared
with healthy controls in whole CSF using Exiqon’s human
miRNome panels (752 human miRNAs) followed by exami-
nation of candidates in CSF-derived exosomes. Several can-
didate miRNAs were altered in LOAD compared with con-
trols. In CSF-derived exosomes, the detectability of miRNAs
increased, especially when testing the same candidates that
were already identified in the whole CSF screen. However,
the specific, high-throughput miRNA profile changes occur-
ring in the CSF-derived exosomes of YOAD remain to be
elucidated.

The current study explores the miRNA expression profile
in exosomes derived from the CSF of biomarker-confirmed
sporadic YOAD patients compared with that in healthy con-
trols (HC). Here, we uncovered a decrease in miR-16-5p,
miR-451a, and miR-605-5p and an increase in miR-125b-5p
in YOAD patients versus HC. Combining the relative expres-
sion of these four miRNAs by regression analysis effectively
distinguished YOAD relative to HC. Interestingly, the four
miRNAs altered in YOAD share common targets and path-
ways altered in the post-mortemYOAD brain [49]. In a cohort
of LOAD patients, we showed that miR-451a and miR-605-
5p were similarly decreased and miR-125b-5p increased in
LOAD but there was no significant difference in miR-16-5p
expression compared with HC. Hence, these results revealed
three miRNAs with altered expression in the CSF-derived
exosomes of both YOAD and LOAD. The YOAD-specific
decrease of exosomal miR-16-5p provides a potential candi-
date involved in disease mechanisms related to YOAD.

Materials and Methods

Patient and Clinical Assessment

All patients with AD were seen at the University Health
Network (UHN) Memory Clinic (Toronto Western Hospital)
between 2011 and 2016 and diagnosed with possible or prob-
able AD (McKhann, 2011). The cognitively normal healthy
control CSF samples (n = 12) were obtained from UHN (n =
2) and University of California San Francisco Memory and
Aging Center (n = 10). The YOAD group comprised patients
aged less than 65 years (n = 17) and the LOAD group greater
than 65 years (n = 13). The lumbar punctures were performed
according to ADNI protocol [50], and CSF was collected in
polypropylene tubes. A clinical AD diagnosis was confirmed
using the CSF protein biomarkers: CSFAβ42, p-tau, and t-tau
levels. Innogenetic assays were run, and the results were con-
sidered consistent with AD diagnosis if p-tau > 68 pg/ml and
Aβ42 to t-tau index (ATI) < 0.8 [18, 51, 52]. Patients also
underwent cognitive assessment using either the Montreal
Cognitive Assessment [53] or modified Behavioural
Neurological Assessment [54].
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Isolation of Exosomal miRNA from CSF

Exosomal preparations were performed using the
miRCURY™ Exosome Isolation Kit (Exiqon) following the
manufacturer’s instructions. To prepare each sample, 1.1 ml of
undiluted input CSF was centrifuged for 5 min at 3000×g to
pellet cell debris and 1.0 ml of the CSF supernatant was used
as input for exosome extraction. High-quality miRNA was
isolated from each exosome prep along with appropriate
spike-in controls (Exiqon). Next, column purification was per-
formed using the miRCURY RNA Isolation Kit following the
manufacturer’s instructions (Exiqon).

Discovery Phase: High-Throughput PCR with Exiqon
Human miRNome Panels I + II

Complementary DNA (cDNA) was synthesized using the
locked nucleic acid (LNA) Universal cDNA Synthesis Kit
(Exiqon). The ExiLENT SYBR Green 2X Master Mix
(Exiqon) was used to prepare cDNA samples for amplification
and visualization by quantitative real-time PCR (qrt-PCR).
For each sample, cDNAwas added to the SYBR master mix
and was loaded at 10 μl per well across Exiqon human
miRNome panels I + II (V4.M, Exiqon), which are 2 × 384-
well plates consisting of a total of 752 well-established
miRNA human primer sets. Both 384-well plates were run
in tandem on a 7900HT thermocycler (Applied Biosystems,
Life Technologies).

Quality Control, Normalization, and Statistical
Analyses

For data filtering and quality control or individual reactions,
raw amplification and melting curve data obtained for both
Exiqon human panels I + II on the 7900HT thermocycler were
imported into the Thermo Fisher Cloud Relative Quantification
(RQ) app (Thermo Fisher Scientific, https://apps.thermofisher.
com/apps/dashboard/#). Through automated processing and
visual inspection across plates, only reaction wells displaying
linear amplification, Ct values < 39, and that passed a melt
curve analysis were included in subsequent analysis.
Subsequently, all human panel data from both YOAD (n =
17 × 2 plates) and HC (n = 12 × 2 plates) was simultaneously
imported into the GenEx software (6.0) for sample-to-sample
(inter-plate) calibration. The selection of miRNAs for normali-
zation was performed using established algorithms geNorm
[55] and Normfinder [56]. From this, the spike-ins UniSp6
and cel-miR-39-3p as well as the stably and highly expressed
endogenous miR-204-5p were used to normalize across all Ct
values using a combined geometric mean of all three Ct values
[55]. A previous study showed miR-204-5p to be the most
abundant miRNA, with highly stable expression in whole
CSF (see Tables 4 and 5 in [57]). An ANOVA followed by

pairwise comparisons was performed after normalization.
Additional candidate miRNAs for validation were uncovered
using presence/absence of signal data mining followed by
Fisher’s exact test for significance. Visualization of relative
miRNA expression was performed using custom R scripts
and heatmap.2 function in the R package gplots (v3.0.1) and
GraphPad Prism v7.0c.

Validation Phase: Individual Primer Set qrt-PCR

In the same YOAD (n = 17) and HC (n = 12) samples as the
discovery, individual qrt-PCR reactions were performed to
validate differentially expressed miRNAs in YOAD that were
identified in the discovery phase. Validated miRNAs in
YOAD were examined in a cohort of LOAD patients (n =
13). For each miRNA primer set, three technical replicates
per sample were included. Using the same cDNA and
SYBR prep as discussed above, qrt-PCR reactions were per-
formed using individual LNA primer sets (Exiqon) on 96-well
plates using the ABI Step One Plus Real-Time PCR System
(Applied Biosystems, Life Technologies). A list of all primer
sets used in the current study is in Supplementary Table 1.
Data normalization was performed similarly as above with
the geometric mean of UniSp6 and miR-204-5p. Relative
miRNA expression changes were calculated as relative ex-
pression to control using the Ct value from each qrt-PCR
reaction by the 2−ΔΔCt method [58, 59]. Statistical signifi-
cance between groups was performed using one-way
ANOVA followed by Bonferroni correction. All bar graphs
were drawn in GraphPad Prism v7.0c.

Discrimination Analysis

Receiver operating characteristics (ROC) analysis was per-
formed to evaluate the capacity of each individual validated
miRNA to distinguish either YOAD or LOAD fromHC. ROC
analysis is an established statistical approach for assessing the
diagnostic potential of a continuous clinical variable [60, 61].
In a ROC analysis, for a biomarker of disease, the cutoff for
correctly identifying patients is called sensitivity (true positive
rate) and is plotted against the specificity (false positive rate) to
produce a ROC curve. To assess combinatorial performance of
validated miRNAs, a generalized linear model (GLM) was
fitted with the relative expression data from combinations of
validated miRNAs. The clinical diagnosis for YOAD or
LOAD was given binary outcomes (0 or 1, respectively),
where the predicted probability was modeled with a binomial
distribution and logit function [62]. GLM data was produced
using basic R (v3.3.2) functions. ROC curve probabilities, area
under the curve (AUC), and CI were calculated using the R
package pROC [63]. Finally, k-fold cross validation of each
GLM was performed using adapted code from the R package
DAAG [64]. All AUC data was estimated using the trapezoidal
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method, and all 95% confidence intervals (CI) for the proba-
bilities calculated at each cutoff were calculated in R (v3.4.0)
using bootstrap sampling [65] with 1000 bootstrap replicates.

MicroRNA Target Prediction

For miRNAs confirmed in the validation phase, target predic-
tion was performed using TargetScan v7.1 [66]. TargetScan
predicts miRNA gene targets by considering both canonical
and non-canonical miRNA binding sites on target mRNA
using experimentally backed datasets. The overlap between
miRNA targets was visualized using the R package venn
(v1.2), which requires the R package QCA [67]. Next, the
tissue location of enriched expression for targets of validated
miRNAs was determined using FunRich v3.0 which com-
bines multiple established databases including UniProt,
Human Protein Atlas, Human Proteome Browser, Human
Proteome Map, ProteomicsDB, and Human Proteinpedia to
infer regional and cell-type enrichment of target mRNAs for
a given list of miRNAs [68].

Analysis of Published Microarray Data

Published raw microarray data from a post-mortem study that
contrasted the posterior cingulate cortex (PCC) of sporadic
YOAD (n = 7) and HC (n = 7) was retrieved from GEO acces-
sion ID GSE39420 [49]. Several R packages available
through the Bioconductor framework [69] were used to ana-
lyze the microarray data. A detailed pipeline for conducting a
differential expression analysis on Affymetrix microarray data
in R [70] was modified and applied here. Briefly, the
Affymetrix fluorescent intensity data was normalized using
the R package affy (v1.52.0) [71] and a differential expression
analysis was performed using the R package limma (v3.30.13)
[72] to distinguish the PCC of sporadic YOAD versus HC.
The false discovery rate (FDR) was set at q < 0.05. Pathway
analysis of overlapping transcripts was performed using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way data from Database for Annotation, Visualization, and
Integrated Discovery (DAVID v6.8) [73].

Gene Set Enrichment Analysis and Enrichment Map
Visualization

Enrichment of Gene Ontology (GO) biological process (BP),
cellular compartment (CC), and molecular function (MF)
terms [74] was determined using Gene Set Enrichment
Analysis (GSEA; v2.1.0) [75]. Homo sapiens GO BP, CC,
and MF gene sets without inferred electronic annotation from
the February 2018 release were retrieved from the online re-
pository available at http://download.baderlab.org/EM_
Genesets/ [76]. A log2 fold change ranked list of
differentially expressed sporadic YOAD (n = 7) versus HC

(n = 7) was imported into GSEA, and a GO BP analysis was
performed. Results from the GOBPGSEAwere imported into
the Cytoscape [77] (v3.3.0) plug-in entitled Enrichment Map
[78] (v2.1.0) to visualize GO BP, MF, and CC term themes in
the data as a network of nodes and edges. AutoAnnotate was
used to create clusters around redundant GO terms between
nodes using similarity coefficients [79]. To select the most
overrepresented terms to report on the enrichment map,
WordCloud [80] was used. FDR was set to q < 0.001 for all
analyses. Gene sets were pre-ranked using GSEA.

Results

Cerebrospinal Fluid Donor Characteristics

The CSF donor demographic data is summarized in Table 1.
The mean age at LP of the HC cohort (n = 7 females, n = 5
males) was 66.5 ± 7.7, and all HC were confirmed biomarker-
negative for AD (data not shown). The YOAD patients (n =
10 females; n = 7 males) had a mean age of onset of
56.8 ± 4.9 years. The duration of disease was 3.9 ± 2.3 years,
whereby CSF was obtained by LP at an average age of 60.9 ±
4.6 years. The YOAD group showed protein biomarker levels
consistent with AD (Aβ42 = 356.0 ± 159.1 pg/ml; total tau =
744.5 ± 375.0 pg/ml; phospho-tau = 101.7 ± 37.9 pg/ml;
ATI = 0.37 ± 0.22). The ApoE4 genotype distribution in
YOAD was as follows: 52.94% had zero alleles, 35.29%
had one allele, and 11.76% had two alleles.

For the LOAD patients (n = 5 females; n = 8 males), the
mean age at LP was 75.5 ± 4.6 years. The protein biomarker
levels for the LOADgroup were also consistent withAD (Aβ-
42 = 431.3 ± 139.4 pg/ml; total tau = 721.6 ± 245.1 pg/ml;
phospho-tau = 97.1 ± 19.7 pg/ml; ATI = 0.37 ± 0.17). In this
case, prevalence of the ApoE4 genotypes in LOAD patients
was 53.85% with zero alleles, 46.15% with one allele, and no
patients with two alleles. The LOAD group presented with
more disease comorbidities than the YOAD group
(Supplementary Table 2). Overall, an average of 1.4 (min 0,
max 5) disease comorbidities was observed across all YOAD
patients with seven patients showing no comorbidities
(Supplementary Table 2). LOAD patients showed an average
of 2.6 (min 0, max 6) disease comorbidities, and only one
patient showed no comorbidities (Supplementary Table 2).
These results are consistent with previous findings showing
that LOAD patients are likely to present with more disease
comorbidities than YOAD [81, 82].

Discovery Phase: the miRNA Expression Profile
from CSF-Derived Exosomes Is Altered in YOAD

The workflow for identifying differentially expressed
miRNAs in the exosomes from CSF obtained from YOAD
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patients is in Fig. 1. Raw data from the high-throughput qrt-
PCR humanmiRNome panels I + II underwent quality control
measures as described in the BMaterial and Methods^ section.
After quality control and applying a Ct cutoff of < 39, a total
of 164 miRNAs were detected across all 29 samples with a
14% detection floor (Supplementary Table 3). For normaliza-
tion, the Ct values for spike-ins UniSp6 (Supplementary Fig.
1a) and cel-miR-39-3p (Supplementary Fig. 1b) along with
the endogenous miR-204-5p (Supplementary Fig. 1c) were
combined to generate the geometric mean (Supplementary

Fig. 1d) using established protocols [55, 56]. In total, 48
miRNAs were detected at two thirds of all samples. From this
list, an ANOVA followed by pairwise comparisons uncovered
an increase in six and decrease in five candidate miRNAs in
YOAD versus HC using uncorrected comparisons (Fig. 2a; all
p < 0.05). Increased miRNAs included let-7b-5p, miR-27a-
5p, miR-99a-5p, miR-125b-5p, miR-30b-5p, and miR-145-
5p, whereas decreased miRNAs included miR-605-5p, miR-
877-3p, miR-29c-3p, and miR-16-5p. Further candidate
miRNAs were uncovered across remaining miRNAs using

Table 1 Cerebrospinal fluid
donor demographic data Patient Demographic Data

Healthy controls N 12

Gender (female/male) 7/5

Age at time of LP (years)a 66.5 ± 7.7

Young-onset AD N 17

Gender (female/male) 10/7

Age of onset (years)a 56.8 ± 4.9

Age at time of LP (years)a 60.9 ± 4.6

Disease duration (years)a 3.9 ± 2.3

MoCAb

N completed 14

Age at time of testing (years)a 61.36 ± 4.7

Score (/30)a 12.1 ± 6.7 (min 3, max 20)

Revised BNAc

N completed 12

Age at time of testing (years)a 59.83 ± 4.5

Total score (/329)a 136.7 ± 62.7 (min 55, max 255)

Orientation (/12)a 6.5 ± 2.3

Memory immediate recall (/30)a 8.9 ± 4.6

Delayed recall (/27)a 2.8 ± 4.4

Delayed recognition (20)a 15.3 ± 3.7

Visuospatial (/32)a 15.7 ± 10.7

Executive function (/123)a 39.1 ± 31.6

Language (/85)a 48.3 ± 17.8

Aβ42 (pg/ml)a 356.0 ± 159.1

Total tau (pg/ml)a 744.5 ± 375.0

Phospho-tau (pg/ml)a 101.7 ± 37.9

ApoE (N) 3 3 (8); 3 4 (6); 4 4 (2); 2 3 (1)

Late-onset AD N 13

Gender (female/male) 5/8

Age at time of LP (years)a 75.5 ± 4.6

Disease duration (years)a 3.6 ± 2.7

Aβ42 (pg/ml)a 431.3 ± 139.4

Total tau (pg/ml)a 721.6 ± 245.1

Phospho-tau (pg/ml)a 97.1 ± 19.7

ApoE (N) 3 3 (6); 3 4 (6); 2 3 (1)

aMean ± standard deviation
bMontreal Cognitive Assessment
c Behavioural Neurology Assessment
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Fisher’s exact test whereby miR-144-3p, miR-191-5p, miR-
451a, and miR-486-5p (all p < 0.05) were less commonly de-
tected in YOAD cases, whereas miR-320a (p < 0.01) and
miR-619-3p (p < 0.05) were more commonly detected in
YOAD (Fig. 2b).

Validation Phase: Distinct miRNAs Distinguish YOAD
or LOAD from Healthy Controls

We validated our results from the discovery phase in the same
cohort of YOAD and HC using qrt-PCR in technical tripli-
cates. We then examined whether validated miRNAs in
YOAD were also altered in LOAD. For quality control of
individual assays, the qrt-PCR efficiency and melt curves for
each validated miRNA are provided (summarized in
Supplementary Fig. 2). Similar to the discovery phase, the
geometric mean of the cycle threshold for spike-in UniSp6
(Supplementary Fig. 3a) and endogenous miR-204-5p
(Supplementary Fig. 3b) was used to normalize qrt-PCR data
across groups (Supplementary Fig. 3c). An ANOVA followed
by corrected pairwise comparisons showed a decrease of miR-
16-5p in YOAD but not LOAD (Fig. 3a, p < 0.05), an increase
of miR-125b-5p in both YOAD and LOAD (Fig. 3b, p <
0.05), a robust decrease of miR-451a in both YOAD and
LOAD (Fig. 3c, p < 0.0001), and a decrease of miR-605-5p
in YOAD and LOAD versus HC (Fig. 3d, p < 0.05). A

pairwise comparison between YOAD and LOAD for miR-
16-5p was significantly different (Fig. 3a, p < 0.05) suggesting
a YOAD-specific decrease in CSF levels of exosomal miR-
16-5p relative to LOAD. Additionally, the differential expres-
sion of miR-125b-5p, miR-451a, and miR-605-5p was found
to be in common between YOAD and LOAD.

Next, we asked whether the expression of the validated
miRNAs differed based on the age at which the LP was per-
formed. Pearson correlation analysis was performed for the
relative expression of all four validated miRNAs versus age
at LP. We found that there was a significant negative correla-
tion for miR-125b-5p expression in HC with age
(Supplementary Fig. 4a; R2 = 0.624, p = 0.0022), but this ef-
fect was insignificant in YOAD (Supplementary Fig. 4b; R2 =
0.0055, p = 0.777) and LOAD (Supplementary Fig. 4c; R2 =
0.624, p = 0.0022). Hence, this suggests that expression of
miR-125b-5p decreases with age in HC but may remain at
high expression levels in AD regardless of age. Although
there was a potential trend toward a positive correlation of
miR-451a in LOAD (Supplementary Fig. 4c; R2 = 0.304,
p = 0.063) and miR-605-5p in HC (Supplementary Fig. 4c;
R2 = 0.2599, p = 0.091) and LOAD (Supplementary
Fig. 4c; R2 = 0.263, p = 0.088), no other miRNAs showed
an age effect.

ROC analysis for HC versus YOAD was performed on the
relative expression data for each of the validated miRNAs and

CSF was obtained by lumbar puncture

Isolate exosomes, extract miRNA, cDNA synthesis

Exiqon human miRnome panels I + II (752 total miRNA)

Quality control and CT normalization

Differential expression statistical analysis

n=12 HC
n=17 YOAD

• precipitation and column purification
• LNATM first-strand synthesis

• amplification and melt curves
• Cycle threshold (CT) cut-off
• Normalization by geometric average

Real-time PCR validation of select miRNA candidates

• Candidate miRNAs for validation

Discrimination 
assessment

• Individual primer sets
• Technical triplicates

mRNA target and 
pathway analysis

• ROC curves
• Logistic regression
• k-fold cross validation

• Target prediction software
• YOAD microarray data
• GSEA

• ABI 7900HT real-time PCR
• single replicates

Sample
collec�on

Discovery
phase

Valida�on
phase

Fig. 1 Workflow for the
identification of altered miRNAs
in the exosomal cerebrospinal
fluid obtained from young-onset
Alzheimer’s disease patients
versus healthy controls. Pipeline
of three phases: CSF sample
collection phase, discovery phase,
and validation phase. CSF
cerebrospinal fluid, YOAD
young-onset Alzheimer’s disease,
HC healthy controls, LNA locked
nucleic acid. Applied Biosystems
(ABI) 7900 real-time PCR;
receiver operating characteristics
(ROC); Gene Set Enrichment
Analysis (GSEA) of Gene
Ontology Biological Processes
terms
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is shown in Fig. 4a. From this, the ROC curve for miR-16-5p
in YOAD showed an AUC = 0.760 and CI = 0.572−0.948,
miR-125b-5p showed an AUC = 0.723 and CI = 0.537
−0.914, and miR-605-5p showed an AUC = 0.706 and CI =
0.501−0.911. The miR-451a (AUC = 0.951, CI = 0.855
−0.982) showed robust performance at distinguishing

YOAD from HC. These results indicate that the clinical po-
tential of these miRNAs as binary predictors of YOAD is
ranked as miR-451a > miR-16-5p > miR-125b-5p > miR-
605-5p according to AUC.

For LOAD, the same ROC analysis was performed as stat-
ed above and summarized in Fig. 4b. Results for miR-125b-5p
showed modest improvement at distinguishing LOAD from
HC (AUC= 0.785; CI = 0.537−0.950) than with YOAD. The
miR-451a showed high discriminatory potential to distin-
guish LOAD from HC (AUC = 0.847; CI = 0.679−0.956),
but was not as robust as in YOAD. In the case of miR-605-
5p, performance at distinguishing LOAD from HC (AUC =
0.765; CI = 0.491−0.913) was similar as in YOAD.
Therefore, employing these miRNAs as binary predictors
for LOAD suggests a performance ranking of miR-451a >
miR-125b-5p > miR-605-5p.

Linear Combinations of Validated miRNAs Show
Synergistic Performance Distinguishing YOAD
or LOAD from Healthy Controls

Next, combinations of the validated miRNAs were compared
using logistic regression with binary classification and k-fold
cross validation to assess the synergistic performance for
distinguishing YOAD and LOAD from HC. The following
logistic regression results are summarized in Table 2. The
combination of all four predictors of YOAD relative to HC
(miR-16-5p, miR-125b-5p miR-451a, and miR-605-5p) re-
sulted in an AUC = 0.976, CI = 0.860−0.995, and cross-
validated AUC = 0.962. Combining the two best-performing
miRNAs at distinguishing HC from YOAD, including miR-
451a and the YOAD-specific exosomal miR-16-5p, resulted
in a cross-validated performance of AUC = 0.946, CI = 0.807
−0.987, and CV-AUC = 0.926. For LOAD versus HC, the
combination of the three validated miRNAs (miR-125b-5p,
miR-451a, and miR-605-5p) resulted in an AUC = 0.847,
CI = 0.688−0.957, and cross-validated AUC = 0.751.

Fig. 3 Validation phase uncovers miRNAs altered in the CSF of YOAD
patients versus healthy controls. Independent validation of discovery
phase results with quantitative real-time PCR showing relative
expression in YOAD (n = 17) versus HC (n = 12) for a miR-16-5p, b

miR-125b-5p, c miR-451a, and d miR-605-5p. Significance between
groups was determined using ANOVA followed by pairwise
comparisons with Bonferroni correction. *p < 0.05; ****p < 0.0001

Fig. 2 Discovery phase reveals candidate miRNAs altered in the CSF of
YOAD patients versus healthy controls. a Heatmap of differentially
expressed miRNAs in the CSF of YOAD patients (n = 17) versus HC
(n = 12) identified using one-way ANOVA and pairwise comparisons
(p < 0.05). Relative expression level normalized using the geometric
mean of spike-ins UniSp6 and cel-miR-39-3p and the endogenous miR-
204-5p. Rows are sorted by decreasing fold-change relative to HC. b Six
additional candidate microRNAs uncovered in the discovery phase using
presence/absence of expression mining and Fisher’s exact test for
determining significance. *p < 0.05; **p < 0.01
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Overall, these results indicate that combining these validated
miRNAs improved their individual performance at
distinguishing YOAD or LOAD from HC.

Validated miRNA Share Overlapping Targets
and Inferred Regional Distribution

The putative mRNA targets of the four validated miRNAs in
YOAD were uncovered using the TargetScan v7.1 algorithm
[66]. From this, 1508 mRNA targets for miR-16-5p, 100 tar-
gets for miR-125b-5p, 28 mRNA targets for miR-451a, and
4028 mRNA targets for miR-605-5p were found
(Supplementary Fig. 5a). Overlap is evident between three
or fewer groups of the four miRNAs, but no targets are shared
between combinations of all four miRNAs (Supplementary
Fig. 5a). For LOAD, no targets overlap for miR-125b-5p,
miR-451a, andmiR-605-5p together, but pairs of each of these
miRNAs do share targets (Supplementary Fig. 5b). To assess
brain region and cell-type specific localization of these
miRNAs, we employed FunRich v3.0 [68]. From this,
mRNA targets were depleted in peripheral blood cells and
the choroid plexus, as expected. Importantly, markers of the
cerebral cortex, hippocampus, cerebellum, or simply brain
were enriched. Although no targets were significantly
enriched in cerebrospinal fluid, the percentage of predicted

targets overlapping with cerebrospinal fluid was higher for
all predicted targets overlapping with the blood, peripheral
b lood ce l l s , b lood vesse ls , and choro id plexus
(Supplementary Fig. 5c). These results suggest predominantly
CNS localization of transcripts targeted by the validated
miRNAs. Analysis of these miRNAs with miRPath (v3.0)
showed that combinations of at least four miRNAs overlapped
in pathways such as regulating pluripotency of stem cells,
PI3K-Akt signaling pathway, AMPK signaling pathway, ad-
renergic signaling pathway, neurotrophin signaling pathway,
MAPK signaling pathway, and Wnt signaling pathway (data
not shown).

Validated miRNA Targets Converge on Common
Pathways with Published Microarray Data
from the Posterior Cingulate Cortex of Sporadic YOAD

Published microarray data comparing the transcriptome of the
PCC of sporadic YOAD and healthy controls (both n = 7) [49]
was retrieved from GEO accession ID GSE39420. A differ-
ential expression analysis was performed using a published
pipeline [70] that was customized in-house in R (v3.4.0).
From this, we found that 2899 transcripts were differentially
expressed in sporadic YOAD versus control PCC (Fig. 5a; q
< 0.05). Strikingly, 874 of the 2899 (30.1%) differential

Fig. 4 Performance of miRNAs at distinguishing YOAD or LOAD
patients from healthy controls. Receiver operating characteristics (ROC)
curves plotted as true positive rate (sensitivity) versus false positive rate

(100 − specificity) for a YOAD and b LOAD. Area under the curve
(AUC) was calculated using the trapezoid method, and the confidence
intervals (CI) were calculated using bootstrap sampling in R (v3.4.0)

Table 2 Combinatorial
performance of the relative
expression of validated miRNAs
to distinguish AD from HC

MicroRNA combination Prediction AUC 95% CI CV-AUC

miR-16-5p, miR-125-5p, miR-451a, miR-605-5p HC versus YOAD 0.976 0.860–0.995 0.9619

miR-16-5p and miR-451a HC versus YOAD 0.946 0.807–0.987 0.9256

miR-125-5p miR-451a, miR-605-5p HC versus LOAD 0.847 0.688–0.957 0.751

Prediction binary prediction, AUC area under the curve, CI confidence intervals, CV-AUC k-fold cross-validation
AUC

Mol Neurobiol (2018) 55:8826–8841 8833



transcripts overlapped with the collective targets of our vali-
dated miRNAs (Fig. 5a). A summary list of all 399 upregulat-
ed and 475 downregulated mRNA targets categorized by val-
idated miRNA is shown in Supplementary Table 4. Using all
874 overlapping transcripts as input into DAVID [73], the top
KEGG pathways were found to include MAPK, Wnt, calci-
um, phosphatidylinositol, neurotrophin, and TGF-beta signal-
ing pathways, as well as long-term depression, axon guidance,
long-term potentiation, and Alzheimer’s disease (Fig. 5b; all
p < 0.05). A substantial overlap of 36 genes in the MAPK
signaling pathway was observed (Fig. 5b; FDR < 0.01).

In order to probe for gene ontologies relevant to the 874
overlapping targets altered in YOAD PCC, a GSEAwas per-
formed [75]. Visualization of the GSEA results was performed
with the Cytoscape plug-in Enrichment Map [76], uncovering
a network of both enriched and depleted GO BP, MF, and CC
terms (Fig. 6). Top enriched GO BP terms included the regu-
lation of metabolic process, RNA metabolism, transcription,
apoptosis, and immune response (Fig. 6a, red node cluster). In
contrast, depleted GO BP terms segregated into two distinct
clusters. The first cluster related to transmembrane cation
transport, action potential and synaptic signaling, and vesicle
transport (Fig. 6a, right cluster of blue nodes). The second
cluster related to GO BP terms such as cell proliferation, neu-
ron projection morphogenesis, and axonogenesis (Fig. 6a, top
cluster of blue nodes). A fold-change-ranked list of transcripts
increased in the PCC is provided for GO BP terms, whereby
top upregulated terms are shown next to red nodes and down-
regulated transcripts are shown beside blue nodes (Fig. 6a). If
mRNA target repression by altered miRNAs is assumed, up-
regulated transcripts would be the result of decreased miRNA
expression (miR-16-5p, miR-451a, miR-605-5p) and

downregulated transcripts the result of increased miR-125b-
5p. For GOMF, enriched terms were related to DNA binding,
transcription, RNA polymerase II, sequence-specific, tran-
scription factor, and cofactor binding (Fig. 6b, red node
clusters). Depleted GO MF terms included nucleotide ex-
change factor activity, transporter activity, transmembrane,
substrate-specific, channel, voltage gated, and passive binding
(Fig. 6b, blue node clusters). In agreement with the cellular
localization of the GO BP and MF terms reported above, the
enriched GOCC terms included intracellular, organelle, mem-
brane-enclosed, nucleus, and the nucleoplasm (Fig. 6c, red
node cluster). In addition, the depleted GO CC terms included
component of plasma membrane, neuron projection, and syn-
apse (Fig. 6c, blue node cluster).

Discussion

The current study revealed four miRNAs with altered expres-
sion in exosomes derived from CSF of YOAD patients: miR-
16-5p, miR-125b-5p miR-451a, and miR-605-5p. In a cohort
of LOAD patients, differential expression of miR-125b-5p,
miR-451a, and miR-605-5p was also observed. The fact that
miR-16-5p was unchanged in LOAD suggests that altered
exosomal expression of miR-16-5p may differentiate YOAD
from LOAD. Moreover, all four miRNAs altered in YOAD
share putative targets and pathways relevant to the post-
mortem YOAD brain transcriptome. Intriguingly, these
mRNAs were overrepresented in previously implicated path-
ways in AD, including long-term potentiation [83, 84, 85],
MAPK signaling [86–88], Wnt signaling [89, 90], axon guid-
ance [91, 92], and calcium signaling pathway [93–97].

Fig. 5 Validated miRNA targets and pathways overlap with sporadic
YOAD transcriptome changes. a Five-set Venn diagram showing 2899
mRNAs identified as differentially expressed in the posterior cingulate
cortex (PCC) overlap of published microarray data (GSE39420). A total
of 874 miRNA targets altered in the exosomes of CSF from sporadic
YOAD patients overlapped with the entire microarray dataset. b KEGG

pathways were identified using DAVID (v6.8) with the 874 overlapping
validated miRNA targets altered in CSF-derived exosomes from sporadic
YOAD. Enriched KEGG pathways (y-axis) represented as −log10(p
value) (x-axis). The number of genes shared for each pathway is shown
at the end of each pathway bar
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Further, the upregulation of GO terms related to apoptosis and
immune response also recapitulates known alterations in AD
[98–101]. An overrepresentation of AD-relevant pathways
suggests that these miRNAs are potentially combinatorial can-
didates for understanding disease mechanisms underlying
AD. Considering that three of the four validated miRNAs
are downregulated, this implicates the absence of target re-
pression [102] by these miRNAs in the enriched pathways.
In contrast, the opposite miRNA/mRNA regulatory relation-
ship may be true for upregulated miR-125b-5p.

The significant increase in miR-125b-5p we observed in
both YOAD and LOAD patients is in agreement with

previous findings in LOAD showing an increase in several
CNS structures [103–106] and in CSF [40, 43]. Other reports
have shown a decrease of miR-125b-5p in LOAD serum [47,
107] and in CSF [47, 108]. To our knowledge, we are the first
to report increased expression levels of miR-125b-5p in CSF-
derived exosomes from YOAD and LOAD patients. There is
some evidence that miR-125b-5p has a microglial localization
and may play a pro-inflammatory role [109]. Moreover, miR-
125b-5p overexpression results in hyperphosphorylation of
tau and neurotoxicity in primary neuron cultures [103].
However, future studies are required to further examine these
mechanisms in the context of AD.

Fig. 6 Validated miRNA targets share common gene ontologies with
transcripts differentially expressed in the posterior cingulate cortex of
sporadic YOAD versus healthy controls. Enrichment map representing
Gene Ontology (GO) terms for a biological process (BP), b GO
molecular function (MF), and c GO cellular compartment enriched in
the 883 overlapping targets differentially expressed in the PCC of
sporadic YOAD. For the enrichment maps, red nodes = enriched in
sporadic YOAD class, blue nodes = depleted in the sporadic YOAD
class. Node colors are scaled based on enrichment significance.

Encircled node clusters were selected using the Cytoscape (v3.4.0)
plug-in AutoAnnotate (v1.1.0). Overrepresented GO terms shown in
bold were selected using the WordCloud (v3.1.0) plug-in based on the
proportion of redundancy between node clusters. Lists of transcripts
shown under enriched GO BP terms are ranked and ≥ 2 fold change
(top upregulated transcripts shown next to red nodes and downregulated
transcripts next to blue nodes). False discovery rate (FDR) = q < 0.001.
Gene sets were pre-ranked using Gene Set Enrichment Analysis (GSEA)
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A striking depletion ofmiR-451a in both YOAD and LOAD
was noted in the current study. Previous reports have shown
miR-451a to be decreased in the hippocampus [40], temporal
cortex [110], and CSF [40] in AD. MiR-451a has a potential
role in AD pathogenesis through attenuation of ADAM10 ex-
pression [111]. It appears that miR-451a is unchanged in
LOAD serum [112] and is enriched in neuron expression pro-
files [113], suggesting that miR-451a loss in AD is a CNS-
specific molecular signature. Since miR-451a is also decreased
in amyotrophic lateral sclerosis [114] and major depressive dis-
order [115] and plays a role in peripheral inflammation [116],
future experiments will confirm whether miR-451a is a general
marker of neurodegeneration and/or neuroinflammation.

A previous microarray study reported a modest increase of
miR-605-5p in blood mononuclear cells in LOAD [117], but
the authors state that miR-605-5p has low expression in the
blood. In the whole CSF fraction, Riancho and colleagues
(2017) demonstrated expression in 9/10 HC and 9/10 LOAD
samples [41], suggesting that miR-605-5p could be specifical-
ly altered in CSF-derived exosomes. The organ-specific func-
tion of miR-605-5p is not well established in the literature.
One group has carefully shown that miR-605-5p promotes
the P53 stress response and inhibits apoptosis in colorectal
carcinoma cells [118]. Another report recently showed evi-
dence that miR-605-5p acts as a tumor suppressor in melano-
ma by inhibiting INPP4B [119]. Future studies will explore
whether there a CNS-specific role for miR-605-5p exists.

A drawback to our experimental pipeline is the exclusion
of a discovery panel on the whole CSF fraction to act as a
direct comparison to the CSF-derived exosomes. Hence, fu-
ture studies will be required to show whether the miRNAs we
identified are specifically altered in exosomes alone or are also
in other compartments. One previous study suggested that
both the extracellular Argonaute2-bound miRNA profile and
the exosomal fraction are important, but they found the AUC
was higher when the exosomal microRNA was used versus
the Argonaute2 microRNA and so concluded that exosomal
microRNAmay in some way more accurately reflect the path-
ophysiology of temporal lobe epilepsy and status epilepticus
[120]. Despite this limitation, our results partially compare to
a recent study exploring the miRNA expression profile in the
CSF-derived exosomes from LOAD patients [41]. For exam-
ple, the study of Riancho and colleagues showed that miR-598
was not detected in the whole CSF fraction of AD patients but
was detectable in the majority of CSF-derived exosome prep-
arations. We detected miR-598 in all HC and YOAD patients
in the current study, with no difference in relative expression
between HC and YOAD. Riancho and colleagues also found
that miR-9-5p was more likely to be detected in LOAD; how-
ever, we only detected this miRNA in 1/12 HC and 4/17
YOAD samples. Although, we used the same Exiqon
exosome extraction kits and these differences could be attrib-
utable to CSF input volume (300 μl in Riancho et al. versus

1 ml in our study). Indeed, recent stoichiometric comparison
of three commercial precipitation exosome extraction tech-
niques versus ultracentrifugation [121] and subsequent
miRNA cleanup [30] demonstrated the relationship be-
tween CSF volume input and the exosome particle quantity
in the yield. The polymer-based exosome isolation kits
demonstrate high yield and overlapping particle size distri-
bution regardless of input [121]. However, the co-
precipitation of contaminants in the form of membrane
fragments, aggregated proteins, lipoprotein complexes,
and/or ribonucleoprotein particles represents caveats to
the use of synthetic polymer buffers [122, 123].

We observed a decrease in miR-16-5p in the exosomes
fromCSF inYOAD. It is known that miR-16 is also a member
of the miR-15/107 gene family, targets AD-specific mRNAs,
and has been explored as a potential therapeutic target in early
AD [124]. Functional studies have uncovered miR-16-5p-
mediated inhibit ion of APP, BACE1 , MAPT, and
NICASTRIN transcripts [124, 125] indicating that AD-
relevant transcripts are directly regulated by miR-16-5p. Our
findings here agree with previous observations showing a de-
crease ofmiR-16-5p in younger LOAD patient CSF compared
to controls [108] and in older LOAD patient serum [44] and
miR-16-2 in the CSF-derived exosomes from younger LOAD
patients [46]. Previous findings also showed that miR-16-5p is
decreased in LOAD hippocampus but not in CSF [42] and its
decrease correlated with early Braak staging [44].

Interestingly, we did not observe a decrease in miR-16-5p
in the exosomes of CSF from our LOAD cohort. This finding
may be attributable to differences in the profile of CSF-
derived exosomes versus whole CSF, serum, and/or brain tis-
sue. Another possibility is that there may be age-dependent
factors contributing to miRNA expression in CSF-derived
exosomes. The average age of the LOAD cohort at the time
of LP in the current study (75.5 ± 4.6 years) versus the previ-
ous CSF study (69.5 ± 7.3 years) differs [108]. In addition,
differences exist between the average age of our LOAD
and HC cohort (66.5 ± 7.7 years). Future studies will con-
sider the longitudinal change of miR-16-5p expression and
other miRNAs in AD CSF, serum, and brain tissue. Also,
replication of these results in independent and other neu-
rodegenerative disease cohorts will confirm whether a de-
crease in CSF exosome levels of these miRNAs is specific
for younger AD patients.

Overall, this study uncovered a differential expression pro-
file for both previously identified and novel miRNAs altered
in AD and extended these findings to the exosomal compart-
ment in CSF from YOAD and LOAD patients. The expres-
sion level of all four miRNAs effectively discriminates
YOAD from HC, suggesting the potential for combinatorial
value for detection of YOAD versus HC. Since these miRNAs
target transcripts and pathways relevant to molecular process-
es underlying AD and provide some further understanding
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into the pathophysiological differences between YOAD and
LOAD, further functional characterization of these miRNAs
may offer new therapeutic avenues for patients with AD.
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